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Abstract
In the paper, we introduce novel model selection measures based on Lorenz zonoids which,
differently from measures based on correlations, are based on a mutual notion of variability
and are more robust to the presence of outlying observations. By means of Lorenz zonoids,
which in the univariate case correspond to the Gini coefficient, the contribution of each
explanatory variable to the predictive power of a linear model can be measured more accu-
rately. Exploiting Lorenz zonoids, we develop a Marginal Gini Contribution measure that
allows to measure the absolute explanatory power of any covariate, and a Partial Gini Con-
tribution measure that allows to measure the additional contribution of a new covariate to
an existing model.

Keywords Dependence measures · Linear models · Lorenz zonoids ·
Marginal Gini Contribution · Partial Gini Contribution

1 Introduction

A very important problem in statistics and in data analysis is to compare alternative models
on a given set of data, for example, in terms of their predictive accuracy. The traditional
paradigm compares statistical models through a sequence of pairwise comparisons, which
eventually leads to a statistical test, that provides a threshold which can be used to decide
which model to adopt. Statistical model comparison is, however, generally not applicable to
machine learning models, which do not necessarily have an underlying probabilistic model.
In this case, models are compared in terms of information criteria such as AIC or BIC which,
while providing a total ordering of models, require thresholds to choose among them (Hand
et al. 2001, Chapter 11, and Burnham and Anderson 2004).
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To overcome this problem, the last few years have witnessed the growing importance
of model comparison methods based on the direct calculation of the predictive accu-
racy of a model, through cross-validation methods. In the cross-validation process, the
dataset is split in two or more datasets, with training datasets used to fit a model
and validation datasets used to compare the predictions obtained with the fitted model
on the validation dataset. When the response variable is continuous, a typical cross-
validation summary criterion is the root mean squared error (RMSE) which calculates the
difference between the observed and the predicted values. This difference can be
compared with a threshold value to choose among competing models (see, e.g., Diebold and
Mariano (1995)).

A problem with cross-validation measures, such as the RMSE, is that they are not nor-
malized, similar to information criteria, differently from what occurs in statistical model
comparison. A further problem is that, when the number of explanatory variables increases,
the RMSE does not necessarily decrease.

We aim to overcome these drawbacks with a new model comparison dependence mea-
sure that is normalized, like statistical tests, but can also be applied to machine learning
models.

The most commonly used measure to detect a relation of dependence between a response
variable and a set of explanatory variables is the coefficient of determination R2. The coef-
ficient of determination, although widely employed, has some drawbacks. For example, it is
based on the distance between each observation and the mean point and, consequently, may
be affected by extreme observations (Rousseeuw and Leroy 1987, Chapters 1–2). We pro-
pose to overcome this problem with the definition of a new measure of dependence, based
on Lorenz zonoids. To do so, we extend the work of Giudici and Raffinetti (2011), who
introduced a decomposition of the classical Gini coefficient in terms of concordance and
discordance shares.

The new measure is normalized and enjoys an “inclusion property” which leads to val-
ues that increase with the number of explanatory variables, similar to the R2, but different
from the RMSE. In addition, it is based on the mutual distance between the observations,
rather than on the distance from the mean value and, therefore, is less affected by extreme
observations.

The rest of the paper is organized as follows. Section 2 provides a background on Lorenz
zonoids, especially on its main features and properties. Section 3 introduces our proposed
Lorenz zonoid dependence measures, in the linear model framework. To better understand
our proposal, Section 4 includes an illustrative example and a real application to bitcoin
price discovery. Finally, Section 5 briefly concludes the paper.

2 Background

The Lorenz zonoid has been introduced by Koshevoy (1995) for empirical distributions
and by Mosler (1994) for general probability distributions. The Lorenz zonoid of a d-
dimensional random vector corresponds to a convex set in R

d+1, whose role is to analyze
and compare random vectors. Through the Lorenz zonoid representation, one can establish
an ordering of random vectors that reflects their variability: the investigation of such order-
ing is induced by the inclusion between subsequent Lorenz zonoids. This aspect provides a
helpful support for our proposed development.
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We now define the Lorenz curve for a non-negative variable Y , following Koshevoy and
Mosler (2007). The Lorenz curve of a non-negative random variable Y having expectation
E(Y ) = μ is the graph of the function

t �→ μ−1
∫ t

0
F−1

Y (s)ds, 0 ≤ t ≤ 1,

where F−1
Y is the quantile function of Y : F−1

Y = min{y : F(y) ≥ t}.
Roughly speaking, given n observations, the Lorenz curve LY of the Y variable (see

Lorenz (1905)) is given by the set of points (i/n,
∑i

j=1 y(j)/(nȳ)), for i = 1, . . . , n,
where y(i) indicates the Y variable values ordered in a non-decreasing sense and ȳ is
the Y variable mean value. Analogously, the Y variable can be re-ordered in a non-
increasing sense providing the dual Lorenz curve L′

Y , which is defined as the set of points

(i/n,
∑i

j=1 y(n+1−j)/(nȳ)). The area lying between the LY and L′
Y Lorenz curves corre-

sponds to the Gini coefficient, which is typically employed as an indicator of inequality,
especially when dealing with income data.

