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Abstract
Artificial intelligence (AI) methods are becoming widespread, especially when
data are not sufficient to build classical statistical models, as is the case for
cyber risk management. However, when applied to regulated industries, such as
energy, finance, and health, AImethods lack explainability. Authorities aimed at
validating machine learning models in regulated fields will not consider black-
box models, unless they are supplemented with further methods that explain
why certain predictions have been obtained, and which are the variables that
mostly concur to such predictions. Recently, Shapley values have been intro-
duced for this purpose: They are model agnostic, and powerful, but are not nor-
malized and, therefore, cannot become a standardized procedure. In this paper,
we provide an explainable AImodel that embeds Shapley values with a statistical
normalization, based onLorenzZonoids, particularly suited for ordinalmeasure-
ment variables that can be obtained to assess cyber risk.
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1 INTRODUCTION

Cyber risks can be defined as “any risk emerging from intentional attacks on information and communication technology
(ICT) systems that compromises the confidentiality, availability, or the integrity of data or services” (see, e.g., Refs. 1–3).
Note that, according to this definition, cyber risk does not strictly coincide with information technology (IT) operational
risks, as it relates only to intentional attacks, on one hand, and it deals not only with monetary losses, but also with
reputational losses, on the other.
In the last few years the number of cyber attacks on IT systems has surged: 1127 attacks occurred in 2017, against 1050 in

2016, 1012 in 2015, and 873 in 2014, with a growth of about 30% between 2014 and 2017. The trend in 2018 follows a similar
behavior, with 730 cyber attacks observed only in the first half of the year.4 Thus, the need to measure cyber risks has
considerably increased.
While the scientific literature on the measurement of operational risks (see, e.g., Refs. 5, 6), based on loss data,

constitutes a reasonably large body, that on cyber risk measurement is very limited. Some contributions can be found in
Ruan,7 Radanliev et al.,8 and Shin et al.,9 in which the focus is on the measurement of the value at risk, the maximum
possible loss due to the occurrence of cyber attacks. The lack of literature on cyber risk measurement may be due to the
limited availability of cyber loss data, which are typically not disclosed, to avoid reputational losses. When disclosed, they
are often expressed in terms of ordered levels of severity, such as “low,” “medium,” or “high” severity. Unfortunately,
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the ordinal classification of risks prevents the calculation of the value at risk. Although ordinal data cannot be used
to calculate the value at risk, they can be used to rank risks by their “criticality,” so as to prioritize interventions and,
therefore, trigger mitigating actions. To our knowledge, there are very few papers that suggest how to deal with ordinal
cyber data. Exceptions, that are however limited to specific issues, are Afful-Dadzie andAllen,10 who focus on the problem
of the scarcity of available data, and Hubbard and Evans,11 Sexton et al.,12 Hubbard and Seiersen,13 and Facchinetti et al.
(2019),14 who introduce descriptive scoring methods.
We propose to fill this gap in the literature, providing an explainable machine learning model aimed at accu-

rately predicting the ordinal severity levels of cyber risks. To achieve this goal, we develop a methodology that com-
bines rank-based regression models with a rank-based Shapley value approach. We test our model on a real data
set of cyber events, ordered by severity levels. The application shows that the proposed methodology is both accu-
rate, from a predictive viewpoint, and interpretable, from an explainable viewpoint. In addition, the usage of Lorenz
Zonoids to assess model performance allows to obtain results more robust with respect to data quality issues, which
may lead to outlying observations. The paper is organized as follows: the next section contains our proposal; Sec-
tion 3 contains the empirical findings obtained applying our model to real cyber data; finally Section 4 contains some
concluding remarks.

2 METHODOLOGY

Our proposal derives from the combination of two research streams. The first one concerns the development of models to
analyze ordinal data arising in the cyber risk setting. The second one concerns the development of explainable methods
to understand the results of advanced learning models. The result of the combination is a novel method for cyber risk
management, which is, at the same time, predicitively accurate, interpretable, and robust.

