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Premises

Aim: constructing predictive accuracy tools that can evaluate and
monitor the quality of the forecasts.

State of the art:

I comparing statistical models within a model selection
procedure, in which a model is chosen through a sequence of
pairwise comparisons based on the comparison of the
likelihoods (or of the posterior probabilities) of the models
being compared.

Problem: these criteria generally not applicable to models
whose underlying probabilistic model is not specified.

I comparing the predicted and the actually observed cases,
typically within cross-validation methods.

Proposal: a new measure based on the ranks which evaluates the
concordance between the ranks of the predicted values and the
ranks of the actual values of a series of observations to be forecast.
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Background
Let: Y be the target variable to be predicted; p the number of predictors; Ŷ
be the vector of the predicted values generated by a ML model.

I Build the Y Lorenz curve (LY ) by re-ordering the Y values in

non-decreasing sense, whose coordinates are (i/n,Âi
j=1

yrj /(nȳ)), for
i = 1, . . . ,n, where ri and ȳ indicate the (non-decreasing) ranks of Y and

the Y mean value, respectively.

I Build the Y dual Lorenz curve (L
0
Y ) by re-ordering the Y values in a

non-increasing sense, whose coordinates are (i/n,Âi
j=1

ydj /(nȳ)), for

i = 1, . . . ,n, where di indicates the (non-increasing) ranks of Y .

I Build the concordance curve C by ordering the Y values with respect to

the ranks of the predicted Ŷ values, whose coordinates are

(i/n,Âi
j=1

yr̂j /(nȳ)), where r̂i indicates the (non-decreasing) ranks of Ŷ .

I Consider the 45-degree line, whose coordinates are (i/n, i/n).
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Background

Let: Y be the target variable to be predicted; p be the number of predictors;
Ŷ be the vector of the predicted values generated by a ML model.

I Build the Y Lorenz curve (LY ) by re-ordering the Y values in
non-decreasing sense, whose coordinates are (i/n,Âi

j=1 yrj /(nȳ)), for
i = 1, . . . ,n, where ri and ȳ indicate the (non-decreasing) ranks of Y and
the Y mean value, respectively.

I Build the Y dual Lorenz curve (L
0
Y ) by re-ordering the Y values in a

non-increasing sense, whose coordinates are (i/n,Âi
j=1 ydj /(nȳ)), for

i = 1, . . . ,n, where di indicates the (non-increasing) ranks of Y .

I Build the concordance curve C by ordering the Y values with respect to
the ranks of the predicted Ŷ values, whose coordinates are
(i/n,Âi

j=1 yr̂j /(nȳ)), where r̂i indicates the (non-decreasing) ranks of Ŷ .

I Consider the 45-degree line, whose coordinates are (i/n, i/n).

hh
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Interpreting the linear regression model
Validating and testing the linear regression model

Model diagnostics
Selecting the set of regressors: F-test and t-test
Stepwise regression
AIC and BIC criteria

Testing the goodness of fit of a simple linear regression

model

We associate the C curve behavior with the main reference scenarios that occur
in model comparison.
It results that:

i) the best case occurs when the ordering of the Y response variable values
corresponds to the ordering of the predicted values, with the C curve
perfectly overlapping the Lorenz curve LY ;

ii) the worst case occurs when the ordering of the Y response variable values is
in inverse correspondence with the ordering of the predicted values, with the
C curve perfectly overlapping the dual Lorenz curve L

0

Y ;

iii) in the random case, the C curve overlaps the 45-degree line;

iv) in the generic case, the C curve lies in the area between the Y response
variable Lorenz curve, LY and its dual, L

0

Y . The distance between C and the
45-degree line measures how a model improves over random predictions.

Paolo Giudici and Emanuela Ra�netti Trustworthy AI Model selection I

Model scenarios
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The C and ROC curves

In the case of a binary response variable, the C curve and the
ROC curve have the following behavior:
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Figure: The concordance C curve and the ROC curve in the best,
worst, random and generic cases
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Definition of the Rank Graduation Accuracy

(RGA) measure

On the analogy between the ROC and the C curve, a summary
measure for the C curve of a model can be derived. The resulting

measure, named Rank Graduation Accuracy (RGA) measure, is
defined by the following expression:

RGA=
Ân
i=1

⇢
1
nȳ

�
Âi
j=1 yrn+1�j �Âi

j=1 yr̂j
��

Ân
i=1

⇢
1
nȳ

�
Âi
j=1 yrn+1�j �Âi

j=1 yrj
��

.

