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Abstract

Financial technologies, boosted by the availability of machine learn-
ing models, are expanding in all areas of finance: from payments (peer
to peer lending) to asset management (robot advisors) to payments
(blockchain coins). Machine learning models typically achieve a high
accuracy at the expense of an insufficient explainability. Moreover, ac-
cording to the proposed regulations, high-risk AI applications based
on machine learning must be “trustworthy”, and comply with a set
of mandatory requirements, such as Sustainability and Fairness. To
date there are no standardised metrics that can ensure an overall as-
sessment of the trustworthiness of AI applications in finance. To fill
the gap, we propose a set of integrated statistical methods, based on
the Lorenz Zonoid tool, that can be used to assess and monitor over
time whether an AI application is trustworthy. Specifically, the meth-
ods will measure Sustainability (in terms of robustness with respect
to anomalous data), Accuracy (in terms of predictive accuracy), Fair-
ness (in terms of prediction bias across different population groups)
and Explainability (in terms of human understanding and oversight).
We apply our proposal to an easily downloadable dataset, that con-
cerns financial prices, to make our proposal easily reproducible.

Keywords: Lorenz Zonoids; Accuracy; Explainability; Fairness; Sustain-
ability; Bitcoin price prediction.
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1 Introduction

Machine Learning (ML) models are boosting Artificial Intelligence applica-
tions in many domains, such as finance and health care. This is mainly due
to their advantage, in terms of predictive accuracy, with respect to “clas-
sic” statistical models. However, while complex ML models can reach high
predictive performance, they have an intrinsic black-box nature.

This is a problem in regulated industries, as authorities aimed at mon-
itoring the risks arising from the application of Artificial Intelligence (AI)
methods may not validate them (see, e.g. [12] and [1]). For example, the
application of AI to credit lending may lead to automated decisions that
can classify a company at risk of default, without explaining the underlying
rationale and, therefore, impeding remedial actions.

Accuracy and explainability are not the only desirable characteristics of
a ML model. The recently proposed European regulation on Artificial Intel-
ligence, the AI Act [5], attempts to regulate the use of AI by means of a set
of integrated requirements.

The AI Act introduces a risk-based approach to AI applications, defin-
ing an AI risk taxonomy with four risk categories: unacceptable risk, high
risk (the main focus of this paper), limited risk, and minimal risk. The re-
quirements established for high-risk applications include those about sustain-
ability, accuracy, fairness and explainability, which need a set of integrated
metrics that can establish not only whether but also how much the require-
ments are satisfied over time. To the best of our knowledge, there exists no
such set of metrics, yet.

In this paper, we propose to fill the gap building a framework based on
a set of four main metrics, aimed at measuring: Sustainability, Accuracy,
Fairness and Explainability (S.A.F.E. in brief). We show how to build such
framework using statistical methods based on the unifying notion of Lorenz
Zonoid. Doing so, we will extend the recent work of [9], who has showed how
to jointly measure Accuracy and Explainability.

The explainability requirement is fulfilled “by design” through classic sta-
tistical models, such as logistic and linear regression. However, in complex
data analysis problems, classical statistical models may have a limited pre-
dictive accuracy, in comparison with “black-box” ML models, such as neural
networks and random forests. This suggests to empower ML models with
post-modelling tools that can “explain” them.

Recent attempts in this direction, based on the cooperative game theory
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work of Shapley ([17]), have led to promising applications of explainable AI
methods in finance, among which [1] and [2].

Shapley values have the advantage of being agnostic: independent on the
underlying model with which classifications and predictions are computed;
but have the disadvantage of not being normalised and, therefore, difficult to
interpret and compare. To overcome this limitation, [9] proposed Shapley-
Lorenz values, which combine Shapley values with Lorenz Zonoids, obtaining
a measure of the contribution of each explanatory to the predictive accuracy
of the response, rather than to the value of the predictions, as is the case for
standard Shapley values.

In this paper we extend [9] and employ Lorenz Zonoids to build methods
useful to measure not only Accuracy and Explianability, but also Sustainabil-
ity and Fairness. The extension will allow to develop an integrated measure-
ment model for Sustainability, Accuracy, Fairness and Explainability, and a
unified score of AI SAFEty.

