
eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Prof. Dr. techn. Wolfgang Nejdl October 4th 2023
Franziska Schoger

Advanced Topics in AI
Exercise 1 - Search

Question 1: Search Algorithms

A

B

C

D

E

F

G

1

4

1

5

3

8

9

3

2

5

Node h1 h2

A 9.5 10
B 9 12
C 8 10
D 7 8
E 1.5 1
F 4 4.5
G 0 0

Consider the state space graph shown above. A is the start state and G is the goal
state. The costs for each edge are shown on the graph. Each edge can be traversed
in both directions. Note that the heuristic h1 is consistent but the heuristic h2 is not
consistent.

Question 1.1: Properties

Which properties do depth-first search, breadth-first search, uniform cost search,
greedy search and A* search have? Describe the approach of the methods and name
the advantages and disadvantages.

Solution:

Depth-first Search: The search buffer (fringe) is organized in a last-in/first-out
(“LIFO”, “Stack”) fashion. Solutions found are likely to be located deep in the
search-tree (finds the “left-most” solution). If there are never ending paths,
not all or even no solutions will be found.
Depth-first search is problematic when there are an infinite number of reach-
able states. In that case, the traversal of the search-tree can not be done.
However, depth-first search can be implemented in a memory efficient way
because it makes use of a stack data-structure.

Breadth-first Search: The fringe is organized in a first-in/first-out (“FIFO”, “Queue”)
fashion. The shortest path inside the search-tree will be found. However,

1

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

compared to the depth-first search, the breadth-first search requires more
memory (θ (bd)). This is because the number of nodes contained in the search
tree is growing exponentially with respect to the depth of the tree.

Uniform Cost Search: The fringe is now ordered according to costs. It finds the
least cost solution. Memory consumption is similar to Breadth-first Search.

Greedy Search: The fringe is ordered according to the heuristic, which estimates
the future costs to the goal. In good cases it takes you directly to the goal,
in bad cases it behaves like a badly guided DFS.

A*: The fringe is ordered according to the sum of heuristic (estimated future costs)
and true costs from the start. Behaves like a guided UCS. If the heuristic is
chosen well (admissible / consistent) it finds the least-cost solution.

In General: The breadth-first search is complete, since every level of the search-
tree will be visited in a systematic manner and thus every node is expanded.
The depth-first search on the other hand may be not complete if the search
tree contains branches of infinite size. Therefore, the depth-first search may
not terminate. Infinite paths through loops can be prevented by graph search.
Uniform Cost Search is complete and optimal. Greedy Search is complete
if there are no infinite paths, but not optimal. A* is (with admissible →
tree-search, or consistent → graph-search heuristics) complete and optimal.

Question 1.2: Possible paths returned

For each of the following graph search strategies (do not answer for tree search), mark
which, if any, of the listed paths it could return. Note that for some search strategies
the specific path returned might depend on tie-breaking behavior. In any such cases,
make sure to mark all paths that could be returned under some tie-breaking scheme.

Search algorithm A-B-D-G A-C-D-G A-B-C-D-F-G
Depth first search x x x
Breath first search x x
Uniform cost search x
A* search with heuristic h1 x
A* search with heuristic h2 x

Solution:

The return paths depend on tie-breaking behaviors so any possible path has to
be marked. DFS can return any path. BFS will return all the shallowest paths, i.e.
A-B-D-G and A-C-D-G. A-B-C-D-F-G is the optimal path for this problem, so that
UCS and A* using consistent heuristic h1 will return that path. Although, h2 is not
consistent, it will also return this path.

2

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Question 1.3: Heuristic function properties

Suppose you are completing the new heuristic function h3 shown below. All the values
except h3(B) are fixed and satisfy the consistency conditions.

Node A B C D E F G
h3 10 ? 9 7 1.5 4.5 0

For each of the following conditions, write the set of values that are possible for h3(B).
For example, to denote all non-negative numbers, write [0,∞), to denote the empty
set, write ∅, and so on.