2.1 Rank regression models in cyber risk management

As the cyber events are typically rare and not repeatable, it is quite natural tomeasure themwith a less demanding ordinal
approach rather than using quantitative data, which are often not available. Ordinal data for cyber risk measurement can
be summarized, by means of a pair of statistics for each event type: the frequency of the event, how many times it has
occurred, in a given period; and the corresponding severity, the mean observed loss. In the context of ordinal data, the
severity can be expressed on an ordinal scale, characterized by 𝑘 distinct levels, arranged according to the corresponding
magnitude. To understand the main factors impacting on cyber risks, each observed severity can be associated to a vector
of explanatory variables, such as the type of attack, the technique of the attack, the victim type, and the geographical area
where the event has occurred.
The statistical models typically used to explain an ordinal response variable with a set of 𝑝 explanatory variables are

the ordered logit or probit models (see, for instance Refs. 15 and 16). These, however, may be difficult to summarize and
interpret, especially in applied contexts. We therefore resort to a linear regression model for a response variable that takes
ordinal values and, in order to avoid an arbitrary assignment of the measurement scale, we resort to ranks.
Let 𝑌 be a response variable, expressed through 𝑘 ordered categories. A rank 𝑟1 = 1 to the smallest ordered category

of 𝑌 and a rank (𝑟𝑗−1 + 𝑛𝑗−1) to the following ordered categories, where 𝑛𝑗−1 is the absolute frequency associated with
the (𝑗 − 1)-th category and 𝑗 = 2,… , 𝑘, are assigned. Based on this transformation, the phenomenon described by the 𝑌
variable can be reformulated in terms of its ranks 𝑅, where:

𝑅 =

⎧⎪⎨⎪⎩
𝑟1, … , 𝑟1
⏟⎴⏟⎴⏟

𝑛1

, 𝑟2, … , 𝑟2
⏟⎴⏟⎴⏟

𝑛2

, … , 𝑟𝑘, … , 𝑟𝑘
⏟⎴⏟⎴⏟

𝑛𝑘

⎫⎪⎬⎪⎭
, (1)

with 𝑟1 = 1, 𝑟2 = 𝑟1 + 𝑛1 and 𝑟𝑘 = 𝑟𝑘−1 + 𝑛𝑘−1.
Given 𝑝 explanatory variables (𝑋1, … , 𝑋𝑝), a regression model for 𝑅 can be specified as follows:

𝑅̂ = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝, (2)

whose unknown parameters can be estimated by the classical ordinary least squares (OLS) method.
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2.2 The Shapley–Lorenz decomposition in cyber risk management

When dealing with data coming from highly regulated fields, such as energy, finance, and health, we may resort to simple
or complex machine learning models. Simple machine learning models, including linear or logistic regression models,
are highly interpretable but provide a limited predictive accuracy. Complex machine learning models, such as neural
network models and decision tree models, fulfill the requirement of high predictive accuracy at the expense of inter-
pretability. In order to meet both the conditions of predictive accuracy and interpretability, the idea is basically to boost
accurate machine learning models with novel methodologies able to explain the predictive output. Recently, Giudici and
Raffinetti17 have proposed a global explainable artificial intelligence (AI) model, named Shapley–Lorenz decomposition,
which combines the interpretability power of the local Shapley value game theoretic approach (see, e.g., Ref. 18) with a
more robust global approach based on the Lorenz Zonoid model accuracy tool (see, e.g., Ref. 19). The Lorenz Zonoids
can be seen as a generalization of the receiver operating characteristic (ROC) curve in a multidimensional setting and,
therefore, the Shapley–Lorenz decomposition has the advantage of combining predictive accuracy and explainability per-
formance into one single diagnostics. Furthermore, the Lorenz Zonoid is intended as a measure of the mutual variability,
robust to the presence of outlying observations, and can be exploited to develop partial dependence measures that allow
to detect the additional contribution of a new predictor into an existing model.
Shapley values were introduced as a pay-off concept from cooperative game theory.When referring tomachine learning

models, the notion of pay-off corresponds to the model prediction. Thus, for any single statistical unit 𝑖 (1 = 1,… , 𝑛), the
pay-offs are defined as

𝑝𝑜𝑓𝑓(𝑋
𝑘
𝑖
) = 𝑓(𝑋

′
∪ 𝑋𝑘)𝑖 − 𝑓(𝑋

′
)𝑖, (3)

where 𝑓(𝑋′
)𝑖 denotes the predicted values generated by the machine learning models depending only on 𝑋

