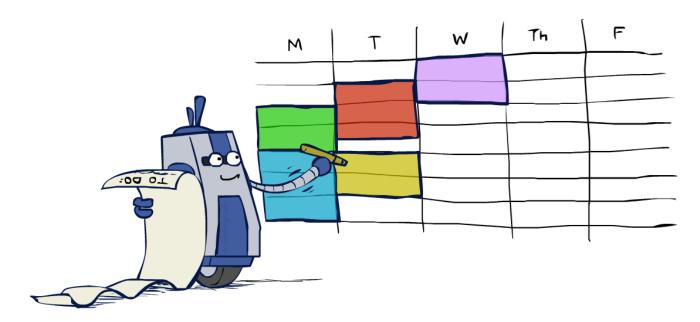
Advanced Topics in Al Examples of CSPs

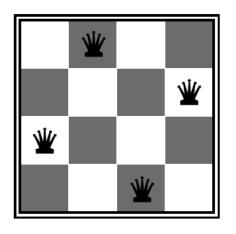


Leibniz University Hannover

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Circuit layout
- Fault diagnosis
- ... lots more!

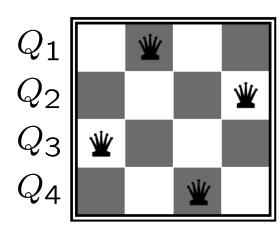
Many real-world problems involve real-valued variables...



Example: N-Queens

Formulation 1:

- Variables: X_{ij}
- Domains: {0, 1}
- Constraints
 - $\forall i, j, k (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i, j, k (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i, j, k (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i, j, k (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$



Example: N-Queens

Formulation 2:

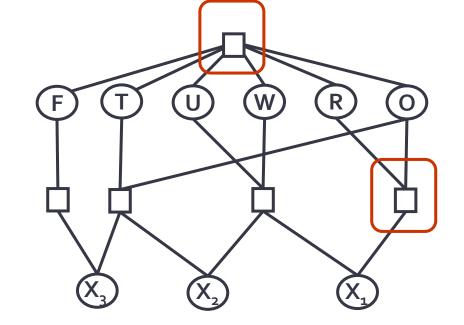
- Variables: Q_k
- Domains: {1, 2, 3, ..., *N*}
- Constraints:
 - Implicit:
 - $\forall i, j \text{ non } \text{threatening}(Q_i, Q_j)$
 - Explicit:
 - $(Q_1, Q_2) \in \{(1,3), (1,4), \dots\}$
 - •

Example: Cryptarithmetic

Variables:

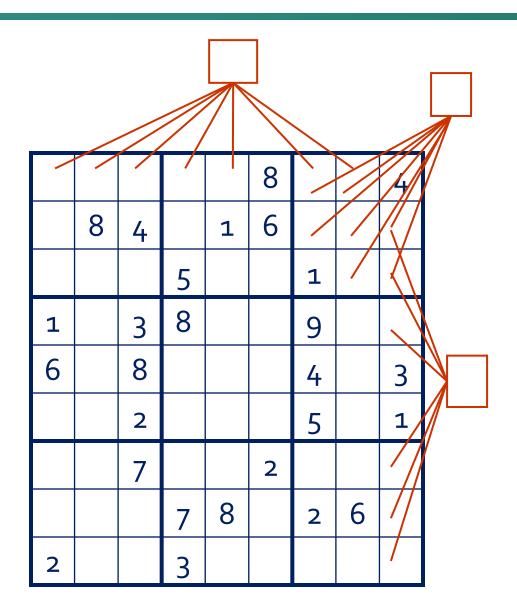
$$F T U W R O X_1 X_2 X_3$$

Domains:


$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

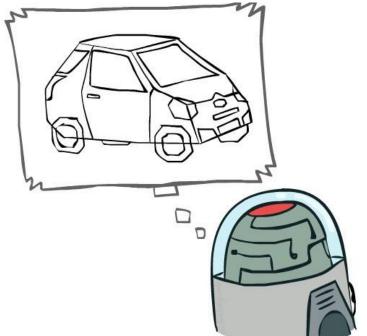
alldiff(F, T, U, W, R, O)

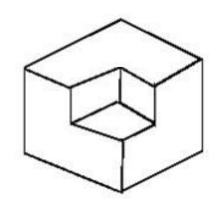
$$O + O = R + 10 \cdot X_1$$



Example: Sudoku

Variables:


- Each (open) square
- Domains:
 - **1**,2,...,9
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 - (or can have a bunch of pairwise inequality constraints)



Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

- Approach:
 - Each intersection is a variable
 - Adjacent intersections impose constraints on each other
 - Solutions are physically realizable 3D interpretations

Advanced Topics in Al Next: Solving CSPs

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