1. What values of h3(B) make h3 admissible?

Solution:

To make h3 admissible, h3(B) has to be less than or equal to the actual optimal
cost from B to goal G, which is the cost of path B-C-D-F-G, i.e. 12. The answer
is 0 ≤ h3(B) ≤ 12

2. What values of h3(B) make h3 consistent?

Solution:

All the other nodes except node B satisfy the consistency conditions. The
consistency conditions that do involve the state B are:

h (A) ≤ c (A,B) + h (B) h (B) ≤ c (B ,A) + h (A)
h (C) ≤ c (C ,B) + h (B) h (B) ≤ c (B ,C) + h (C)
h (D) ≤ c (D ,B) + h (B) h (B) ≤ c (B ,D) + h (D)

Filling in the numbers shows this results in the condition: 9 ≤ h3 (B) ≤ 10

3. What values of h3(B) will cause A* graph search to expand node A, then node C,
then node B, then node D in order.

Solution:

A

Bf = 1 + x C f = 4 + 9 = 13

B’f = 5 + x D f = 7 + 7 = 14

1 4

1 3

The A* search tree using heuristic
h3 is on the left. In order to make
A* graph search expand node A,
then node C, then node B, suppose
h3 (B)= x , we need

1 + x > 13
5 + x < 14 (expand B ’) or 1 +
x < 14 (expand B)
so we can get 12 < h3(B) < 13

3

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Question 2: n-Pac-Men search

Consider the problem of controlling n Pac-Men simultaneously. Several Pac-Men can
be in the same square at the same time, and at each time step, each Pac-Man moves
by at most one unit vertically or horizontally (in other words, a Pac-Man can stop, and
also several Pac-Men can move simultaneously). The goal of the game is to have all
the Pac-Men be at the same square in the minimum number of time steps. In this
question, use the following notation: let M denote the number of squares in the maze
that are not walls (i.e. the number of squares where Pac-Men can go); n the number of
Pac-Men; and p i = (x i, y i) : i = 1...n , the position of Pac-Man i . Assume that the maze
is connected.

1. What is the state space of this problem?

Solution:

n-Tuples, where each entry is in {1, ...,M } .

2. What is the size of the state space (not a bound, the exact size)?

Solution:
M n

3. Give the tightest upper bound on the branching factor of this problem.

Solution:

5n (Each Pac-Man has five actions: Stop and the 4 directions).

4. Bound the number of nodes expanded by uniform cost tree search on this
problem, as a function of n and M. Justify your answer.

Solution:

As in breadth-first search, the number of nodes expanded is bounded by
bD , with b being the branching factor, and D being the maximum depth of
the search tree. Therefore, the answer is 5(nM)/2 , because the max depth
of a solution n is M

2 while the branching factor is 5n . How do we know the
max depth of a solution? Imagine the worst possible case: bringing together
Pac-Men that are as far away from each other as possible. Since there are M
total navigable cells, the maximum number of moves to accomplish this is
M
2 .

5. Which of the following heuristics are admissible? Which one(s), if any, are con-
sistent? Briefly justify all your answers.

4

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

a) The number of (ordered) pairs (i, j) of Pac-Men with different coordinates:

h1(p1, ..., pn) = Σn
i=1Σ

n
j=i+11[p i , p j] wher e 1[p i , p j] =

{
1 i f p i , p j
0 otherwi se

Solution:

Neither. Consider n = 3, no wall, and state s such that Pac-Men are at
positions (i + 1, j), (i − 1, j), (i , j + 1). All Pac-Men can meet in one step,
but h (s) > 1.

b) h2((x 1, y 1), ..., (xn, y n)) = 1
2max

{
max i,j |x i − x j |,max i,j |y i − y j |

}
Solution:

Admissible: imagine a relaxed problem where there are no walls and
Pac-Men can move diagonally. The number of steps needed to solve that
relaxed problem is ceil 1

2max (max i,j |x i − x j |,max i,j |y i − y j |). Therefore
ceil h2 is admissible. So, h2 is also admissible, because h2 <ceil h2 . It
is also consistent because each absolute value will change by at most
2 per step, meaning that h2 will decrease by at most 1 for each action
(actions have cost 1).

Question 3: Travelling through Romania

Perform a search to find a way through Romania. Document the process in a table
using the following table schema:

Step Fringe Explored Children

The columns Fringe and Explored should contain the sets at the beginning of each
step, the column Children should contain the set that is created during the step.
Use the street map shown in Figure 1 and the heuristic shown in Figure 2.

