
Advanced Topics in AI
Filtering

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

http://ai.berkeley.edu/

WA NT NSWQ V SA

▪ Filtering: Keep track of domains for unassigned variables and cross off bad options

▪ Forward checking: Cross off values that violate a constraint when added to the existing
assignment

Filtering: Forward Checking

WA
SA

NT Q

NSW

V

▪ Forward checking propagates information from assigned to unassigned variables, but doesn't provide
early detection for all failures:

▪ NT and SA cannot both be blue!

▪ Why didn’t we detect this yet?

▪ Constraint propagation: reason from constraint to constraint

Filtering: Constraint Propagation

WA
SA

NT Q

NSW

V

WA NT NSWQ V SA

▪ An arc X →Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

Forward checking?

Enforcing consistency of arcs pointing to each new
assignment

Consistency of A Single Arc

Delete from the tail!

WA
SA

NT Q

NSW

V

WA NT NSWQ V SA

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Arc V to NSW is consistent: for every x in the tail there is some y in the head which could
be assigned without violating a constraint

Arc Consistency of an Entire CSP

WA
NT

SA
Q

NSW

V

WA NT NSWQ V SA

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Arc SA to NSW is consistent: for every x in the tail there is some y in the head which
could be assigned without violating a constraint

Arc Consistency of an Entire CSP

WA
NT

SA
Q

NSW

V

WA NT NSWQ V SA

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Arc NSW to SA is not consistent: if we assign NSW = blue, there is no valid assignment
left for SA

▪ To make this arc consistent, we delete NSW = blue from the tail

Arc Consistency of an Entire CSP

WA
NT

SA
Q

NSW

V

WA NT NSWQ V SA

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Remember that arc V to NSW was consistent, when NSW had red and blue in its domain
▪ After removing blue from NSW, this arc might not be consistent anymore! We need to

recheck this arc.

▪ Important: If X loses a value, neighbors of X need to be rechecked!

Arc Consistency of an Entire CSP

WA
NT

SA
Q

NSW

V

WA NT NSWQ V SA

▪ A simple form of propagation makes sure all arcs are consistent:

▪ Arc SA to NT is inconsistent. We make it consistent by deleting from the tail (SA = blue).

Arc Consistency of an Entire CSP

WA
NT

SA
Q

NSW

V

WA NT NSWQ V SA

▪ A simple form of propagation makes sure all arcs are consistent:

▪ SA has an empty domain, so we detect failure. There is no way to solve this CSP with
WA = red and Q = green, so we backtrack.

▪ Arc consistency detects failure earlier than forward checking
▪ Can be run as a preprocessor or after each assignment

Arc Consistency of an Entire CSP

WA
NT

SA
Q

NSW

V

WA NT NSWQ V SA

function AC-3(csp) returns the CSP, possibly with reduced domains
 inputs: csp, a binary CSP with variables 𝑋1, 𝑋2, … , 𝑋𝑛
 local variables: queue, a queue of arcs, initially all the arcs in csp

 while queue is not empty do
 (Xi, Xj) ← REMOVE-FIRST(queue)
 if REMOVE-INCONSISTENT-VALUES(Xi, Xj) then
 for each Xk in NEIGHBORS[Xi] do
 add (Xk, Xi) to queue
__
function REMOVE-INCONSISTENT-VALUES(Xi, Xj) returns true iff succeeds
 removed ← false
 for each x in DOMAIN[Xi] do
 if no value y in DOMAIN[Xj] allows (x, y) to satisfy the constraint Xi ↔ Xj

 then delete x from DOMAIN[Xi]; removed ← true
 return removed

▪ Runtime: O(n2d3), can be reduced to O(n2d2)

▪ … but detecting all possible future problems is NP-hard – why?

Enforcing Arc Consistency in a CSP

▪ After enforcing arc consistency:
▪ Can have one solution left

▪ Can have multiple solutions left

▪ Can have no solutions left (and not know it)

▪ Arc consistency still runs inside a
backtracking search!

Limitations of Arc Consistency

What went
wrong here?

K-Consistency

▪ Increasing degrees of consistency

▪ 1-Consistency (Node Consistency): Each single node’s domain has a value which meets
that node’s unary constraints

▪ 2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment to one can be extended to the other

▪ K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to
the kth node.

▪ Higher k more expensive to compute

▪ (You need to know the k=2 case: arc consistency

K-Consistency

▪ Strong k-consistency: also k-1, k-2, … 1 consistent

▪ Claim: strong n-consistency means we can solve without backtracking!

▪ Why?
▪ Choose any assignment to any variable

▪ Choose a new variable

▪ By 2-consistency, there is a choice consistent with the first

▪ Choose a new variable

▪ By 3-consistency, there is a choice consistent with the first 2

▪ …

▪ Lots of middle ground between arc consistency and n-consistency!
(e.g. k=3, called path consistency)

Strong K-Consistency

Advanced Topics in AI
Next: Ordering

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

http://ai.berkeley.edu/

	Folie 1: Advanced Topics in AI
	Folie 2: Filtering: Forward Checking
	Folie 3: Filtering: Constraint Propagation
	Folie 4: Consistency of A Single Arc
	Folie 5: Arc Consistency of an Entire CSP
	Folie 6: Arc Consistency of an Entire CSP
	Folie 7: Arc Consistency of an Entire CSP
	Folie 8: Arc Consistency of an Entire CSP
	Folie 9: Arc Consistency of an Entire CSP
	Folie 10: Arc Consistency of an Entire CSP
	Folie 11: Enforcing Arc Consistency in a CSP
	Folie 12: Limitations of Arc Consistency
	Folie 13: K-Consistency
	Folie 14: K-Consistency
	Folie 15: Strong K-Consistency
	Folie 16: Advanced Topics in AI