When considering more than one variable, the generalization of the Lorenz curve in d

dimensions is the so-called Lorenz zonoid.
The Lorenz zonoid of a general d-variate random vector can be defined following

Koshevoy and Mosler (1996). Consider a set Yd+ of random vectors in R
d that have finite

and positive (in each component) expectation and, within this set, the subset Yd++ ⊂ Yd+ of
those vectors that have support in Rd+.
For Y ∈ Yd+, we introduce the notation

Ỹ =
(

Y1

E(Y1)
, . . . ,

Yd

E(Yd)

)
,

which is the vector component wise divided by its expectation.
The Lorenz zonoid of a random vector Y ∈ Yd+ is a convex compact set in R

d+1,
defined as follows:

LZ(Y) =
{
E[(g(Ỹ), g(Ỹ)Ỹ)] : g : Rd → [0, 1] measurable

}
.

For the sake of clarity, a function g : E → R is measurable if E is a measurable set
and for each real number r ∈ R, the set {y ∈ E : g(y) > r} is measurable. It follows that
continuous and monotone functions are measurable. We remark that if Y ∈ Yd++ , i.e., has
support in R

d+, the Lorenz zonoid is contained in the hypercube of Rd+1.
The Lorenz zonoid fulfills many attractive properties, some of which are the building

blocks for the contribution proposed here.

Property 1 The Lorenz zonoid induces a linear dependence order:

Y 	ld X if LZ(X) ⊂ LZ(Y), (1)

where LZ(X) and LZ(Y) are the Lorenz zonoids of the random vectors X and Y and where
	ld indicates a linear dependence order (see, for instance, Dall’Aglio and Scarsini (2003)).

Property 2 The Lorenz zonoid induces a dominance order:

Y 	L X if LZ(X) ⊂ LZ(Y),
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where 	L defines Lorenz dominance (see, for instance, Koshevoy and Mosler (2007)).
An important corollary of Property 2 is that, in the univariate case, there is a perfect

equivalence between the Lorenz zonoid order and the order induced by the variability order:

Corollary 1 Y 	dil X ⇔ Y 	L X,

where 	dil indicates that V ar(Y ) ≥ V ar(X). In other words, through the Lorenz
dominance, an ordering based on the variability can be equivalently specified.

Within the univariate context, let us denote the Gini coefficient with the notation
LZd=1(·), to indicate the Lorenz zonoid in the univariate case. The condition of lin-
ear dependence reported in Property 1, can be further re-formalized to cover the case of
variables whose linear dependence may be investigated through a linear regression model.

Proposition 1 Consider the bidimensional vector (Y,X) and apply a linear regression
model, such that ŷ = α̂ + β̂x. Assume that Ŷ takes non-negative values. Denote respec-
tively with LY (t) and L′

Y (t) the Y Lorenz curve and its dual, and with L
Ŷ
(t) and L′

Ŷ
(t)

the Ŷ Lorenz curve and its dual. One can prove (see, e.g., Muliere and Petrone (1992))
that LY (t) ≤ L

Ŷ
(t) where L′

Y (t) = 1
E(Y )

∫ 1
1−t

F−1
Y (s)ds, 0 ≤ t ≤ 1. Furthermore,

L′
Ŷ
(t) ≤ L′

Y (t).

Proposition 1 provides a very important “inclusion property” which parallels what occurs
to the variance explained by the regression: V ar(Ŷ ) ≤ V ar(Y ).

In other words, the existence of a linear dependence relationship between Y and X trans-
lates into an inclusion between the response variable Y and the linear estimated variable Ŷ

Lorenz zonoids. Figure 1 shows this outcome in a pictorial way.
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Fig. 1 Visualization of the Y Lorenz zonoid (area between red lines) and Ŷ Lorenz zonoid (area between
blue lines)
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Figure 1 shows that the Ŷ Lorenz zonoid, based on the estimates obtained from the linear
regression of Y on X, is contained in the Y variable Lorenz zonoid.

3 Proposal

We exploit the Lorenz zonoid (LZd=1(·)) as a measure of variability that characterizes a
phenomenon of interest. While the variance measures the variability with respect to the
mean, the Lorenz zonoid measures the mutual variability. Similar to the variance, the Lorenz
zonoid can be used within linear models to assess the contribution of additional independent
variables in explaining the variability of the response variable.

This is the aim of our proposal: to introduce a new dependence measure, addressed
to explain the response variable Lorenz zonoid share “explained” by any additional
independent variable, and to generalize this into a stepwise model selection procedure
based on the Lorenz zonoid explained shares. To our knowledge, this is the only contri-
bution available, apart from a short and purely theoretical communication by Raffinetti and
Giudici (2013).

