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▪ Tree search keeps unexplored alternatives on the fringe (ensures completeness)

▪ Local search: improve a single option until you can’t make it better (no fringe!)

▪ New successor function: local changes

▪ Generally much faster and more memory efficient (but incomplete and suboptimal)
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▪ Simple, general idea:
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s bad about this approach?

▪ What’s good about it?

Hill Climbing
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▪ Starting from X, where do you end up?

▪ Starting from Y, where do you end up?

▪ Starting from Z, where do you end up?

Hill Climbing Quiz
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▪ Idea:  Escape local maxima by allowing downhill moves
▪ But make them rarer as time goes on

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
 inputs: problem, a problem
    schedule, a mapping from time to “temperature“
 local variables: current, a node
      next, a node
      T, a “temperature” controlling probability of downward steps

 current ← MAKE-NODE(INITIAL-STATE[problem])
 for t ← 1 to ∞ do
  T  ← schedule[t]
  if T = 0 then return current
  next ← a randomly selected successor of current
  ΔE  ← VALUE[next] – VALUE[current]
  if  ΔE > 0  then current ← next

  else  current ←  next only  with  probability   𝑒
Δ𝐸

𝑇



▪ Theoretical guarantee:

▪ Stationary distribution: 𝑝 𝑥 ∝ 𝑒
𝐸 𝑥

𝑘𝑇

▪ If T decreased slowly enough,
will converge to optimal state!

▪ Is this an interesting guarantee?

▪ Sounds like magic, but reality is reality:
▪ The more downhill steps you need to escape a local optimum, the less likely you are to 

ever make them all in a row
▪ People think hard about ridge operators which let you jump around the space in better 

ways

Simulated Annealing
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▪ Genetic algorithms use a natural selection metaphor
▪ Keep best N hypotheses at each step (selection) based on a fitness function

▪ Also have pairwise crossover operators, with optional mutation to give variety

▪ Possibly the most misunderstood, misapplied (and even maligned) technique around

Genetic Algorithms



▪ Why does crossover make sense here?

▪ When wouldn’t it make sense?

▪ What would mutation be?

▪ What would a good fitness function be?

Example: N-Queens
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