′ predictors;
𝑓(𝑋

′
∪ 𝑋𝑘)𝑖 denotes the predicted values generated by themachine learningmodels depending both on the |𝑋′ | predictors

and the additional included 𝑋𝑘 predictor. For a set of statistical units (𝑖 = 1, … , 𝑛), the pay-off notion translated in terms
of Lorenz Zonoids (𝐿𝑍(⋅)) is given by

𝑝𝑜𝑓𝑓(𝑋
𝑘) = 𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘 ) − 𝐿𝑍(𝑌̂𝑋′ ), (4)

where 𝑌̂𝑋′∪𝑋𝑘 and 𝑌̂𝑋′ are the vectors specifying the predicted values generated by the machine learning models, which
include the additional explanatory variable𝑋𝑘, and the predicted values generated by themachine learningmodels, which
do not include the explanatory variable 𝑋𝑘, whereas 𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘 ) and 𝐿𝑍(𝑌̂𝑋′ ) describe the (mutual) variability of the
response variable 𝑌 explained by the models including the 𝑋′

∪ 𝑋𝑘 predictors and the 𝑋
′ predictors, respectively.

The Shapley–Lorenz decomposition expression is the result of a combination between the Shapley value–based formula
and the Lorenz Zonoid tools. Formally, the contribution of the additional variable𝑋𝑘, expressed in terms of the differential
contribution to the global predictive accuracy, equals to

𝐿𝑍𝑋𝑘(𝑌̂) =
∑

𝑋′⊆(𝑋)⧵𝑋𝐾

|𝑋′ |!(𝐾 − |𝑋′ | − 1)!

𝐾!
[𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘 ) − 𝐿𝑍(𝑌̂𝑋′ )], (5)

where 𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘 ) and 𝐿𝑍(𝑌̂𝑋′ ) measure the marginal contribution provided by the inclusion of variable 𝑋𝑘; 𝐾
is the number of available predictors; (𝑋) ⧵ 𝑋𝑘 is the set of all the possible model configurations that can be
obtained with 𝐾 − 1 variables, excluding variable 𝑋𝑘; |𝑋′ | denotes the number of variables included in each possible
model.
We remark that 𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘 ) and 𝐿𝑍(𝑌̂𝑋′ ) in Equation (5) can be expressed as function of the covariance operators, that

is,

𝐿𝑍(𝑌̂𝑋′∪𝑋𝑘 ) =
2

𝑛𝐸(𝑌̂𝑋′∪𝑋𝑘 )
𝐶𝑜𝑣(𝑌̂𝑋′∪𝑋𝑘 , 𝑟(𝑌̂𝑋

′∪𝑋𝑘
)) and

𝐿𝑍(𝑌̂𝑋′ ) =
2

𝑛𝐸(𝑌̂𝑋′ )
𝐶𝑜𝑣(𝑌̂𝑋′ , 𝑟(𝑌̂𝑋′ )),
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TABLE 1 Frequency distribution of the cyber loss severity

Severity Frequency
1 176
2 243
3 389

where 𝐸(𝑌̂𝑋′∪𝑋𝑘 ) and 𝐸(𝑌̂𝑋′ ) are the expected values of 𝑌̂𝑋′∪𝑋𝑘 and 𝑌̂𝑋′ , respectively; 𝑟(𝑌̂𝑋′∪𝑋𝑘 ) and 𝑟(𝑌̂𝑋′ ) are the rank
scores associated with the 𝑌̂𝑋′∪𝑋𝑘 values and the 𝑌̂𝑋′ values.
Due to its building characteristics, the Shapley–Lorenz decomposition presents as an agnostic eXplainable AI method,

which can be applied to the predictive output, regardless of which model generated it. This feature makes it suitable in
all the contexts where response variables with different nature are involved. The focus on cyber risk data represents an
example of application in the presence of an ordinal target variable. We remark that in such a case the response variable
is transformed into ranks according to Equation (1).