Let LZd=1(Y ) be the Lorenz zonoid of the response variable Y and X1 an indepen-
dent variable such that ŶX1 is the vector of the estimated values computed with a linear
regression model such that ŶX1 = α̂ + β̂X1. Define with LZd=1(ŶX1) the Lorenz zonoid
of ŶX1 . Consider an additional independent variable X2 and a corresponding linear regres-
sion model such that ŶX2 = α̂ + β̂X2. Define with LZd=1(ŶX2) the corresponding Lorenz
zonoid.

A very useful result, contained in Lerman and Yitzhaki (1984) is that, in the univari-
ate case, the Lorenz zonoid of a variable may be expressed by resorting to the covariance
operator. Formally we have

LZd=1(Y ) = 2Cov(Y, F (Y ))

μ
, (2)

where μ is the response variable Y mean value and F(Y ) is the distribution function of Y .
In the same manner, LZd=1(ŶX1) and LZd=1(ŶX2) can be expressed as

LZd=1(ŶX1) = 2Cov(ŶX1 , F (ŶX1))

μ
and LZd=1(ŶX2) = 2Cov(ŶX2 , F (ŶX2))

μ
, (3)

where E(ŶX1) = E(E(Y |ŶX1)) = μ and E(ŶX2) = E(E(Y |ŶX2)) = μ, F(ŶX1) and
F(ŶX2) are the distribution functions of ŶX1 and ŶX2 , respectively.

It can be shown that Eqs. 2 and 3 can be equivalently expressed in term of rank scores.
The following holds.

Result 1 Let r(Y ), r(ŶX1), and r(ŶX2) be the rank scores corresponding to the Y , ŶX1 , and
ŶX2 variables. Since the r(·) terms are the empirical representation of F(·) = r(·)/n, it can
then be shown that

LZd=1(Y ) = 2Cov(Y, r(Y ))

nμ
,LZd=1(ŶX1) = 2Cov(ŶX1 , r(ŶX1))

nμ

and LZd=1(ŶX2) = 2Cov(ŶX2 , r(ŶX2))

nμ
. (4)
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Proof Consider the response variable Y . We have to prove that

LZd=1(Y ) = 2Cov(Y, F (Y ))

μ
= 2Cov(Y, r(Y ))

nμ
. (5)

The term Cov(Y, F (Y )) is equivalent to Cov
(
Y,

r(Y )
n

)
. Through some computations,

we obtain that

Cov

(
Y,

r(Y )

n

)
= 1

n

n∑
i=1

Yi

r(Yi)

n
− μ

r̄(Y )

n
= 1

n

[
1

n

n∑
i=1

Yir(Yi) − μr̄(Y )

]

= 1

n
Cov(Y, r(Y )) = 1

n
Corr(Y, r(Y ))σY σr(Y )

where r̄(Y ) is the mean of r(Y ), and σY and σr(Y ) are the standard deviations, respectively,
of Y and r(Y ). The equivalence in Eq. 5 follows.

From an interpretational viewpoint, Result 1 shows that the Lorenz zonoid is proportional
to the correlation between the response variable and its ranks. We recall that the variance is
proportional to the squared distance of the response variable from its mean.

The previous result easily generalizes to ŶX1 and ŶX2 and, therefore, the Lorenz zonoid
share explained by a linear model is proportional to the correlation between the fitted values
and their ranks.

Thus, when the employed measure of variability is the Lorenz zonoid, the goodness of fit
of a regression is proportional to the correlation between the fitted values and their ranks. In
contrast, in the standard linear model case, the goodness of fit of a regression is proportional
to the squared distance between the fitted values and the mean.

Remark 1 Given a sample data of size n, the formulas in Eqs. 2 and 3 may be re-expressed as

LZd=1(y) = 2Cov(y, r(y))

nȳ
, LZd=1(ŷx1) = 2Cov(ŷx1 , r(ŷx1))

nȳ

and LZd=1(ŷx2) = 2Cov(ŷx2 , r(ŷx2))

nȳ
(6)

where y, ŷx1 , and ŷx1 are the vectors of the observed and estimated values, r(y), r(ŷx1), and
r(ŷx2) are the ranks of the observed values, and ȳ is the sample mean.

It can also be shown that the Lorenz zonoid can be expressed as a function of the sum of
the distances between the y-axis values of the points lying on the Lorenz curve and those
of the points lying on the bisector curve (the black curve in Fig. 1). To be able to show this,
we first need to derive the expression of the distance.