The requirement of sustainability implies the the model results are stable
under variations in the data and, in particular, when extreme data, resulting
from stressed scenarios and/or from cyber data manipulations, are inserted
into the observed data.

To measure the sustainability of AI applications we propose to extend
variable selection methods, available for probabilistic models, to non-probabilistic
models, such as random forests and neural network models, using statistical
tests based on the comparison between the Lorenz Zonoids of the predictions.
The extension provides a model selection criterion for (non-probabilistic) ML
models, not available at the moment. The criterion will lead to the choice of
a parsimonious model, more sustainable than a complex one. The extension
will also allow to compare the selected model with a model that would be
obtained when extreme data are artificially injected into the underlying data.

The requirement of fairness requires that the results of AI applications
do not present biases among different population groups.

To measure the fairness of AI applications we propose to derive the Lorenz
Zonoids of the predictions obtained separately for each population group,
similarly to what done for the requirement of sustainability.

The paper is organized as follows: the next section illustrates the pro-
posed methodology and, in particular, the Lorenz Zonoid tool and and the
proposed Lorenz Zonoid comparison tests; Section 3 discusses the empirical
findings obtained applying our proposal to the available data; finally, Section
4 contains some concluding remarks.
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2 Methodology

Lorenz Zonoids were originally proposed by [13] as a generalisation of the
ROC curve in a multidimensional setting. When referred to the one-dimensional
case, the Lorenz Zonoid coincides with the Gini coefficient, a measure typ-
ically used for representing the income inequality or the wealth inequality
within a nation or a social group (see, e.g [6]). Both the Gini coefficient
and the Lorenz Zonoid measure statistical dispersion in terms of the mutual
variability among the observations, a metric that is more robust to extreme
data than the standard variability from the mean.

Given a variable Y and n observations, the Lorenz Zonoid can be defined
from the Lorenz and the dual Lorenz curves (see [15]).

The Lorenz curve for a variable Y , denoted with LY , and displayed, from
a graphical view point, as a red curve in Figure 1 (a), is obtained by re-
ordering the Y values in a non-decreasing sense. It is built joining the set of
points with coordinates (i/n,

∑i
j=1 yrj/(nȳ)), for i = 1, . . . , n, where r and ȳ

indicate the (non-decreasing) ranks of Y and the Y mean value, respectively.
Similarly, the dual Lorenz curve of Y , pointed out as L

′
Y and represented by

the blue curve in Figure 1 (b), is obtained by re-ordering the Y values in
a non-increasing sense. Its coordinates are specified as (i/n,

∑i
j=1 ydj/(nȳ)),

for i = 1, . . . , n, where d indicates the (non-increasing) ranks of Y . The area
lying between the LY and L

′
Y curves is the Lorenz Zonoid.

The Lorenz Zonoid fulfills some attractive properties. An important one is
the “inclusion” of the Lorenz Zonoid of any set of predicted values Ŷ into the
Lorenz Zonoid of the observed response variable Y , graphically depicted in
Figure 1 (b). The “inclusion property” allows to interpret the ratio between
the Lorenz Zonoid of a particular predictor set Ŷ and the Lorenz Zonoid
of Y as the mutual variability of the response “explained” by the predictor
variables that give rise to Ŷ , similarly to what occurs in the well known
variance decomposition that gives rise to the R2 measure.

A second important property concerns the practical implementation of
the Lorenz Zonoid calculation. It can be shown that the Lorenz Zonoid-
value of a generic variable · (such as the response variable, or the predicted
response variable) is calculated as

LZ(·) =
2Cov(·, r(·))

nE(·) , (1)

where r(·) are the rank-scores associated with the · variable and E(·) is its
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Figure 1: [(a)] The Lorenz curve (LY ) and the dual Lorenz curve (L
′
Y ); [(b)]

The inclusion property LZ(Ŷ ) ⊂ LZ(Y )

expected value.
Equation (1) provides an easily implementable manner to calculate a

Lorenz Zonoid and, consequently, the share of Lorenz Zonoid response ex-
plained by a model’s predictors.

The properties of the Lorenz Zonoids can be leveraged to provide metrics
to assess the SAFEty of AI applications, as in the following.

Explainability. In [9], the Lorenz Zonoid approach has been combined with
the Shapley framework, to obtain a metric of explainability that measures
the additional contribution of each explanatory variable to the Lorenz Zonoid
of the predictions.

