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Tree Search




Search Example: Romania
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Searching with a Search Tree
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= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible




Searching with a Search Tree
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= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible




Searching with a Search Tree

= Search:
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Example: Tree Search




Example: Tree Search
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Graph Search

= |dea: never expand a state twice

* How to implement:

= Tree search + set of expanded states (“closed set”)

= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never been expanded before
= If not new, skip it, if new add to closed set

* |Important: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?




Tree Search Pseudo-Code

function TREE-SEARCH (problem, fringe) return a solution, or a failure

fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do

if fringe is empty then return failure

node «<— REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

for child-node in EXPAND(STATE[node], problem), do

fringe «— INSERT(child-node, fringe)

end

end

= Important ideas:
" Fringe
= Expansion
= Exploration strategy

= Main question: which fringe nodes to explore?




Graph Search Pseudo-Code

function GRAPH-SEARCH (problem, fringe) return a solution, or a failure
closed «— an empty set
fringe «— INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node «— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add sTATE[node] to closed
for child-node in EXPAND(STATE[node], problem), do
fringe «— INSERT(child-node, fringe)
end
end
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