5

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Oradea

151

71

75
Zerind

140

118

Timisoara

Sibiu

111 Lugoj

70

Mehadia

75

Dobreta 120

Craiova

146

138

97

101

80
Rimnicu Vilcea

99
Fagaras

211

85

Bucharest

Giurgiu

90

Urziceni

98 Hirsova

86

Eforie

142

Vaslui

92

Iasi

87

Neamt

Pitesti

Arad

Figure 1: Simplified street map of Romania

Arad 366 Mehdia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Dobreta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

Figure 2: Values for the ideal distance to Bucharest

1. Perform tree-search Depth-First Search from Arad to Bucharest.

Solution:
Tree-search:

6

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Fringe Ex-
plored

Children

1 Arad Sibiu, Timisoara,
Zerind

2 Sibiu, Timisoara, Zerind Arad Arad, Fagaras,
Oradea, Rimnicu
V.

3 Arad, Fagaras, Oradea, Rimnicu Vilcea,
Timisoara, Zerind

Arad,
Sibiu

Sibiu, Timisoara,
Zerind

4 Sibiu, Timisoara, Zerind, Fagaras, Oradea,
Rimnicu Vilcea, Timisoara, Zerind

Arad Arad, Fagaras,
Oradea, Rimnicu
V.

and so on and so forth. With tree-search we are stuck in a loop. So let’s do graph-
search.

Fringe Explored Children

1 Arad Sibiu, Timisoara,
Zerind

2 Sibiu, Timisoara, Zerind Arad Arad, Fagaras,
Oradea, Rimnicu V.

3 Arad, Fagaras, Oradea, Rimnicu
Vilcea, Timisoara, Zerind

Arad, Sibiu

4 Fagaras, Oradea, Rimnicu Vilcea,
Timisoara, Zerind

Arad, Sibiu Bucharest, Sibiu

5 Bucharest, Sibiu, Oradea, Rimnicu
Vilcea, Timisoara, Zerind

Arad, Sibiu,
Fagaras

What happens now in step 3 is that we notice that we explored Arad already and
not explore it again. So in step 4 we explore the next city in the fringe, Fagaras.

2. Perform tree-search Breadth-First Search from Arad to Bucharest.

Solution:

7

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Fringe Explored Children

1 Arad Sibiu,
Timisoara,
Zerind

2 Sibiu, Timisoara, Zerind Arad Arad,
Fagaras,
Oradea,
Rimnicu
V.

3 Timisoara, Zerind,Arad, Fagaras,
Oradea, Rimnicu Vilcea

Arad, Sibiu Arad,
Lugoj

4 Zerind,Arad, Fagaras, Oradea,
Rimnicu Vilcea, Arad, Lugoj

Arad, Sibiu,
Timisoara

Arad,
Oradea

5 Arad, Fagaras, Oradea, Rimnicu
Vilcea, Arad, Lugoj, Arad, Oradea

Arad, Sibiu,
Timisoara, Zerind

Sibiu,
Timisoara,
Zerind

6 Fagaras, Oradea, Rimnicu Vilcea,
Arad, Lugoj, Arad, Oradea, Sibiu,
Timisoara, Zerind

Arad, Sibiu,
Timisoara,
Zerind,Arad

Bucharest,
Sibiu

7 Oradea, Rimnicu Vilcea, Arad,
Lugoj, Arad, Oradea, Sibiu,
Timisoara, Zerind, Bucharest

Arad, Sibiu,
Timisoara,
Zerind,Arad, Fagaras

Sibiu,
Zerind

8 Rimnicu Vilcea, Arad, Lugoj, Arad,
Oradea, Sibiu, Timisoara, Zerind,
Bucharest, Sibiu, Zerind

Arad, Sibiu,
Timisoara, Zerind,
Arad, Fagaras,
Oradea

Craiova,
Pitesti,
Sibiu

9 Arad, Lugoj, Arad, Oradea, Sibiu,
Timisoara, Zerind, Bucharest,
Sibiu, Zerind, Craiova, Pitesti,
Sibiu

Arad, Sibiu,
Timisoara, Zerind,
Arad, Fagaras,
Oradea, Rimnicu
Vilcea

Sibiu,
Timisoara,
Zerind

10 Lugoj, Arad, Oradea, Sibiu,
Timisoara, Zerind, Bucharest,
Sibiu, Zerind, Craiova, Pitesti,
Sibiu, Sibiu, Timisoara, Zerind

Arad, Sibiu,
Timisoara, Zerind,
Arad, Fagaras,
Oradea, Rimnicu
Vilcea, Arad

Meha-
dia,
Timisoara

11 Arad, Oradea, Sibiu, Timisoara,
Zerind, Bucharest, Sibiu, Zerind,
Craiova, Pitesti, Sibiu, Sibiu,
Timisoara, Zerind, Mehadia,
Timisoara

