Advanced Topics in Al DFS and BFS

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europe Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Implementation: Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity?
- Space complexity?
- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths
- Number of nodes in entire tree?
 - **1** + b + b² + b^m = O(b^m)

Depth-First Search (DFS) Properties

- What nodes DFS expand?
 - Some left prefix of the tree.
 - Could process the whole tree!
 - If m is finite, takes time O(b^m)
- How much space does the fringe take?
 - Only has siblings on path to root, so O(bm)
- Is it complete?
 - m could be infinite, so only if we prevent cycles (more later)
- Is it optimal?
 - No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(b^s)
- How much space does the fringe take?
 - Has roughly the last tier, so O(b^s)
- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

DFS vs BFS

When will DFS outperform BFS?

When will BFS outperform DFS?

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Ø3

Leibniz University Hannover

Co-financed by the Connecting Europe Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]