Given K predictors, the Shapley-Lorenz contribution associated with the
additional variable Xk is:
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LZXk(Ŷ ) =
∑

X′⊆C(X)\Xk

|X ′ |!(K − |X ′ | − 1)!

K!
·

[LZ(ŶX′∪Xk)− LZ(ŶX′ )], (2)

where: C(X)\Xk is the set of all the possible model configurations which
can be obtained excluding variable Xk; |X ′| denotes the number of variables
included in each possible model; LZ(ŶX′∪Xk) and LZ(ŶX′ ) describe the (mu-
tual) variability of the response variable Y explained by the models which,
respectively, include the X

′ ∪Xk predictors and only the X
′

predictors.
The application of formula (2) leads to the Shapley-Lorenz values, a mea-

sure of the response variable mutual variability explained by each predictor,
normalised in the interval [0, 1]. Normalisation is an important advantage of
the Shapley-Lorenz measure, with respect to the standard Shapley values.
Another important advantage is that the Shapley-Lorenz measure can be
calculated for any ordered response variable in the same manner, following
(1), differently from measures based on the variance decomposition. And,
finally, being based on the mutual variability, it is highly robust to extreme
observations.

Given a ML model with K predictors, we can thus measure its explain-
ability score as in the following definition.

Definition 1 Explainability score. The score for explainability can be calcu-
lated on the whole sample as:

Ex-Score =

∑K
k=1 SLk

LZ(Y )
, (3)

where LZ(Y ) corresponds to the response variable Y Lorenz Zonoid-value,
and SLk denotes the Shapley-Lorenz values associated with the k-th predictor.

Accuracy. The accuracy of the predictions generated by a ML model is
crucial for ensuring trustworthiness of AI applications. The statistical learn-
ing literature provides a large set of accuracy metrics (for a review see, e.g.
[10]): the most commonly employed are the Root Mean Squared Error (when
the response variable is on a continuous scale) and the Area Under the ROC
curve (when the response variable is on a binary scale). Both are calculated
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on a test sample of the data, assuming the model being calculated on the
remaining training sample. A more robust measure is the Lorenz Zonoid,
which can be calculated on the test set in the same way for binary, ordered
categorical and continuous responses. This generality is a clear further ad-
vantage of the Lorenz Zonoid.

Given a ML model with k ≤ K predictors, and a test sample from the
dataset, we can measure its accuracy score as in the following definition.

Definition 2 Accuracy score. The score for accuracy can be defined as:

Ac-Score =
LZ(ŶX1,...,Xk)

LZ(Ytest)
, (4)

where LZ(ŶX1,...,Xk) is the Lorenz Zonoid of the predicted response variable,
obtained using k predictors on the test set, and LZ(Ytest) is the Y response
variable Lorenz Zonoid value computed on the same test set.

Note that, while the explainability score is calculated on the whole dataset,
in line with its nature, the accuracy score is calculated on the test data set,
using the ML model learned on the train data set.

In this respect, a significance test for the difference in Lorenz Zonoids,
which can extend [4] for continuous responses and [3] for binary response into
a unifying criterion would provide the basis for a stepwise model comparison
algorithm which may lead to a parsimonious model, with k ≤ K predictors
that, while not significantly losing accuracy, simplifies the computational
effort necessary to measure explainability, which can be applied only to k
rather than K variables. Additionally, a more parsimonious model will likely
be more sustainable: less dependent on data variations.

According to the mentioned saving of computational effort, we suggest a
forward stepwise procedure, which starts with the construction of K models,
each one depending on only one predictor. The application of formula (1) to
all such univariate models will provide a ranking of the candidate predictors,
in terms of their (marginal) importance, which can be used to determine
insertion into the model. The first explanatory variable to be considered is
that with the highest Lorenz Zonoid value. At the second step, a model with
also the second ranked variable is fitted and a predictive gain, measured as
the additional contribution to predictive accuracy determined by the second
variable can be calculated as:
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pay-off (Xk) = LZ(ŶX′∪Xk)− LZ(ŶX′ ), (5)

where LZ(ŶX′∪Xk) and LZ(ŶX′ ) describe the (mutual) variability of the
response variable Y explained by the models which, respectively, include
X
′ ∪Xk predictors or only X

′
predictors.

