Advanced Topics in Al

Tree search and Graph search

Instructor: Prof. Dr. techn. Wolfgang Nejd| et

XAIM 2 L . . e
‘ Leibniz University Hannover * ok

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] e R———"

http://ai.berkeley.edu/

Tree Search

Search Example: Romania

118

Hirsova

86

Dobreta [

Eforie

Co-financed by the Connecting Europe
Facility of the European Union

Searching with a Search Tree

_ Sibiu ¢ Timisoara) " Zerind
_/'-' ' T — e R

Arac -.-._/I F:'flggl:-fll'-"|"'.i Oradea Y /Ffil-'l'lnil: " r”“_._I Arad Y I_... LL];;||:|_i ’ Arad \ I.-.. Oradea

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

Searching with a Search Tree

- / ._. ™ y , y
p . R
T) N -) rd - . . . \

 Arad O ¢ _Fagaras) ¢ Oradea) <RimnicuMicea ¢ Arad > ¢ Lugoj ~_Arad > _Oradea)

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

Searching with a Search Tree

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

Example: Tree Search

Example: Tree Search

@ @ S—e
PN | s —p
q s—-d—b

s—d—ocC

r
|
f S—rd—e—

| l 7N s—d—e—h

Co
= AV | 7~ [|

g @ ¢
c \f‘l N oY L \-‘-—
® a -3 7 7 7 71
| s—>d—oe—or—ofoc
a

CA;f'I Ao N \'F N -
=4 7oA

> 71 71 7

Graph Search

= |dea: never expand a state twice

* How to implement:

= Tree search + set of expanded states (“closed set”)

= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been expanded before
= If not new, skip it, if new add to closed set

* |Important: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

Tree Search Pseudo-Code

function TREE-SEARCH (problem, fringe) return a solution, or a failure

fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure

node «<— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

for child-node in EXPAND(STATE[node], problem), do

fringe «— INSERT(child-node, fringe)

end

end

= Important ideas:
" Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?

Graph Search Pseudo-Code

function GRAPH-SEARCH (problem, fringe) return a solution, or a failure
closed «— an empty set
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add sTATE[node] to closed
for child-node in EXPAND(STATE[node], problem), do
fringe «— INSERT(child-node, fringe)
end
end

Advanced Topics in Al
Next: DFS and BFS

Instructor: Prof. Dr. techn. Wolfgang NejdI e

xXAIM o . . oSy
Leibniz University Hannover

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] rees—"

http://ai.berkeley.edu/

	Folie 1: Advanced Topics in AI
	Folie 2: Tree Search
	Folie 9: Search Example: Romania
	Folie 10: Searching with a Search Tree
	Folie 11: Searching with a Search Tree
	Folie 12: Searching with a Search Tree
	Folie 13: Example: Tree Search
	Folie 14: Example: Tree Search
	Folie 18: Graph Search
	Folie 19: Tree Search Pseudo-Code
	Folie 20: Graph Search Pseudo-Code
	Folie 21: Advanced Topics in AI

