

Co-financed by the Connecting Europe Facility of the European Union

Contingency Table Analysis

Data Driven Healthcare Module B Prof. Paola Cerchiello – University of Pavia

Goals (1 of 2)

you should be able to:

- Set up a contingency analysis table and perform a chi-square test of association
- Recognize when and how to use the Wilcoxon signed rank test for paired or matched samples

Introduction

- Nonparametric Statistics
 - Fewer restrictive assumptions about data levels and underlying probability distributions
 - Population distributions may be skewed
 - The level of data measurement may only be ordinal or nominal

Contingency Tables

- Used to classify sample observations according to a pair of attributes
- Also called a cross-classification or crosstabulation table
- Assume r categories for attribute A and c categories for attribute B
- Then there are (*r*×*c*) possible cross-classifications

r Times *c* Contingency Table

	Attribute B				
Attribute A	1	2		С	Totals
1	<i>O</i> ₁₁	<i>O</i> ₁₂	•••	O_{1c}	<i>R</i> ₁
2	<i>O</i> ₂₁	<i>O</i> ₂₂	•••	O_{2c}	R_2
•	•	•	•••	•	
•	•	•	•••	•	•
•	•	•	•••	•	
r	O_{r1}	O_{r2}	•••	O_{rc}	R_r
Totals	C_1	C_2	•••	C_c	п

Test for Association (1 of 2)

- Consider *n* observations tabulated in an $r \times c$ contingency table
- Denote by O_{ij} the number of observations in the cell that is in the ith row and the jth column
- The null hypothesis is
 - $H_{\rm 0}$: No association exists between the two attributes in the population
- The appropriate test is a chi-square test with degrees of freedom

$$(r-1)(c-1)$$

Test for Association (2 of 2)

- Let R_i and C_j be the row and column totals
- The expected number of observations in cell row *i* and column *j*, given that H_0 is true, is

$$E_{ij} = \frac{R_i C_j}{n}$$

A test of association at a significance level α is based on the chi-square distribution and the following decision rule

Reject
$$H_0$$
 if $\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}} > \chi^2_{(r-1)(c-1),\alpha}$

Contingency Table Example (1 of 2)

- Left-Handed vs. Gender
- Dominant Hand: Left vs. Right
- Gender: Male vs. Female
- H_0 : There is no association between hand preference and gender
- H_1 : Hand preference is not independent of gender

Contingency Table Example (2 of 2)

Sample results organized in a contingency table:

ample size = $n = 300$:		Hand Preference		
sample size = $n = 300$:	Gender	Left	Right	
were left handed	Female	12	108	120
180 Males, 24 were left handed	Male	24	156	180
		36	264	300

Logic of the Test

- H_0 There is no association between hand preference and gender
- H_1 : Hand preference is not independent of gender
- If H_0 is true, then the proportion of left-handed females should be the same as the proportion of left-handed males
- The two proportions above should be the same as the proportion of left-handed people overall

Finding Expected Frequencies

So we would expect 12% of the 120 females and 12% of the 180 males to be left handed...

i.e., we would expect (120)(.12) = 14.4 females to be left handed (180)(.12) = 21.6 males to be left handed

Expected Cell Frequencies

• Expected cell frequencies:

$$E_{ij} = \frac{R_i C_j}{n} = \frac{\left(i^{\text{th}} \text{Row total}\right) \left(j^{\text{th}} \text{Column total}\right)}{\text{Total sample size}}$$

Example:

$$E_{11} = \frac{(120)(36)}{300} = 14.4$$

Observed vs. Expected Frequencies (3 of 4)

Observed frequencies vs. expected frequencies:

	Hand Pr			
Gender	Left	Right		
Female	Observed = 12	Observed = 108	120	
	Expected = 14.4	ected = 14.4 Expected = 105.6		
Mala	Observed = 24	Observed = 156	100	
Iviale	Expected = 21.6	Observed = 108 Expected = 105.6 Observed = 156 Expected = 158.4 264	180	
	36	264	300	

The Chi-Square Test Statistic

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \text{ with } d.f. = (r-1)(c-1)$$

- where:
 - O_{ij} = observed frequency in cell (*i*, *j*) E_{ij} = expected frequency in cell (*i*, *j*) r = number of rows c = number of columns

Observed vs. Expected Frequencies (4 of 4)

		Hand Pr			
	Gender	Left	Right		
Formala	Observed = 12	Observed = 108	120		
	remale	Expected = 14.4	Expected = 105.6	120	
	Mala	Observed = 24	Observed = 156	180	
	wale	Expected = 21.6	Expected = 158.4		
		36	264	300	
v^2	$-\frac{(12-14.4)^2}{}$	$+\frac{(108-105.6)^2}{(24)}$	$(156-158.4)^{2} + (156-158.4)^{2}$	$(4)^2 = 0.75$	576
λ	14.4	105.6	21.6 158.4	-0.75	