The procedure can continue until the predictive gain defined in (5) is
found not significant. To test for significance, a statistical test can be ob-
tained rewriting equation (5) in terms of covariance operators as follows:

LZ(ŶX′∪Xk)− LZ(ŶX′ ) =

2Cov(ŶX′∪Xk , r(ŶX′∪Xk))

nE(ŶX′∪Xk)
− 2Cov(ŶX′ , r(ŶX′ ))

nE(ŶX′ )
. (6)

As r(·)/n is the empirical transformation of the cumulative distribution
function F (·) (see, e.g. [14]), the terms in equation (6) can be re-expressed
as:

LZ(ŶX′∪Xk)− LZ(ŶX′ ) =

2Cov(ŶX′∪Xk , F (ŶX′∪Xk))

E(ŶX′∪Xk)
− 2Cov(ŶX′ , F (ŶX′ ))

E(ŶX′ )
, (7)

where F (ŶX′∪Xk) and F (ŶX′ ) are the cumulative distribution functions

of ŶX′∪Xk and ŶX′ , respectively.
In the case of linear regression, the mean of the predicted response val-

ues is always equal to the mean of the original target values, implying that
E(Y ) = E(Ŷ ). For more general models, the aforementioned condition does
not fully hold, implying that E(ŶX′∪Xk) = E(ŶX′ ) = µ becomes a reasonable
approximation. Assuming such approximation, equation (7), which describes
the marginal contribution (MC) provided by Xk, can be simplified as follows:

MC =
2Cov(ŶX′∪Xk , F (ŶX′∪Xk))

µ
− 2Cov(YX′ , F (ŶX′ ))

µ
. (8)

In line with the previous mathematical derivations, we propose γ as an
adjusted version of equation (8), i.e.
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γ =
µ

2
·MC = Cov(ŶX′∪Xk , F (ŶX′∪Xk))− Cov(ŶX′ , F (ŶX′ )). (9)

By denoting the covariances Cov(ŶX′∪Xk , F (ŶX′∪Xk)) = ξ(ŶX′∪Xk) and

Cov(ŶX′ , F (ŶX′ )) = ξ(ŶX′ ), γ in (9) can be re-written as:

γ = ξ(ŶX′∪Xk)− ξ(ŶX′ ). (10)

A test for the equality of the two Lorenz Zonoids, can thus be developed
by setting the following hypotheses

H0 : ξ(ŶX′∪Xk) = ξ(ŶX′ ) vs H1 : ξ(ŶX′∪Xk) 6= ξ(ŶX′ ).

To proceed with the test, ξ(ŶX′∪Xk) can be derived in terms of a U -

statistic, U1, which estimates Cov(ŶX′∪Xk , F (ŶX′∪Xk)). The estimator is de-
fined as:

ξ̂(ŶX′∪Xk) = U1 =
1

4
(
n
2

) n∑
i=1

(2i− 1− n)ŶX′∪Xk(i) ,

where ŶX′∪Xk(i) is the i-th order statistic of ŶX′∪Xk1 , . . . , ŶX′∪Xkn .

Similarly, the estimator of ξ(ŶX′ ) is U2, specified as:

ξ̂(ŶX′ ) = U2 =
1

4
(
n
2

) n∑
i=1

(2i− 1− n)ŶX′
(i)
,

where ŶX′
(i)

is the i-th order statistic of ŶX′1
, . . . , ŶX′n .

An estimator of γ = ξ(ŶX′∪Xk)−ξ(ŶX′ ) can then be provided as a function
of two dependent U -statistics:

γ̂ = ξ̂(ŶX′∪Xk)− ξ̂(ŶX′ ) = U1 − U2. (11)

Based on [11], a function of several dependent U -statistics has, after ap-
propriate normalisation, an asymptotically normal distribution. As sug-
gested by [16], a way to estimate the variance is to resort to the jack-
knife method. Specifically, the n values of γ̂, pointed out with γ̂(−i) (where

i = 1, . . . , n), are calculated by omitting one pair (ŶX′∪Xk , ŶX′ ) at a time and
the estimated variance is
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V ar(γ̂)
∧

=
n− 1

n

n∑
i=1

(γ̂(−i) − γ̄)2,

where γ̄ is the average of γ̂(−i), for i = 1, . . . , n.