3 APPLICATION

The purpose of this application is to evaluate the performance of our cyber risk measurement proposal, based on the
combination between rank regression models and the Shapley–Lorenz decomposition approach.
We employ the Clusit cyber loss database,4 which consists of 6865 worldwide observations on serious cyber attacks, in

the years 2011–2017. An attack is classified as “serious” if it has led to a significant impact, in terms of economic losses
and/or damages to reputation. In this paper, we focus on a sample data, consisting of 808 cyber attacks observed in 2017,
the year in which most data were observed. Severity levels are reported according to the type of attacker, technique of
attacks, victims, and the corresponding continent of origin. Moreover, given the data at hand, we evaluate the model on
the full sample, without splitting it into training and test sets.
We remark that the data, similarly to all cyber database available, may contain outlying observations, which can derive

either from intrinsic characteristics or frommeasurement errors. In both cases it is necessary that the developed machine
learning models are robust to outliers and data variations. This aspect suggests the use of rank-based regression models,
on one hand, and of model assessment performances, which are similarly robust to data anomalies.
In terms of descriptive statistics, Tables 1 and 2 report the frequency distribution of the cyber loss severity, and of the

considered four explanatory variables.
Our purpose is to detect the factors, among attacker, attack technique, victim type, and location (continent), whichmost

affect the severity levels. To achieve this aimwe first have applied our proposed rank regressionmodel. From a descriptive
viewpoint, the 𝑅2 is equal to 0.6183, and the 𝑝-value of the associated 𝐹-test is smaller than 0.001. In Table 3 the estimated
linear coefficients for the ordinal levels that correspond to attacker type (first table), continent (second table), victim type
(third table), attack technique (fourth table), are presented. We break each of the four categorical variables into dummies,
with the baseline cases being “Cybercrime” for type of attacker, “Africa” for continent, “Automotive” for victim, and “0-
day” for attack technique. Together with the linear regression coefficients, the related 𝑝-values are also provided, showing
that the geographical area, where the cyber attack occurs, has not a significant impact on its severity degree. Thus, the
continent variable can be removed from the full model in favor of a more parsimonious model. In addition, the only
significant effects at a significance level 𝛼 = 5% are: espionage/sabotage, hacktivism and information warfare for the type
of attacker variable; entertainment/news, GDO/retail, online services/cloud, and research-education for the victim-type
variable; phishing/social engineering and unknown for the attack technique variable.
In general, by looking at the estimated linear regression coefficients, the different cyber attack levels have the effect

of decreasing the severity degree with respect to the baseline of “Cybercrime.” On the contrary, the levels characterizing
the attack technique and the victim type have the effect of increasing the severity degree with respect to the baselines of
“0-day” and “Automative,” respectively.
Although the rank regression model appears explainable by definition, it is the results of a model selection procedure

whose obtained coefficients are conditional on the single chosen model. Differently, the Shapley value approach provides
a measure of explainability for each single feature variable, which is based on the consideration of all possible model
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TABLE 2 Frequency distributions of the explanatory variables

Continent Frequency
Africa 7
America 482
Asia 112
Europe 186
Oceania 21
Type of attacker Frequency
Cybercrime 600
Espionage/sabotage 82
Hacktivism 74
Information warfare 52
Victim Frequency
Automotive 4
Banking/finance 65
Critical infrastructures 27
Entertainment/news 108
GDO/retail 21
Gov-Mil-LE-intelligence 159
Gov. contractors/consulting 6
Health 79
Hospitability 34
Multiple targets 71
Online services/cloud 58
Organization-ONG 6
Research-education 70
Security 10
SW/HW vendor 43
Telco 13
Others 34
Attack technique Frequency
0-day 5
Account cracking 50
DDoS 33
malware 1
Malware 234
Multiple threats/APT 45
Phishing/social engineering 76
Phone hacking 2
SQLi 4
Vulnerabilities 97
Unknown 261

configurations. Finally, the Shapley–Lorenz approach further improves the measure of explainability providing a version
that is normalized.We remark that the linearmodel coefficients can also be normalized; however, they remain conditional
on the chosen model, differently from the Shapley–Lorenz measure.
We then have calculated the Shapley–Lorenzmarginal contributions associated with the variables attacker, victim type,

attack technique, and continent, using formula (5). When considering type of attacker (Att), victim type (Vic), attack
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TABLE 3 Categorical variable reference level: cyber attack (first table): cyber crime; continent (second table): Africa; victim type (third
table): automotive; attack technique (fourth table): 0-day. The intercept estimate with the related 𝑝-value was included in the first table