Result 2 Let Y be a response variable, whose values arranged in non-decreasing sense are
denoted with y(i), for i = 1, . . . , n. Let q be the sum of the distances between the y-axis
values of the points lying on the Lorenz curve and those of the points lying on the bisector
curve. It can then be shown that

q = 1

ȳ
cov(y(i), r(y)). (7)

Proof Consider the coordinates (i/n,
∑i

j=1 y(j)/nȳ) of the points lying on the Lorenz
curve of the response variable Y and the coordinates (i/n, i/n) of the points lying on the
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bisector curve. It follows that q can be defined as

q =
n∑

i=1

⎧⎨
⎩

i

n
− 1

nȳ

i∑
j=1

y(j)

⎫⎬
⎭ =

n∑
i=1

i

n
− 1

nȳ

n∑
i=1

i∑
j=1

y(j). (8)

Because
∑n

i=1 i = n(n+1)
2 and

∑n
i=1

∑i
j=1 y(j) = n(n + 1)ȳ − ∑n

i=1 iy(i), the term on
the right hand side of Eq. 8 can be written as

q = n(n + 1)

2n
− 1

nȳ

[
n(n + 1)ȳ −

n∑
i=1

iy(i)

]
= 1

ȳ

[
1

n

n∑
i=1

iy(i) − n(n + 1)

2n
ȳ

]

= 1

ȳ

[
1

n

n∑
i=1

iy(i) − (n + 1)

2
ȳ

]
. (9)

The term within the square brackets in Eq. 9 corresponds to the covariance between the
Y values and their ranks, where the mean of i (i.e., r(y)) is equal to ī = (n + 1)/2. Then,
the equivalence in Eq. 7 follows.

We are now able to show that the Lorenz zonoid is a function of the sum of the distances
between the y-axis values of the points lying on the Lorenz curve and those of the points
lying on the bisector curve. The following result demonstrates the equivalence.

Result 3 From Eqs. 7 and 9, it follows that

LZd=1(y) = 2

n
q = 2

nȳ

[
1

n

n∑
i=1

iy(i) − n(n + 1)

2n
ȳ

]
. (10)

The previous result easily generalizes also for variables ŶX1 and ŶX2 , which are the
estimated fitted values. Let ŷ(x1i) and ŷ(x2i), for i = 1, . . . , n, be the ŶX1 and ŶX2 values
arranged in a non-decreasing sense. Similar to Eq. 10, LZd=1(ŷx1) and LZd=1(ŷx2) may be
re-expressed as

LZd=1(ŷx1) = 2

nȳ

[
1

n

n∑
i=1

iŷ(x1i) − n(n + 1)

2n
ȳ

]
(11)

LZd=1(ŷx2) = 2

nȳ

[
1

n

n∑
i=1

iŷ(x2i) − n(n + 1)

2n
ȳ

]
. (12)

We can now employ the previous results to derive a marginal dependence measure, which
will be denoted by MGC (Marginal Gini Contribution). The measure can evaluate the Y

Lorenz zonoid share marginally explained by a single explanatory variable Xh for h =
1, . . . , k. It can be defined as

MGC(Y |Xh) = LZd=1(ŶXh
)

LZd=1(Y )
= 2Cov(ŶXh

, r(ŶXh
))/nμ

2Cov(Y, r(Y ))/nμ
= Cov(ŶXh

, r(ŶXh
))

Cov(Y, r(Y ))
, (13)

whose sample version is

MGC(y|xh) =
2
nȳ

[
1
n

∑n
i=1 iŷ(xhi) − n(n+1)

2n ȳ
]

2
nȳ

[
1
n

∑n
i=1 iy(i) − n(n+1)

2n ȳ
] = Cov(ŷxh

, r(ŷxh
))

Cov(y, r(y))
. (14)

The MGC measure may be used to select the explanatory variables in a regression con-
text. For example, the explanatory variable with the largest contribution in explaining the
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share of the response variable Lorenz zonoid measured by the MGC can be chosen as an
explanatory variable in a regression model.

To understand whether further variables can improve a given regression model, we need
to define a partial contribution measure. This can be done extending the MGC definition
into a model selection procedure.

In the general context, characterized by k explanatory variables, we would like to deter-
mine the effect related to the introduction of a new (k+1)th explanatory variable into a linear
regression model. The inclusion of a new explanatory variable provides an enlargement of
the Ŷ Lorenz zonoid. The Lorenz zonoid of the Y linear estimated values, denoted with
LZd=1(ŶX1,...,Xk

), corresponds to the dilation measure of the Y response variable Lorenz
zonoid LZd=1(Y ). Therefore, the introduction of an additional covariate in multiple linear
regression models translates into an increase of the “explained” Y variability.