Following the previous derivations, the null hypothesis H0 : ξ(ŶX′∪Xk) =
ξ(π̂X′ ) can be tested by the test statistic:

Z =
γ̂√

V ar(γ̂)
∧→ N(0, 1) (12)

and, for a given selected significance level α, a rejection region for the
null hypothesis H0 can be defined as |Z| ≥ zα

2
.

Fairness. Fairness is a property that essentially requires that AI applications
do not present biases among different population groups.

To measure fairness we propose to extend the Gini coefficient, originally
developed to measure the concentration of income in a population, to the
measurement of the concentration of the explanatory variables which may
be affected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m = 1, . . . ,M be the
considered population groups and let K the number of the available predic-
tors. We denote with vSLmXk

the Shapley-Lorenz value associated with the
k-th predictor in the m-th population.

Suppose that the stepwise procedure based on the application of the
Lorenz-Zonoid test leads to choose only a subset of all the available ex-
planatory variables as the most contributing to the predictive accuracy of
the model. Specifically, we denote with k∗, where k∗ = 1, . . . , k and such
that k∗ < K, the number of predictors which compose the selected model.

With the purpose of measuring the explainability and accuracy provided
by each explanatory variable included into the final model, we consider the
vector V SL∗

M defined as V SL∗
M =

{
vSL∗1 , . . . , vSL∗m , . . . , vSL∗M

}
, where vSL∗m =

vSLmX1
+ . . . + vSLmXk∗

represents the sum of the Shapley-Lorenz values related
to the predictors X1, . . . , Xk∗ .

The Gini coefficient can be applied to the vector V SL∗
M , obtaining a mea-

sure of concentration of the variables’ importance among different population
groups. For a given set of selected explanatory variables, Shapley-Lorenz val-
ues which are similar in the M populations lead to a Gini coefficient close to

11



0, indicating that the effect of these variables is fair across the different pop-
ulation groups. On the other hand, a Gini coefficient close to 1 indicates that
the variables’ effect largely depend on some groups, highlighting biasness.

Given a ML model with k∗ and M population groups, we can measure
its fairness score as in the following definition.

Definition 3 Fairness score. The score for fairness can be defined as:

Fair-Score = 1− LZ(V SL∗
M ), (13)

where LZ(V SL∗
M ) denotes the Lorenz Zonoid (Gini coefficient) computed on

the vector V SL∗
M whose elements correspond to the sum of the selected predic-

tors’ Shapley-Lorenz values in each population.

Sustainability. The results from a ML model, especially when a large
number of explanatory variables is considered, may be altered by the presence
of “extreme” data points, deriving from anomalous events, or from cyber data
manipulation.

We propose to verify sustainability by comparing predictive accuracy, as
measured by Shapley-Lorenz values, in different ordered subset of the data,
possibly altered artificially by anomalous or cyber manipulated ones.

To this aim, conditionally on a ML model, we can order the predicted
response values (in the test set) in terms of their predictive accuracy, from
the most accurate to the lowest. We can then divide the ordered predictions
in g = 1, . . . , G equal size groups (such as the deciles of the distribution).
We can then proceed in analogy with the fairness case and build a vector
including the sum of the Shapley-Lorenz values of the predictors composing
the final model, i.e. V SL∗

G =
{
vSL∗1 , . . . , vSL∗g , . . . , vSL∗G

}
, where vSL∗g = vSLgX1

+
. . . + vSLgXk∗

represents the sum of the Shapley-Lorenz values related to the
predictors X1, . . . , Xk∗ .

Definition 4 Sustainability score. The score for sustainability can then be
defined as:

Sust-Score = 1− LZ(V SL∗
G ), (14)

where LZ(V SL∗
G ) indicates the Lorenz Zonoid (Gini coefficient) calculated

on the vector V SL∗
G whose elements correspond to the sum of the selected

predictors’ Shapley-Lorenz values in each group.

In the next Section we will apply our proposed methodology in the context
of bitcoin price prediction.
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3 Application to Bitcoin price prediction

As an illustrative example of how to apply our proposal, we consider a set of
cryptocurrency time series, for the time period between May 18th, 2016 and
April 30th, 2018.