Remark
When tied predictions occur, it may be unclear how to order the
observed values in the expression of RGA. In this case, we suggest
to replace the observed response values corresponding to the
predictions with their mean values.
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The RGA properties

Property 1 - Simplification
The RGA measure can be simplified as follows:

RGA=
Ân
i=1 iyr̂i �Ân

i=1 iyrn+1�i

Ân
i=1 iyri �Ân

i=1 iyrn+1�i

.

Property 2 - Normalisation
i) 0< RGA< 1 for the generic case; ii) RGA= 1 for the best case;
iii) RGA= 0 for the case iv) RGA= 0.5 for a random case.

Property 3 - Invariance
RGA is invariant with respect to translations of Y , meaning that
RGA= RGAk , where RGAk denotes the RGA measure computed
on the transformed variable Y k = Y +k , where k is a constant
such that k 2 R.

Property 4 - Equivalence between RGA and AUROC

Property 5 - Equivalence between RGA and the Wilcoxon-Mann-
Whitney statistic

Interpreting the logistic regression model

Validating and testing logistic regression models

Testing significance

Comparing models

Evaluating performance: confusion matrix, AUROC

A generalised AUROC measure - The RGA measure

Property 2 - Normalisation
i) 0 < RGA < 1 for an intermediate model; ii) RGA = 1 for the best model; iii)
RGA = 0 for the worst model; iv) RGA = 0.5 for a random model.

Paolo Giudici and Emanuela Ra�netti Trustworthy AI Model selection II



eXplainable Artificial Intelligence in healthcare Management 
2020-EU-IA-0098 

RGA: measuring Rank Graduation predictive Accuracy 11
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Fig. 3: Behaviour of the Lorenz curves for response variables taking negative
values

From Figure 3 note that, in case a), the Lorenz and dual Lorenz curves
are reversed, but the Lorenz curves remain inside the unit square, satisfying
Property 2. Di↵erently, in cases b) and c), the Lorenz curve extends below
y = 0 and the dual Lorenz curve extends above y = 1. In these cases, to fulfill
Property 2, we can subtract from the Y variable its minimum negative value
(see Ferrari and Ra�netti, 2015). This translation leaves the measure invariant
(according to Property 1) and can thus be exploited to satisfy Property 1.

Property 3 - Equivalence between RGA and AUROC
In the binary case, RGA=AUROC.

Property 4 - Equivalence between the RGA and the Wilcoxon-Mann-Whitney statis-
tic W1

In the binary case, RGA= W1, the Wilcoxon-Mann-Whitney statistic (see Mason and
Graham, 2002).

The proofs of the aforementioned Properties are reported in Appendix.
Before validating our proposal on simulated and real data, a premise for

the RGA results’ extension to the inferential perspective is reported in the
following remark.

Remark 1 A statistical test for the RGA measure can be derived by expressing it in
terms of the covariance operator, as follows:

RGA =
1

2

cov(Y
r(Ŷ), F(Y ))

cov(Y, F(Y )) +
1

2
, (14)

where Y
r(Ŷ) represents the Y variable re-ordered according to the ranks of the

corresponding predictions Ŷ and F is the cumulative continuous distribution function
of Y .

It follows that the RGA is a linear function of the ratio:

The case of a target variable with negative valuesInterpreting the linear regression model
Validating and testing the linear regression model

Model diagnostics
Selecting the set of regressors: F-test and t-test
Stepwise regression
AIC and BIC criteria

Testing the goodness of fit of a simple linear regression

model

Note that, in case a), the Lorenz and dual Lorenz curves are reversed, but the
Lorenz curves remain inside the unit square, satisfying Property 2.