In the well-known linear regression model, the contribution of a single variable to the
regression plane is additive and, therefore, the addition of a new explanatory variable trans-
lates into an increase of the multiple determination coefficient (see, e.g., Giudici 2003,
Chapter 4). More precisely, suppose a linear regression model is built that is character-
ized by k explanatory variables. Let us introduce an additional (k + 1)th explanatory
variable. Its contribution determines an increase of the Y variable “explained” vari-
ability, defined as the difference between V ar(ŶX1,...,Xk+1) and V ar(ŶX1,...,Xk

), where
V ar(ŶX1,...,Xk

) denotes the Y variability “explained” by the X1, . . . , Xk independent vari-
ables and V ar(ŶX1,...,Xk+1) denotes the Y variability “explained” by the X1, . . . , Xk+1
independent variables. The squared partial correlation coefficient is expressed as

r2Y,Xk+1|X1,...,Xk
= V ar(ŶX1,...,Xk+1) − V ar(ŶX1,...,Xk

)

V ar(Y ) − V ar(ŶX1,...,Xk
)

, (15)

where V ar(Y ) − V ar(ŶX1,...,Xk
) identifies the Y variable variability not explained by the

X1, . . . , Xk covariates.
We aim at building a partial contribution measure that “parallels” the partial corre-

lation coefficient construction. Specifically, we propose as partial contribution measure
the ratio between a numerator characterized by a term denoting the contribution gener-
ated by the (k + 1)th explanatory variable and a denominator including a term which
describes the share of the Y Lorenz zonoid “not explained” by the ŶXk

Lorenz zonoid. The
additional contribution related to the (k + 1)th explanatory variable inclusion can be mea-
sured through the difference between the ŶX1,...,Xk+1 and ŶX1,...,Xk

Lorenz zonoids, that is
LZd=1(ŶX1,...,Xk+1) − LZd=1(ŶX1,...,Xk

).
A relative index, measuring the additional contribution provided by the Xk+1 inde-

pendent variable can then be obtained in analogy with the partial correlation coefficient
construction. Such a measure, which we will call PGC (Partial Gini Contribution), can be
expressed as

PGCY,Xk+1|X1,...,Xk
= LZd=1(ŶX1,...,Xk+1) − LZd=1(ŶX1,...,Xk

)

LZd=1(Y ) − LZd=1(ŶX1,...,Xk
)

. (16)
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Note that Eq. 16 can be re-expressed, in analogy with the partial correlation coefficient,
in terms of covariances:

PGCY,Xk+1|X1,...,Xk
=

2
nμ

Cov(ŶX1,...,Xk+1 ,r(ŶX1,...,Xk+1))− 2
nμ

Cov(ŶX1,...,Xk
,r(ŶX1,...,Xk

))

2
nμ

Cov(Y,r(Y ))− 2
nμ

Cov(ŶX1,...,Xk
,r(ŶX1,...,Xk

))

= Cov(ŶX1,...,Xk+1 ,r(ŶX1,...,Xk+1))−Cov(ŶX1,...,Xk
,r(ŶX1,...,Xk

))

Cov(Y,r(Y ))−Cov(ŶX1,...,Xk
,r(ŶX1,...,Xk

))
. (17)

We remark that, for the first variable (denoted h) included in the model, the equivalence
MGC(Y |Xh) = PGCY |Xh

holds.

Result 4 It can be shown that, after some manipulations, PGCY,Xk+1|X1,...,Xk
computed on

sample data can be expressed as

PGCy,xk+1|x1,...,xk
=

∑n
i=1 i(ŷ(x1,...,xk+1i) − ŷ(x1,...,xki))∑n

i=1 i(y(i) − ŷ(x1,...,xki))
. (18)

Property 3 Under the condition of linear dependence between Y and the k explanatory
variables, it holds that 0 ≤ PGCY,Xk+1|X1,...,Xk

≤ 1. In the intermediate scenarios, the
PGC measure takes values always smaller than 1 or greater than 0, depending on the
contribution provided by the additional Xk+1 covariate to the explanation of the response
variable.

Proof The following inequalities have to be proven:

a)
LZd=1(ŶX1,...,Xk+1 )−LZd=1(ŶX1,...,Xk

)

LZd=1(Y )−LZd=1(ŶX1,...,Xk
)

≥ 0;

b)
LZd=1(ŶX1,...,Xk+1 )−LZd=1(ŶX1,...,Xk

)

LZd=1(Y )−LZd=1(ŶX1,...,Xk
)

≤ 1.

It is worth noting that the denominator of Eq. 16 is always positive. The only case in which
LZd=1(Y ) − LZd=1(ŶX1,...,Xk

) = 0 is reached is if the k covariates perfectly explain the
response variable. In this case, no additional explanatory variable needs to be considered
for inclusion in the model. Moreover, no negative values are allowed due to the inclusion of
LZd=1(ŶX1,...,Xk

) into LZd=1(Y ). From inequality a), it follows that

LZd=1(ŶX1,...,Xk+1) − LZd=1(ŶX1,...,Xk
) ≥ 0 ⇒ LZd=1(ŶX1,...,Xk+1) ≥ LZd=1(ŶX1,...,Xk

).
(19)

The relation in Eq. 19 is always fulfilled since the inclusion of a new explanatory vari-
able into the model typically provides an enlargement of the Lorenz zonoid built on the
corresponding linear estimated values. Only in the case that the additional explanatory
variable does not provide any improvement in the explained variability of the response
variable, it results that LZd=1(ŶX1,...,Xk+1) − LZd=1(ŶX1,...,Xk