3.1 Data description

The considered data are the same described in [7] and in [8] to explain bitcoin
price variation as a function of the available financial explanatory variables.

A further investigation of the data was provided in a work by [9], who
introduced a new AI approach resulting in the formalisation of a normalised
measure for the assessment of the contribution of each additional predictor
to the explanation of the bitcoin prices.

For coherence with the previous cited works, here we choose the same time
series observations, with the bitcoin prices from the Coinbase exchange as the
target variable to be predicted. As suggested by [8] and [9], the time series
for Oil, Gold and SP500 prices are taken into account as candidate financial
explanatory variables. In line with [7], the exchange rates USD/Yuan and
USD/Eur are also included as possible further explanatory variables.

Our aim is to exploit the Lorenz Zonoid tool as a unified criterion for
measuring the SAFEty of AI methodologies.

3.2 Explorative analysis

We start our explorative analysis of the available data by plotting the time
evolution of bitcoin prices, together with that of the Gold, Oil and SP500
prices and the exchange rates, in the considered time period. The trends are
displayed in Figures 2-7, respectively.

Specifically, from Figure 2 the bitcoin price appears quite stable until the
beginning of 2017. But, since the first six months of the 2017 year, bitcoin
prices begin to progressively increase reaching the maximum at the end of
the same year. This dynamics is followed by a downtrend, which starts in
January 2018.

While the trend of the SP500 increases overtime (Figure 3), the prices of
Gold and Oil (Figures 4 and 5) are characterised by uptrend and downtrend.
The former is more evident at the end of the 2016 year for Gold, while for
Oil it occurs some months before the end of the 2016.
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Figure 2: Bitcoin prices
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Figure 3: SP500 prices

On the other hand, the behavior of the exchange rates USD/Eur and
USD/Yuan is quite similar overtime, as shown in Figures 6 and 7.

To better understand the dynamics reported in Figures 2-7, some sum-
mary statistics are reported in Table 1.

The results in Table 1 highlight that the mean values, as well as the
standard deviations and the minimum and maximum values, are largely dif-
ferent with respect to those of the classical assets and exchange rates. To
better appreciate the volatility magnitude of the prices, the coefficient of
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variation (cv) is computed and displayed in Table 1. The findings show that
the exchange rates are much less volatile than the bitcoin and classical asset
prices. Indeed, for USD/Eur and USD/Yuan, the standard deviations are
only 5% and 3% the size of the mean, respectively. A similar result in terms
of volatility is achieved by Gold, whose standard deviation corresponds to
4% the size of the mean, while for Oil and SP500 the standard deviations
slightly increase reaching values which are less than 10% of the mean.
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3.3 Results

The aim of the data analysis is to build an explainable ML model that can
predict bitcoin prices. Before proceeding, we transform all price series into
their percentage returns. This because returns are scale free and the corre-
sponding series are stationary (see, e.g. [18]).

As a ML model we apply, without loss of generality, a neural network
with five hidden layers. We consider as training data the time series until
December 31st, 2017; and as test data the 2018 time series. Figures 2-7 show

16



Table 1: Summary statistics for Coinbase bitcoin, classic asset prices, SP500
index and exchange rates (mean, standard deviations (sd), coefficient of vari-
ation (cv), minimum and maximum values)

Prices Mean sd cv Min Max
Coinbase bitcoin 3919.05 4318.98 1.10 438.38 19650.01
SP500 2399.17 212.31 0.09 2000.54 2872.87
Gold 1275.58 52.34 0.04 1128.42 1366.38
Oil 49.36 3.37 0.07 39.51 57.20
USD/Eur 0.88 0.04 0.05 0.80 0.96
USD/Yuan 6.68 0.19 0.03 6.27 6.96

that it will be difficult to obtain a high predictive accuracy, as the time series
trends in 2018 change patterns with respect to the training data series.

In any case, the application of our proposed approach leads to a series of
predictions for the 2018 return prices that can be compared with the actual
returns, to obtain measures of trustworthiness (S.A.F.E.ty) of the neural
network. Figure 8 shows the results of such assessment, in graphical format.

Figure 8 (a) shows that the score of explainability of the full model,
measured as the sum of all Shapley-Lorenz values (on all data), is equal to
0.5714, with the Gold price returns as the highest contributor.