Di↵erently, in cases b) and c), the Lorenz curve extends below y = 0 and the dual
Lorenz curve extends above y = 1. In these cases, to fulfill Property 2, we can
subtract from the Y variable its minimum negative value. This translation leaves
the measure invariant (according to Property 3) and can thus be exploited to
satisfy Property 3.

Paolo Giudici and Emanuela Ra�netti Trustworthy AI Model selection I

2
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A test for the RGA measure - I

Proposition
In the case of a continuous response variable, the RGA index can
be translated in terms of covariance operators. It can be shown
that:

RGA =
cov(Yr(Ŷ )

,F (Y ))� cov(Y ,1�F (Y ))

cov(Y ,F (Y ))� cov(Y ,1�F (Y ))
, (3)

where F is the cumulative continuous distribution functions of Y
and 1�F is the retro-cumulative distribution function of Y .
Hypothesis testing
Given a more complex model Mod1 and a simpler model Mod2,
their predictive accuracy can be compared by setting the following
hypotheses:

H0 : y(Y , ŶMod1) = y(Y , ŶMod2) vs H1 : y(Y , ŶMod1) 6= y(Y , ŶMod2),

where y(Y , ŶMod1) =
cov(Yr(ŶMod1

)
,F (Y ))

cov(Y ,F (Y ))
and

y(Y , ŶMod2) =
cov(Yr(ŶMod2

)
,F (Y ))

cov(Y ,F (Y ))
.

)

)
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A test for the RGA measure - II

By denoting with d̂ = ŷ(Y , ŶMod1)� ŷ(Y , ŶMod2), the test
statistics for testing the null hypothesis

H0 : y(Y , ŶMod1) = y(Y , ŶMod2)

becomes:

Z =
d̂q

Var(d̂ )
V! N(0,1),

where the estimated variance Var(d̂ )
V

= n�1

n Ân
i=1

(d̂(�i) � d̄ )2,

d̂(�i) are the values of d̂ by omitting one pair (Y , Ŷ ) at a

time and d̄ is the average of the values d̂(�i), for i = 1, . . . ,n.

For a fixed significance level a, the rejection region
corresponds to the values of |Z | � za/2.
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A test for the RGA measure - II

It is important that the measurement of predictive accuracy
is not a↵ected by outlying observations, which may bias
model comparison.

Without loss of generality, let X and Z be two independent
continuous random variables with X ⇠ U(0,10) and
Z ⇠ N(0,1) and let Y = 5+3X +Z , from which we can
simulate a set of observations.

To assess robustness, we replace the obtained left and right
tail observations of the X distribution with outliers in the
tails of the distribution. Without loss of generality, we
consider six alternative replacements, as follows:
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a) the observations greater than the 95% percentile are replaced
by observations sampled from a U(15,20) distribution;

b) the observations lower than the 5% percentile are replaced by
observations sampled from a U(�10,�5) distribution;

c) the observations greater than the 95% percentile are replaced
by observations sampled from a U(15,20) distribution and
the observations lower than the 5% percentile are replaced by
observations sampled from a U(�10,�5) distribution;

d) the observations greater than the 90% percentile are replaced
by observations sampled from a U(15,20) distribution;

e) the observations lower than the 10% percentile are replaced
by observations sampled from a U(�10,�5) distribution;

f) the observations greater than the 90% percentile are replaced
by observations sampled from a U(15,20) distribution and
the observations lower than the 10% percentile are replaced
by observations sampled from a U(�10,�5) distribution.
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of the X distribution with outliers in the tails of the distribution. Without
loss of generality, we consider six alternative replacements, as follows:

a) the observations greater than the 95% percentile are replaced by observa-
tions sampled from a U(15, 20) distribution;

b) the observations lower than the 5% percentile are replaced by observations
sampled from a U(�10,�5) distribution;

c) the observations greater than the 95% percentile are replaced by observa-
tions sampled from a U(15, 20) distribution and the observations lower than
the 5% percentile are replaced by observations sampled from a U(�10,�5)
distribution;

d) the observations greater than the 90% percentile are replaced by observa-
tions sampled from a U(15, 20) distribution;

e) the observations lower than the 10% percentile are replaced by observations
sampled from a U(�10,�5) distribution;

f) the observations greater than the 90% percentile are replaced by observa-
tions sampled from a U(15, 20) distribution and the observations lower than
the 10% percentile are replaced by observations sampled from a U(�10,�5)
distribution.