Coefficient Estimate 𝒑-value
Intercept 187.42 0.02678
Espionage/sabotage −231.38 <0.001
Hacktivism −39.21 0.00663
Information warfare −222.17 <0.001
America −11.22 0.78849
Asia −10.20 0.81132
Europe −18.39 0.66228
Oceania −30.78 0.52204
Banking/finance −21.35 0.70239
Critical infrastructures 53.35 0.36075
Entertainment/news 117.14 0.03345
GDO/retail 139.97 0.01743
Gov-Mil-LE-intelligence −48.62 0.37632
Gov. contractors/consulting −37.89 0.58873
Health 55.82 0.31249
Hospitability 60.33 0.28946
Multiple targets 105.20 0.06011
Online services/cloud 136.11 0.01496
Organization-ONG 66.87 0.33780
Others 60.65 0.28748
Research-education 142.26 0.01057
Security 93.28 0.14461
SW HW vendor 90.67 0.10936
Telco 73.37 0.23653
Account cracking 74.92 0.14680
DDoS 48.40 0.35773
malware 153.13 0.20044
Malware 14.19 0.77408
Multiple threats/APT 50.04 0.32898
Phishing/social engineering 120.27 0.01763
Phone hacking 103.78 0.25215
SQLi −29.93 0.68253
Unknown 99.67 0.04516
Vulnerabilities 53.08 0.29151

technique (Tec), and continent (Con) as additional predictors, the related marginal contributions can be computed as:

𝐿𝑍𝐴𝑡𝑡( ˆ𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) = (1∕4)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐) − 𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝐶𝑜𝑛)) + (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑇𝑒𝑐,𝐶𝑜𝑛))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐) − 𝐿𝑍(𝑅̂𝑉𝑖𝑐)) + (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐) − 𝐿𝑍(𝑅̂𝑇𝑒𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐶𝑜𝑛)) + (1∕4)(𝐿𝑍(𝑅̂𝐴𝑡𝑡)),
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TABLE 4 Marginal contribution of each explanatory variable in terms of the Shapley–Lorenz–based approach and comparison with the
standard Shapley based approach

Additional covariate (𝑿𝒌) 𝑳𝒁𝑿𝒌 ( ˆ𝑺𝒆𝒗𝒆𝒓𝒊𝒕𝒚) Global Shapley
Type of attacker 0.072 748.96
Type of victim 0.115 27.27
Technique of attack 0.058 35.06
Continent 0.032 25.67

𝐿𝑍𝑉𝑖𝑐( ˆ𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) = (1∕4)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐,𝐶𝑜𝑛))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝐶𝑜𝑛)) + (1∕12)(𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑇𝑒𝑐,𝐶𝑜𝑛))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡)) + (1∕12)(𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐) − 𝐿𝑍(𝑅̂𝑇𝑒𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐶𝑜𝑛)) + (1∕4)(𝐿𝑍(𝑅̂𝑉𝑖𝑐)),

𝐿𝑍𝑇𝑒𝑐( ˆ𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) = (1∕4)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝐶𝑜𝑛))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝐶𝑜𝑛)) + (1∕12)(𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝐶𝑜𝑛))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡)) + (1∕12)(𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐) − 𝐿𝑍(𝑅̂𝑇𝑒𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐶𝑜𝑛)) + (1∕4)(𝐿𝑍(𝑅̂𝑇𝑒𝑐)),

𝐿𝑍𝐶𝑜𝑛( ˆ𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦) = (1∕4)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝑇𝑒𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑉𝑖𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝑇𝑒𝑐)) + (1∕12)(𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝑇𝑒𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝐴𝑡𝑡,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝐴𝑡𝑡)) + (1∕12)(𝐿𝑍(𝑅̂𝑉𝑖𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑉𝑖𝑐))

+ (1∕12)(𝐿𝑍(𝑅̂𝑇𝑒𝑐,𝐶𝑜𝑛) − 𝐿𝑍(𝑅̂𝑇𝑒𝑐)) + (1∕4)(𝐿𝑍(𝑅̂𝐶𝑜𝑛)).