To simplify the model, we have then applied our proposed forward step-
wise feature selection, following the order of the variables, in terms of their
Lorenz Zonoid marginal contribution. The procedure inserts Gold returns,
then SP500 returns and then it stops, as no additions lead to a significantly
superior model. Our selected model, therefore, contains Gold and SP500
returns as predictors of bitcoin prices.

Figure 8 (b) shows the accuracy score of the selected model, in terms
of Lorenz Zonoid. The Zonoid gives an accuracy score of 0.3280, which
correspond to the percentage of bitcoin price variability explained by the
model (on the test data).

We have then assessed the sustainability score of the selected model. To
this aim, we have ordered the test data response according to how well is
predicted by the model (from the best to the worst predictions) and, accord-
ingly, subdivided it into ten deciles. We have then calculated the Lorenz
Zonoid of the model, separately in each decile. The result is shown in Figure
8 (c).

Figure 8 (c) shows that, as expected, the predictions worsen, although
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Figure 8: S.A.F.E.ty assessment of the neural network model for bitcoin price
returns.

not monotonically, as we increase deciles. Monotonicity does not hold as
both the predictions and the values to be predicted vary along deciles. For
example, the model goes relatively well in the tenth decile because not only
the predictions but also the observations are less variable.

According to our proposal, we can calculate, as a sustainability score, the
complement of the Gini coefficient of the Lorenz Zonoid. It results to be
equal to 0.8314, indicating a high sustainability.

With the aim of assessing fairness, we have considered, as a potential
biasing variable, the amount traded in each day, and evaluate whether price
returns are fair with respect to it. If not, it will mean that bitcoin returns
depends on the trading volumes.

To measure fairness we have ordered the test data response in terms of
the corresponding trading volumes (from the lowest to the highest) and,

18



accordingly, subdivided it into ten deciles. We have then calculated the
Lorenz Zonoid of the model, separately in each decile. The result is shown
in Figure 8 (d).

Figure 8 (d) indicates that the model has the best performance in corre-
spondence to the lowest and highest volumes of trading but also that, overall,
the variation is limited.

According to our proposal, we have computed as a fairness score, the
complement of the Gini coefficient of the Lorenz Zonoid. It results to be
equal to 0.8617, indicating a high fairness.

To show the universality of our proposal, we have binarised the response
variable, with Y = 1 indicating positive returns and Y = 0 indicating neg-
ative returns, and applied the same neural network model as before, but
to predict a binary, rather than a continuous response. Figure 9 shows the
results of our S.A.F.E.ty assessment, in graphical format.

From Figure 9 (a), note that the model presents a lower overall explain-
ability than before: the overall explainability score is equal to 0.3160. As
before, the Gold price return is the most explainable series.

Our proposed model selection procedure is then carried out exactly as for
the continuous case. The selected model contains SP500 and Gold returns,
as in the continuous scenario. The accuracy score of the model (see Figure
9 (b)) is equal to 0.4088, higher than before, as expected, since the response
variable now varies on a binary, rather than on a continuous scale.

We have finally applied the sustainability and fairness assessments, in the
same manner as for the continuous case. The results are in Figures 9 (c) and
9 (d), corresponding to scores of, respectively, 0.8184 and 0.7165. While the
sustainability of the model is similar to that corresponding to the continuous
response case, fairness is lower, indicating that the sign of the returns depend
on trading volumes more than the actual returns do.

4 Conclusions

The aim of the paper was to provide an integrated set of metrics able to
assess the trustworthiness of AI applications.

To this aim, we have extended the application of Lorenz Zonoids to obtain
measurement tools for the Sustainability, Accuracy, Fairness and Explainabil-
ity, as key trustworthiness criteria.

By means of an easily downloadable datset of bitcoin prices, and related
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Figure 9: S.A.F.E.ty assessment of the neural network model for bitcoin price
returns.

candidate predictors, we have provided a practical demonstration of how to
implement and interpret the proposed metrics.

Our proposed metrics can be easily embedded in a scorecard that can be
beneficial to: asset management companies that need reliable predictions to
make investment decisions; financial authorities and supervisors that need to
evaluate AI methods implemented by the institutions under their supervision;
researchers that need to understand the functioning of financial markets.
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