For each of the six modified samples of X, we estimate a linear model and
evaluate its predictive accuracy, using the same training and test samples.

The resulting distributions of the predicted Y values, along with that of
the sampled X variable are plotted in Figures 2 (scenarios a), b), c)) and 3
(scenarios d), e), f)). For comparison, we also report, to the left of both the
figures, the distribution of X and of the predictions when no outliers replace
the originally sampled observations.

We then proceed to calculate the RMSE and the RGA for all scenarios,
whose distributions are presented in Figures 2 and 3. The results are reported
in Table 1.

Table 1: Predictive accuracy under di↵erent outlier configurations.

Predictive accuracy measures RMSE RGA
Without outliers 0.981 0.997
Scenario a) (upper 5% outliers) 3.769 0.997
Scenario b) (lower 5% outliers) 3.695 0.997
Scenario c) (upper and lower 5% outliers) 4.119 0.997
Scenario d) (upper 10% outliers) 4.163 0.996
Scenario e) (lower 10% outliers) 4.018 0.996
Scenario f) (upper and lower 10% outliers) 4.027 0.996

From Table 1, note that while the RMSE increases its value with respect to
the case of no outliers, highlighting a decreased predictive accuracy, the RGA

preserves its value, showing a superior robustness to the presence of outliers.
The results in Table 1 allow to conclude that, when real-valued forecasts

are considered, the RGAmeasure is more robust than the RMSE, the standard

A Rank Graduation Accuracy measure to mitigate Artificial Intelligence risks 11
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Fig. 2: Distribution of X and Ŷ for scenarios: a) upper 5% outliers; b) lower
5% outliers; c) upper and lower 5% outliers; and in the case of no outliers.
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Fig. 3: Distribution of X and Ŷ for scenarios: d) upper 10% outliers; e) lower
10% outliers; f) upper and lower 10% outliers; and in the case of no outliers.

measure in most predictive applications. A similar result can be obtained in
the case of ordered categorical variables, replacing continuous measurement
with the corresponding ranks, and binary variables.

A Rank Graduation Accuracy measure to mitigate Artificial Intelligence risks 11
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measure in most predictive applications. A similar result can be obtained in
the case of ordered categorical variables, replacing continuous measurement
with the corresponding ranks, and binary variables.
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Description and procedure

“Employee” dataset
Data report information on: gender, age, educational degree, employment
category, job time in months since hire, total work experience, minority
classification, starting salary and current salary (in dollars).

Aim
Understanding whether salary growth is a↵ected by personal characteristics.

Procedure

I Salary growth is considered as the response variable (measured either on
a continuous scale and on a binary scale).

I Both linear and logistic regression models are considered.

I Stepwise model selection is applied to the data.

I For each possible model size (from 1 to 8), we compare all possible
models by means of the AIC criterion.

I Dataset is split into a train dataset (including the 80% of all the
observations) and a test dataset (including the remaining 20% of the
observations).

I The RMSE and the RGA of each of the best 8 linear regression models,
and the BS (Brier score) and the RGA of each of the best 8 logistic
regression models are computed.

Interpreting the logistic regression model

Validating and testing logistic regression models

AIC and BIC criteria

Error measures

AIC and BIC - I

The Akaike’s Information Criterion (AIC):

AIC = log
1
N

ÂN
i=1 e

2
i +

2p
N

The Bayesian Information Criterion (BIC):

BIC = log
1
N

ÂN
i=1 e

2
i +

p

N
logN

Models with a lower AIC or BIC are preferred.

