

Theory of Hypothesis Test I

Data Driven Healthcare Mod B Prof. Paola Cerchiello – University of Pavia

Chapter Goals

After completing this chapter, you should be able to:

- Formulate null and alternative hypotheses for applications involving
 - a single population mean from a normal distribution
 - a single population proportion (large samples)
 - the variance of a normal distribution
- Formulate a decision rule for testing a hypothesis
- Know how to use the critical value and *p*-value approaches to test the null hypothesis (for both mean and proportion problems)
- Define Type I and Type II errors and assess the power of a test

Concepts of Hypothesis Testing

- A hypothesis is a claim (assumption) about a population parameter:
 - population mean
 - Example: The mean expenditure for medical drugs in this city is

$$\mu = $52$$

- population proportion

Example: The proportion of adults in this city with a specific disease is P = .88

The Null Hypothesis, H Sub O (1 of 2)

States the assumption (numerical) to be tested

Example: The average number of Hospital access in a year in Europe is equal to 3.

$$(H_0:\mu=3)$$

 Is always about a population parameter, not about a sample statistic

$$(H_0: \mu = 3) \qquad (H_0: \overline{x} = 3)$$

The Null Hypothesis, H sub O (2 of 2)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected

The Alternative Hypothesis, H Sub 1

- Is the opposite of the null hypothesis
- $-\,$ e.g., The average number of Hospital access in a year in Europe is is not equal to $_3$

 $(H_1: \mu \neq 3)$

- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- May or may not be supported
- Is generally the hypothesis that the researcher is trying to support

Hypothesis Testing Process

Reason for Rejecting H Sub o

Level of Significance α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
- Defines rejection region of the sampling distribution
- Is designated by α, (level of significance)
 - Typical values are 0.01, 0.05, or 0.10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Errors in Making Decisions (1 of 2)

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
- Set by researcher in advance

Errors in Making Decisions (2 of 2)

Type II Error

Fail to reject a false null hypothesis

The probability of Type II Error is *β* (*beta*)

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

		Actual Situation	
Key: Outcome (Probability)	Decision	H_0 True	H_0 False
	Fail to Reject H_0	Correct Decision (1 - \alpha)	Type II Error (β)
	Reject H_0	Type I Error (α)	Correct Decision (1-β)

 $(1 - \beta)$ is called the power of the test

Consequences of Fixing the Significance Level of a Test

• Once the significance level α is chosen (generally less than 0.10), the probability of Type II error, β , can be found.

Type I & II Error Relationship

- Type I and Type II errors can not happen at the same time
 - Type I error can only occur if H_0 is true
 - Type II error can only occur if H_0 is false

If Type I error probability (α) \Uparrow , then Type II error probability (β) \Downarrow

Power of the Test

• The power of a test is the probability of rejecting a null hypothesis that is false

Power =
$$P(\text{Reject } H_0 | H_1 \text{ is true})$$

Power of the test increases as the sample size increases

Hypothesis Tests for the Mean

Tests of the Mean of a Normal Distribution Sigma Known

Decision Rule

Critical value \overline{X}_{ϵ}

p-Value

p-value: Probability of obtaining a test statistic more extreme (≤ or ≥)

than the observed sample value given H_0 is true Also called observed level of significance

Smallest value of α for which H_0 can be rejected

p-Value Approach to Testing

• Convert sample result (e.g., \overline{x}) to test statistic (e.g., z statistic)

- Obtain the *p*-value • For an upper tail test: $p - value = P(z > \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}, \text{ given thet } H_0 \text{ is true})$ $= P(z > \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} | \mu = \mu_0)$
- Decision rule: compare the *p*-value to *α*

- If *p*-value
$$< \alpha$$
, reject H_0

- If *p*-value $\geq \alpha$, do not reject H_0

Upper-Tail Z Test for Mean Sigma Known

A Hospital thinks that the average age of incoming patients has increased, and now average over 52 years. The hospital wishes to test this claim.

(Assume $\sigma = 10$ is known)

Form hypothesis test:

- $H_0: \mu \le 52$ the average is not over 52 years
- $H_1: \mu > 52$ the average is greater than 52 years (i.e., sufficient evidence exists to support the hospital's claim)

Find Rejection Region

• Suppose that $\alpha = .10$ is chosen for this test

Find the rejection region:

Sample Results

Obtain sample and compute the test statistic

Suppose a sample is taken with the following

results:

 $n = 64, \ \overline{x} = 53.1 \ (\sigma = 10 \text{ was assumed known})$

- Using the sample results,

$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{53.1 - 52}{\frac{10}{\sqrt{64}}} = 0.88$$

Reach a decision and interpret the result:

p-Value Solution

Calculate the *p*-value and compare to α

(assuming that $\mu = 52.0$)

One-Tail Tests

 In many cases, the alternative hypothesis focuses on one particular direction

Upper-Tail Tests

 There is only one critical value, since the rejection area is in only one tail

Lower-Tail Tests

 There is only one critical value, since the rejection area is in only one tail

Two-Tail Tests

Hypothesis Testing Example (1 of 4)

Test the claim that the true mean # of access to the hospital is equal to 3

(Assume $\sigma = 0.8$)

• State the appropriate null and alternative hypotheses $H_0: \mu = 3, H_1: \mu \neq 3$ (This is a two tailed test)

- Specify the desired level of significance
 - Suppose that $\alpha = .05$ is chosen for this test
 - Choose a sample size
 - Suppose a sample of size n = 100 is selected

Hypothesis Testing Example (2 of 4)

- Determine the appropriate technique
 - σ is known so this is a *z* test
 - Set up the critical values
 - For $\alpha = .05$ the critical *z* values are ± 1.96
 - Collect the data and compute the test statistic
 - Suppose the sample results are

 $n = 100, \ \overline{x} = 2.84$ ($\sigma = 0.8$ is assumed known)

So the test statistic is:

$$z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{2.84 - 3}{\frac{0.8}{\sqrt{100}}} = \frac{-.16}{.08} = -2.0$$

Hypothesis Testing Example (3 of 4)

Is the test statistic in the rejection region?

Reject H_0 if z < -1.96 or z > 1.96; otherwise do not reject H_0

Hypothesis Testing Example (4 of 4)

Reach a decision and interpret the result

we reject the null hypothesis and conclude that there is sufficient evidence that the mean number of access to hospital is not equal to 3

p-Value (1 of 2)

• **Example:** How likely is it to see a sample mean of 2.84 (or something further from the mean, in either direction)

if the true mean is $\mu = 3.0?$

 $\overline{x} = 2.84$ is translated to a *z* score of *z* = -2.0

$$P(z < -2.0) = .0228$$

 $P(z > 2.0) = .0228$

p-value = .0228 + .0228 = .0456

p-Value (2 of 2)