On the other hand, the local Shapley values can be computed in accordance with Equation (5), by replacing the Lorenz
Zonoids included in the square brackets with the pay-off in Equation (3). Note that the latter is based on a euclidean
distance between predicted values under different models, differently from the Shapley–Lorenz values, based on the Gini
distance,more suited to dealwith ordinal variables, andmore robust to outliers.We further remark that, if on the onehand,
the Shapley–Lorenz values are normalized by construction (for each single feature variable) and do not require any further
aggregation, on the other hand, the Shapley values are not normalized by construction but can provide a global measure
of importance of each feature by summing the deviation of each variable’s Shapley value from the overall mean. To avoid
compensation between positive and negative deviations, the sum of the absolute Shapley values can be considered.
The results from the application of the Shapley–Lorenz values to the available data, and the comparison with the cor-

responding global Shapley values (specified as the sum of the absolute Shapley values) are reported in Table 4.
From Table, 4 note that, according to the Shapley–Lorenz values, the variable describing the type of victim provides the

highest marginal contribution in the prediction of cyber severity, across all the possible model configurations. A further
impacting variable is associated with the type of attacker, while variables with the lowest contributions are those repre-
senting the attack technique and the continent, which is intended as the geographical area where the event has occurred.
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More precisely, the continent variable gives the minimum contribution to the explanation of the severity degree associ-
ated with the cyber attacks, confirming the findings derived from the application of our proposed rank regression model,
according to which the continent variable is not significant.
In the Shapley–Lorenz approach perspective, the type of victim and attacker variables explain the 11.5% and the 7.2% of

the mutual variability associated with the cyber attack severity degree over all the possible model configurations, respec-
tively. The type of technique variable explains 5.8% and the continent variable only 3.2%. From an interpretational point
of view, this indicates that preventive actions andmitigationmeasures, such as insurance coverage, should vary according
to the type of victim (in our case economic activity types) rather than on the attack technique and/or on the location of
the victim.
From Table 4 also note that the Shapley values, being not normalized, are more difficult to be interpreted in terms of

the variables’ contributions. The variable impacting more on the severity degree of the cyber attack is the type of attack,
while the variable with the least effect, coherently with which emerges from the Shapley–Lorenz–based approach, is the
continent variable. In addition, the technique of attack seems to explain more than the victim type, contrary to what
happens when the Shapley–Lorenz values are considered. These discrepancies may be motivated by the Shapley value
construction, which, as previously discussed, involves the sum of the deviation of each variable’s Shapley value from the
overall mean, and consequently is less robust to the presence of outlying observations. As our experiments show, this issue
can be appropriately overcome by the implementation of the Shapley–Lorenz approach.

4 CONCLUDING REMARKS

The paper proposes a new methodology to assess cyber risks, using loss data at an ordinal scale, easier to acquire with
respect to continuous data.
Consistently with the ordinal nature of the data, the proposed methodology is based on a combination between rank

regression model fit and Lorenz-based assessment models.
The combination of the two approaches leads to the identification of the drivers of cyber risk, which aremore important

to control and mitigate with insurance.
The application of the proposed method to the available data confirms that the proposed method is quite satisfactory,

and provides an accurately predictive, explainable, and robust machine learning method for cyber risk management.

ORCID
PaoloGiudici https://orcid.org/0000-0002-4198-0127

NOTE
1 It is worth noting that the rank scores 𝑟(𝑌̂𝑋′ ∪𝑋𝑘

) and 𝑟(𝑌̂𝑋′ ) are not connected with the ranks appearing in Equation (1). Indeed, through
Equation (1) the ordinal target variable is transformed into a discrete quantitative variable through the employment of ranks, which, contrary
to the rank scores 𝑟(𝑌̂𝑋′ ∪𝑋𝑘

) and 𝑟(𝑌̂𝑋′ ), which denote the positions of the 𝑌̂𝑋′ ∪𝑋𝑘
and 𝑌̂𝑋′ values, are computed according to the procedure

suggested in Section 2.1.
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