) = 0, which is equal
to LZd=1(ŶX1,...,Xk+1) = LZd=1(ŶX1,...,Xk

). The same conclusion may be obtained
by resorting to formulas Eq. 17, in terms of covariances, and Eq. 18, when refer-
ring to the sample data. Specifically, it follows that Cov(ŶX1,...,Xk+1 , r(ŶX1,...,Xk+1)) ≥
Cov(ŶX1,...,Xk

, r(ŶX1,...,Xk
)) and ŷ(x1,...,xk+1i) ≥ ŷ(x1,...,xki).
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Next, from inequality b), it follows that

LZd=1(ŶX1,...,Xk+1) ≤ LZd=1(Y ). (20)

The condition in Eq. 20 is a direct consequence of the inclusion property. Indeed the
Y variability explained by the X1, . . . , Xk+1 covariates, here defined in terms of the
Lorenz zonoid built on the linear estimated values provided by the linear regression
model, corresponds at most to the total variability underlying the response variable.
Equality between LZd=1(ŶX1,...,Xk+1) and LZd=1(Y ) is achieved if the linear model
built on the X1, . . . , Xk+1 covariates perfectly explains the target variable Y . Simi-
larly, as for inequality a), the relation in Eq. 20 can be expressed in terms of covari-
ances and in terms of sample data as Cov(ŶX1,...,Xk+1 , r(ŶX1,...,Xk+1)) ≤ Cov(Y, r(Ŷ ))

and ŷ(x1,...,xk)i ≤ y(i).
In the standard linear model selection context, it is well known that the multiple coef-

ficient of determination is related to the partial correlation coefficient of each explanatory
variable. We would like a similar relationship to hold for Lorenz zonoids as well. The
following can be proved.

Result 5 In the standard model selection context with k explanatory variables, one can prove
that the overall contribution of the fitted plane depends on the single contributions through
the following recursive relationship:

R2
Y,X1,...,Xk

=
k∑

j=1

r2Y,Xj |Xi<j
(1 − R2

Y,X1,...,Xj−1
), (21)

where R2
Y,X1,...,Xk

represents the determination coefficient of the model built on the k

explanatory variables, R2
Y,X1,...,Xj−1

denotes the coefficient of multiple correlation between
Y and the fitted plane determined by the explanatory variablesX1, . . . , Xj−1, and rY,Xj |Xi<j

denotes the coefficient of partial correlation between Y and Xj , conditional on the explana-
tory variables previously included into the model (see, e.g., Giudici 2003, Chapter 4). We
now show that the overall contribution provided by the k covariates to the explanation
of the non-negative response variable Y mutual variability depends on the single con-
tribution measured in terms of the PGC measures according to the following recursive
relationship:

MGC(Y |X1,...,Xk) =
k∑

j=1

PGCY,Xj |Xi<j
(1 − MGC(Y |X1,...,Xj−1)), (22)

where MGC(Y |X1,...,Xk) denotes the overall Y mutual variability explained by all the
involved variables (i.e., LZd=1(ŶX1,...,Xk

)), PGCY,Xj |Xi<j
is the contribution associated

with the j th explanatory variable included in the model and MGC(Y |X1,...,Xj−1) is the over-

all contribution provided by the (j − 1)th explanatory variables (i.e., LZd=1(ŶX1,...,Xj−1)),
with j = 1, . . . , k.
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Proof The aim is to prove the equivalence in Eq. 22. For the sake of simplicity, we consider
the case of three explanatory variables (k = 3). We start by fitting first X1, then X2 and
finally X3. The relationship in Eq. 22 becomes

MGC(Y |X1,X2,X3) =
3∑

j=1

PGCY,Xj |Xi<j
(1 − MGC(Y,X1,...,Xj−1))

LZd=1(ŶX1,X2,X3)

LZd=1(Y )
= LZd=1(ŶX1)

LZd=1(Y )
+ LZd=1(ŶX1,X2) − LZd=1(ŶX1)

LZd=1(Y ) − LZd=1(ŶX1)

×
[
1 − LZd=1(ŶX1)

LZd=1(Y )

]
+ LZd=1(ŶX1,X2,X3) − LZd=1(ŶX1,X2)

LZd=1(Y ) − LZd=1(ŶX1,2)

×
[
1 − LZd=1(ŶX1,X2)

LZd=1(Y )

]
. (23)

In Eq. 23, the term in the squared brackets corresponds to LZd=1(Y )
LZd=1(Y )

− LZd=1(ŶX1,X2 )

LZd=1(Y )
, leading

to

LZd=1(ŶX1,X2,X3)

LZd=1(Y )
= LZd=1(ŶX1)

LZd=1(Y )
+ LZd=1(ŶX1,X2) − LZd=1(ŶX1)

LZd=1(Y ) − LZd=1(ŶX1)

×
[

LZd=1(Y ) − LZd=1(ŶX1)

LZd=1(Y )

]

+LZd=1(ŶX1,X2,X3) − LZd=1(ŶX1,X2)

LZd=1(Y ) − LZd=1(ŶX1,2)

×
[

LZd=1(Y ) − LZd=1(ŶX1,X2)

LZd=1(Y )

]
. (24)

Through some mathematical manipulations, Eq. 24 can be re-written as

LZd=1(ŶX1,X2,X3)

LZd=1(Y )
= LZd=1(ŶX1)

LZd=1(Y )
+ LZd=1(ŶX1,X2) − LZd=1(ŶX1)

LZd=1(Y )

+LZd=1(ŶX1,X2,X3) − LZd=1(ŶX1,X2)

LZd=1(Y )
.