Arad, Sibiu,
Timisoara, Zerind,
Arad, Fagaras,
Oradea, Rimnicu
Vilcea, Arad, Lugoj

Sibiu,
Timisoara,
Zerind

8

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

12 Oradea, Sibiu, Timisoara, Zerind,
Bucharest, Sibiu, Zerind, Craiova,
Pitesti, Sibiu, Sibiu, Timisoara,
Zerind, Mehadia, Timisoara, Sibiu,
Timisoara, Zerind

Arad, Sibiu, Timisoara,
Zerind, Arad, Fagaras,
Oradea, Rimnicu
Vilcea, Arad, Lugoj,
Arad

Sibiu,
Zerind

13 Sibiu, Timisoara, Zerind,
Bucharest, Sibiu, Zerind, Craiova,
Pitesti, Sibiu, Sibiu, Timisoara,
Zerind, Mehadia, Timisoara, Sibiu,
Timisoara, Zerind, Sibiu, Zerind

Arad, Sibiu, Timisoara,
Zerind, Arad, Fagaras,
Oradea, Rimnicu
Vilcea, Arad, Lugoj,
Arad, Oradea

Fa-
garas,
Oradea,
Rimnicu
V.

14 Timisoara, Zerind, Bucharest,
Sibiu, Zerind, Craiova, Pitesti,
Sibiu, Sibiu, Timisoara,
Zerind,Mehadia, Timisoara, Sibiu,
Timisoara, Zerind, Sibiu, Zerind,
Fagaras, Oradea, Rimnicu V.

Arad, Sibiu, Timisoara,
Zerind, Arad, Fagaras,
Oradea, Rimnicu
Vilcea, Arad, Lugoj,
Arad, Oradea, Sibiu

Arad,
Lu-
goj

15 Zerind, Bucharest, Sibiu, Zerind,
Craiova, Pitesti, Sibiu, Sibiu,
Timisoara, Zerind, Mehadia,
Timisoara, Sibiu, Timisoara, Zerind,
Sibiu, Zerind, Fagaras, Oradea,
Rimnicu V., Arad, Lugoj

Arad, Sibiu, Timisoara,
Zerind, Arad, Fagaras,
Oradea, Rimnicu
Vilcea, Arad, Lugoj,
Arad, Oradea,
Sibiu,Timisoara

Arad,
Oradea

16 Bucharest, Sibiu, Zerind, Craiova,
Pitesti, Sibiu, Sibiu, Timisoara,
Zerind, Mehadia, Timisoara, Sibiu,
Timisoara, Zerind, Sibiu, Zerind,
Fagaras, Oradea, Rimnicu V., Arad,
Lugoj

Arad, Sibiu, Timisoara,
Zerind, Arad, Fagaras,
Oradea, Rimnicu
Vilcea, Arad, Lugoj,
Arad, Oradea,
Sibiu,Timisoara, Zerind

Two comments:
a) We do a lot of work multiple times. Look at all those gray entries in the

table. We already explored them before, but we explore them again and
again. In Graph Search we could just ignore these and would have been
done in 9 steps instead of 16.

b) With BFS you can do an early goal test and check the child nodes and
stop as soon as a child is a goal state (here step 6). Since that state
will be the first goal en-queued, it will also be the first de-queued (FIFO
queue). So you can save on expanded nodes. We didn’t do that in the
lecture, where we only did a goal test, when we de-queued a node. So
we have to wait until Bucharest is on top of the Fringe (step 16). For all
other algorithms this early goal test does not work.

3. Perform tree-search Uniform Cost Search from Sibiu to Bucharest.

Solution:

9

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Fringe Explored Children

1 Sibiu Arad(140),
Oradea(151),
Fargaras(99),
Rimnicu
Vilcea(80)

2 Rimnicu Vilcea(80),
Fargaras(99), Arad(140),
Oradea(151)

Sibiu Pitesti(177),
Craiova(226),
Sibiu(160)

3 Fargaras(99), Arad(140),
Oradea(151), Pitesti(177),
Craiova(226)

Sibiu, Rimnicu Vilcea Bucharest(310),
textcolorgraySi-
biu(198)

4 Arad(140), Oradea(151),
Pitesti(177), Craiova(226),
Bucharest(310)

Sibiu, Rimnicu Vilcea,
Faragas

Zerind(215),
Timisoara(258),
Sibiu(280)