Emanuela Raffinetti Financial Data Science Model Selection II
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Results from the linear regression model

Table 2: Results from the linear regression models

Model Variables RMSE RGA AIC
Model 1 Manager 6426.728 0.798 9815.657
Model 2 Manager, ed. degree 6379.797 0.851 9779.493
Model 3 Manager, ed. degree, job time 6340.604 0.866 9763.017
Model 4 Manager, job time, age, male 6080.111 0.885 9750.053
Model 5 Manager, ed. degree, job time, age, custodial 6304.019 0.892 9732.383
Model 6 Manager, ed. degree, job time, male, custodial, tot. job time 6055.528 0.907 9722.994
Model 7 Manager, ed. degree, job time, male, custodial, tot. job time, no minority 6018.835 0.910 9722.324
Model 8 Manager, ed. degree, job time, male, custodial, tot. job time, no minority, age 6057.536 0.907 9723.128

selected models, are: employment category (manager), job time and educa-

tional degree. To better visualize the behavior of the predictive accuracy

metrics, Figure 6 displays their values as model size increases.

Figure 6: The AIC, RMSE and RGA behavior in all the best 8 linear regression models

From Figure 6 note that the lowest AIC and RMSE and the highest RGA

are obtained in correspondence with Model 7, for which the variables mostly

impacting on the salary growth are: employment category (manager, custo-

dial), education degree, job time and tot. job time, gender (male), minority

(no-minority).
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Target variable: current salary - starting salary
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Results from the logistic regression model

that the Brier score corresponds to the mean squared error of the forecast,

computed as the di�erence between the probability forecast and the actual

outcome of the event (see Brier, 1950).

Table 3: Results from the logistic regression models

Model Variables BS RGA AIC
Model 1 Age 0.224 0.690 597.853
Model 2 Age, job time 0.209 0.736 554.320
Model 3 Age, job time, custodial, manager 0.194 0.773 535.267
Model 4 Age, job time, custodial, manager 0.194 0.776 531.037
Model 5 Age, job time, custodial, manager, gender 0.191 0.785 427.186
Model 6 Age, job time, custodial, manager, gender, tot. job time 0.192 0,783 531.047
Model 7 Age, job time, custodial, manager, gender, tot. job time, no minority 0.192 0.782 532.616
Model 8 Age, job time, custodial, manager, gender, tot. job time, no minority, ed. degree 0.198 0.770 534.615

From Table 3, note that the most important variables, present in most

selected models, are: age, job time and the employment category (custodial,

manager). Figure 7 displays the behaviour of the predictive accuracy metrics,

in correspondence to di�erent model dimensions.

Figure 7: The AIC, AUROC and RGA behavior in all the best 8 logistic regression models
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Target variable: “doubling” of the starting salary
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Description and procedure

Bitcoin price data
Data report information on several time series of financial prices.

The daily bitcoin prices in the Coinbase exchange, from 18 May 2016 to 30

April 2018, is used as our response variable.

The daily prices of classical assets, such as oil, gold and SP500, together with

the exchange rates (dollar/yuan and dollar/euro), are considered as candidate

predictors.

Aim
Comparing the model selection performance of the RGA against that of the

RMSE.

Procedure

I Linear regression model is applied.

I Stepwise model selection is applied to the data.

I For each possible model size (from 1 to 5), we compare all possible

models by means of the AIC criterion.

I To predict bitcoin prices, we follow a rolling windows procedure.
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Results from the logistic regression model

The rolling procedure can be summarised as follows

I models are trained using only data between 1st January
2017 and 31st December 2017. Forecasts are derived
for a time window (first window) that starts on January
1st, 2018 and ends at January 31st, 2018;

I models are trained using only data between 1st
February 2017 and 31st January 2018. Forecasts are
derived for a time window (second window) that starts
on February 1st, 2018 and ends at February 28th, 2018;

I models are trained using only data between 1st March
2017 and 28th February 2018. Forecasts are derived for
a time window (third window) that starts on March 1st,
2018 and ends at March 31st, 2018;

I models are trained using only data between 1st April
2017 and 31st March 2018. Forecasts are derived for a
time window (fourth window) that starts on April 1st,
2018 and ends at April 30th, 2018.
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To predict bitcoin prices referred to the first term of the year 2018, we follow a roll-
ing window procedure. Specifically, the model is trained on rolling windows including 
data related to year 2017. To do this, we first trained a model with a sliding window of 1 
year (from 1st January 2017 to 31 December 2017) and then we predicted over the next 
month (January 2018). Then, we shifted 1 month, re-trained the model and predicted the 
next month (February 2018) and so on.