Thus,

LZd=1(ŶX1,X2,X3) = LZd=1(ŶX1) + LZd=1(ŶX1,X2) − LZd=1(ŶX1)

+LZd=1(ŶX1,X2,X3) − LZd=1(ŶX1,X2)

which proves the desired identity.

We finally remark that the previous results hold for non-negative variables. The restric-
tion to non-negative variables is due to the Lorenz zonoid construction, which in the
univariate context corresponds to the Gini measure. As discussed by Raffinetti et al. (2015)
the main problem with negative values concerns the violation of the Gini coefficient nor-
malization principle. Indeed, if the negative observed and/or linear estimated values of Y are
involved, the corresponding Gini coefficient may achieve values greater than one. This is
due to the graphical position of the underlying Lorenz curve partially lying under the x-axis
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and consequently intersecting the x-axis in a point which defines the transition from cumu-
lative negative values to cumulative non-negative values. Roughly speaking, the Lorenz
zonoid of a real-valued variable is not inscribed into the unit side square. Moreover, the
presence of negative values may lead to failure of the inclusion property. As an example,
suppose that Ŷ is real-valued and Y is non-negative. In this scenario, the inclusion property
would be partially reversed yielding the condition LZ(Y )d=1 ⊂ LZ(Ŷ )d=1 to be fulfilled
until the cumulative function of the negative values becomes positive and grater than the
cumulative function of the response variable Y values. To overcome this drawback, the Gini
coefficient (Lorenz zonoid) of the real-valued variable has to be adjusted to ensure that its
range is bounded between 0 and 1. This adjustment was suggested by Raffinetti et al. (2015)
and is based on a new definition of the polarization phenomenon, according to which the
total negative variable amount should be assigned to one unit and the remaining total posi-
tive variable amount to another unit, while setting the values of the other n−2 units equal to
0. In this way, the non-negative variable Lorenz zonoid and the real-valued variable Lorenz
zonoid become equally scaled.

4 Application

To better understand our proposal, we first consider an illustrative example and then an
application to real data.

4.1 Illustrative Example

Consider the data in Table 1. This table contains information about the response variable Y

and six explanatory variables (X1, . . . , X6), among which X1 is a nominal variable; X2 and
X3 are quantitative variables; and X4, X5, and X6 are ordinal variables.

The data in Table 1 can be used to show how a model selection procedure can be based
on Lorenz zonoids.

First, using the MGC measure, we can assess which explanatory variable in the multiple
linear regression model is the most important in explaining the (mutual) variability of the
response variable. It turns out that X2 is the most important variable, with MGC(y|x2) �
0.599 meaning that the Lorenz zonoid of ŶX2 represents almost the 60% of the Y Lorenz
zonoid. Consequently, the first explanatory variable to be added into the linear regression
model is X2.

Second, among the remaining covariates, the one which gets the largest partial contri-
bution to the variability of the response can be determined computing PGCy,x?|x2 . It turns

Table 1 A data example with one independent variable Y and six explanatory variables

Y 23 26 23 28 21 19 19 35 27 11 22 22 26 24 24 26 21 32 17

X1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

X2 9 8 7 8 8 8 9 10 9 4 8 9 8 8 7 8 9 10 8

X3 10 7 8 8 7 8 8 10 8 7 8 9 8 10 6 8 10 10 9

X4 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3

X5 4 2 6 4 4 6 4 6 6 2 4 4 4 4 2 4 4 4 4

X6 4 4 6 4 6 6 6 6 6 2 4 6 4 4 4 4 4 6 4
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out that the highest PGC value is obtained for X5, being PGCy,x5|x2 � 0.224. The inclu-
sion of the covariate X5 into a model that already has X2 allows to increase the dilation of
LZd=1(ŶX2) by 22.4%.

The procedure can then be repeated for all other variables. The results are as follows:

• The third added covariate is X1, which provides an increase of the dilation of
LZd=1(ŶX2,X5) by 15.6% (PGCy,x1|x2,x5 �= 0.156).

• The fourth added covariate is X4, which provides an increase of the dilation of
LZd=1(ŶX2,X5,X1) by 14% (PGCy,x4|x2,x5,x1 �= 0.140).