5 Oradea(151), Pitesti(177),
Zerind(215), Craiova(226),
Timisoara(258),
Bucharest(310)

Sibiu, Rimnicu Vilcea,
Faragas, Arad

Zerind(222),
Sibiu(302)

6 Pitesti(177), Zerind(215),
Craiova(226),
Timisoara(258),
Bucharest(310)

Sibiu, Rimnicu Vilcea,
Faragas, Arad,
Oradea

Bucharest(278),
Craiova(315),
Rimnicu
Vilcea(274)

7 Zerind(215), Craiova(226),
Timisoara(258),
Bucharest(278)

Sibiu, Rimnicu Vilcea,
Faragas, Arad,
Oradea, Pitesti

Oradea(286),
Arad(290)

8 Craiova(226),
Timisoara(258),
Bucharest(278)

Sibiu, Rimnicu Vilcea,
Faragas, Arad,
Oradea, Pitesti,
Zerind

Dobreta(346),
Rimnicu
Vilcea(372),
Pitesti(364)

9 Timisoara(258),
Bucharest(278),
Dobreta(346)

Sibiu, Rimnicu Vilcea,
Faragas, Arad,
Oradea, Pitesti,
Zerind, Craiova

Lugoj(369),
Arad(376)

10 Bucharest(278),
Dobreta(346), Lugoj(369)

Sibiu, Rimnicu Vilcea,
Faragas, Arad,
Oradea, Pitesti,
Zerind, Timisoara

As we have seen with BFS how large this table can become if we are doing
tree-search, graph-search is given here. If you want to do tree-search, add
the children given in gray to the fringe at the correct place.
One interesting thing we can see happening from step 5 to step 6 and from
step 6 to step 7. In step 5 we have Zerind as Child again. We haven’t been

10

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

to Zerind yet, so neither with tree-search nor with graph-search we can
ignore it. Straightforward we could add Zerind again to the fringe, at the
respective place (between the Zerind already on the fringe and Craiova). If
we then encounter it, we would check with graph search if Zerind was already
explored and then go on to the next node. With tree search we would expand
it again. Here we chose another method. We updated the fringe. If a node
is already on the fringe, we update it by keeping only the version with the
lower costs. For Zerind, the version already on the fringe has the lowest
costs, so it stays unchanged. From step 6 to step 7, the newly found path to
Bucharest has the lower costs, so we update the costs on the fringe (and
also the position if necessary). The result is the same as adding the new
node at the correct position.

4. Perform tree-search A* Search from Arad to Bucharest

Solution:

11

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Step Fringe Explored Children
1 Arad Sibiu (140 + 253 = 393),

Timisoara (118+329 = 447),
Zerind (75 + 374 = 449)

2 Sibiu (393),
Timisoara (447),
Zerind (449)

Arad Rimnicu Vilcea
(140 + 80 + 193 = 413),
Fagaras
(140 + 99 + 176 = 415), Arad
(140 + 140 + 366 = 646),
Oradea (291 + 380 = 671)

3 Rimnicu Vilcea
(413), Fagaras (415),
Timisoara (447),
Zerind (449),
Oradea (671)

Arad,
Sibiu

Pitesti
(220 + 97 + 100 = 417),
Craiova
(220 + 146 + 160 = 526),
Sibiu (220 + 80 + 253 = 553)

4 Fagaras (415),
Pitesti (417),
Timisoara (447),
Zerind (449),
Craiova (526),
Oradea (671)

Arad,
Sibiu,
Rimnicu
Vilcea

Bucharest
(239 + 211 + 0 = 450), Sibiu
(239 + 99 + 253 = 591)

5 Pitesti (417),
Timisoara (447),
Zerind (449),
Bucharest (450),
Craiova (526),
Oradea (671)

Arad,
Sibiu,
Rimnicu
Vilcea,
Fagaras

Craiova
(317 + 138 + 160 = 615),
Bucharest
(317 + 101 + 0 = 418),
Rimnicu Vilcea
(317 + 97 + 193 = 607)

6 Bucharest(418),
Timisoara (447),
Zerind (449),
Craiova (526),
Oradea (671)

Arad,
Sibiu,
Rimnicu
Vilcea,
Fagaras,
Pitesti

Here we did again graph search. If you want to do tree search, add the gray
children at the correct position of the fringe.
From step 5 to step 6, we updated again the value of Bucharest, which moves
it to the top of the fringe.

12