• The fifth added covariate is X3, which provides an increase of the dilation of
LZd=1(ŶX2,X5,X1,X4) by 9.1% (PGCy,x3|x2,x5,x1,x4 �= 0.091).

• The last added covariate is X6, which provides an increase of the dilation of
LZd=1(ŶX2,X5,X1,X4,X3) by 7.8% (PGCy,x6|x2,x5,x1,x4,x3 � 0.078).

4.2 Cryptocurrency Price Data

We consider an application to real data, to illustrate the functioning of our proposed method-
ology in a professional context. The application concerns the cryptocurrency data collected
and illustrated in a recent work of Giudici and Abu-Hashish (2019). We apply our proposal
to assess whether the daily bitcoin prices in different crypto exchanges may be affected by
the prices of classical financial assets.

The available data contains information on the daily bitcoin prices in eight different
crypto exchanges, from 18 May 2016 to 30 April 2018. The analysis was carried out includ-
ing all eight crypto exchanges in Giudici and Abu-Hashish (2019). For the sake of brevity,
we only report the findings for Coinbase Bitcoin and HitBtc Bitcoin, which represent the
response variables of interest. The other exchanges have a similar behavior, due to common
underlying bitcoin price.

The explanatory variables which are taken into account are the price of oil and gold,
that are “classical” financial variables. We first compute the MGC coefficients for both the
response variables. Through the MGC coefficients we can detect which covariate provides
the greatest contribution in explaining the bitcoin price mutual variability. Such covariate
will be included into the linear regression model. The contribution of the remaining explana-
tory variable is assessed in terms of the PGC indices. The results from the Lorenz zonoid
measure referred to Coinbase Bitcoin and HitBtc Bitcoin, together with the MGC coef-
ficients, are displayed in Table 2. The table also reports the corresponding values of the
coefficient of determination.

Table 2 shows that both the Coinbase Bitcoin and HitBtc Bitcoin prices present quite the
same variability, measured by the corresponding Lorenz zonoids. We can conclude that both
prices do not suffer from strong daily differences. The explanatory variable Gold provides
a contribution equal to the 39.8% and 40.6% for the Coinbase Bitcoin and HitBtc Bitcoin

Table 2 Lorenz zonoids, MGC, and R2 measures for Coinbase Bitcoin and HitBtc Bitcoin prices

Target variable LZd=1(·) MGC(·|Gold) MGC(·|Oil) R2·,Gold R2·,Oil

Coinbase Bitcoin 0.554 0.398 0.332 0.127 0.086

HitBtc Bitcoin 0.554 0.406 0.341 0.134 0.092
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Table 3 PGC and R2-based
indices for Coinbase Bitcoin and
HitBtc Bitcoin

Target variable Additional PGC·,Oil|Gold r2·,Oil|Gold

covariate

Coinbase Bitcoin Oil 0.236 0.125

HitBtc Bitcoin Oil 0.248 0.134

variables, respectively. The other covariate, Oil, provides a smaller contribution. Thus, vari-
able gold is the first variable to be introduced into the model. The results obtained applying
the coefficient of determination are similar.

We now consider the effect of introducing an additional variable into a model, comparing
our proposed PGC measure with the partial correlation coefficient.

The results of this analysis are displayed in Table 3, for the response variables Coinbase
Bitcoin and HitBtc Bitcoin.

From Table 3, note that adding the variable Oil to the model that contains Gold leads
to a contribution equal to 23.6% and 24.8% for the Coinbase Bitcoin and HitBtc Bitcoin
variables, respectively. Similarly, in terms of the squared partial correlation coefficient, the
variable Oil explains the 12.5% and 13.4% of the variance not explained by the model
built using only the Gold variable. Similar findings can be obtained for the other crypto
exchanges. We can thus conclude that not only the gold price but also the oil price have an
important role in the explanation of the bitcoin prices from all exchanges. This conclusion
is consistent with what was found by Giudici and Abu-Hashish (2019).

5 Conclusions

In this paper, Lorenz zonoids were introduced as a new model selection tool to assess the
contribution associated with the explanatory variables included in a linear model in terms
of the explained mutual variability.

Our approach presents similarities and dissimilarities with R2-based approaches. On the
one hand, both methods are built on a quantitative response variable and aim to detect the
variables which mainly impact the phenomenon of interest. On the other hand, our proposal
is based on the mutual distance between all observations, rather than deviations from the
mean and, therefore, is more robust to outlying observations.

Our proposed Lorenz zonoid–based model selection approach seems to be a useful model
selection tool that can be used along with standard tools to enhance the robustness of the
results.

Further research development concerns the extension of the proposed work to a more
general class of models that also include non continuous response variables. From an
applied viewpoint, it would be interesting to apply the methodology to other related applica-
tion fields, such as credit scoring (as in Figini and Giudici (2011) and Calabrese and Giudici
(2015)) and operational risk management (as in Fantazzini et al. (2008) and Giudici and
Bilotta (2004)).
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