The rolling window procedure can be summarised as follows:

• models are trained using only data between 1st January 2017 and 31 December 
2017. Forecasts are derived for a time window (first window) that starts on 1st Janu-
ary 2018 and ends at 31 January 2018;

• models are trained using only data between 1st February 2017 and 31 January 2018. 
Forecasts are derived for a time window (second window) that starts on 1st February  
2018 and ends at 28 February 2018;

Table 1  Predictive accuracy 
under different outlier 
configurations

Predictive accuracy measures RMSE RGA

Without outliers 0.981 0.997
Scenario a) (upper 5% outliers) 3.769 0.997
Scenario b) (lower 5% outliers) 3.695 0.997
Scenario c) (upper and lower 5% outliers) 4.119 0.997
Scenario d) (upper 10% outliers) 4.163 0.996
Scenario e) (lower 10% outliers) 4.018 0.996
Scenario f) (upper and lower 10% outliers) 4.027 0.996

Table 2  Summary statistics for bitcoin prices, classic asset prices and exchange rates: mean value; standard 
deviations (sd); coefficient of variation (cv); minimum and maximum values
Variables Mean sd cv Min. Max.

bitcoin 3919.10 4318.98 1.10 438.38 19650.01
sp500 2399.17 212.31 0.09 2000.54 2872.87
gold 1275.58 52.34 0.04 1128.42 1366.38
oil 49.36 3.37 0.07 39.51 57.20
exchange rate dollar/euro 0.88 0.04 0.05 0.80 0.96
exchange rate dollar/yuan 6.68 0.19 0.03 6.27 6.96

Table 3  Results from the 
stepwise model selection on the 
daily time series data from May 
2016 to April 2018

Model Variables

Model 1 sp500
Model 2 sp500, exchange rate dollar/yuan
Model 3 sp500, gold, oil
Model 4 sp500, gold, oil, exchange rate dollar/euro
Model 5 sp500, gold, oil, exchange rate dollar/

euro, exchange rate dollar/yuan
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• models are trained using only data between 1st March 2017 and 28 February 2018. 
Forecasts are derived for a time window (third window) that starts on 1st March 2018 
and ends at 31 March 2018;

• models are trained using only data between 1st April 2017 and 31 March 2018. Fore-
casts are derived for a time window (fourth window) that starts on 1st April 2018 and 
ends at 30 April 2018.

For each time window, the RGA  and the RMSE are computed and the related results are 
displayed in Fig. 4. To understand the difficulty of the forecasting exercise, the standard 
deviations (sd) of the bitcoin prices to be predicted in the four time windows are pro-
vided in the caption of the figure. Moreover, with the aim of improving the readability 
of Fig. 4, in Table 4 the RMSE and RGA  values are reported for each time window.

The first time window in Fig.  4 is the most difficult to predict, as it has the larg-
est standard deviation of bitcoin prices. Consistently with the difficulty, neither model 
reaches a good predictive accuracy: the RGA  takes low values, and the RMSE takes 
high values, in comparison with the other time windows. Specifically, the RGA  selects 
Model 4 as the best model, while the RMSE chooses Model 2. To check whether the 
dimension of the model selected according to the RGA  can be reduced, we have applied 
the RGA  test to evaluate whether the difference in predictive accuracy between Model 
2 and Model 4 is significant. The resulting p-value is largely higher than 5%, leading to 
choose Model 2 also with the RGA  measure.

The RGA  and RMSE model selection differ (also for the second and third time win-
dow). The highest value for the RGA  is achieved by Model 4, while the lowest RMSE 
is reached by Model 2. However, also for these windows, the RGA  based test does not 
reject the simplification to Model 2.

Finally, for the fourth time window, the easiest to predict as it has the smallest devia-
tion of bitcoin prices, the RGA  and RMSE select the same model (Model 2).

Fig. 4  RMSE and RGA  behaviours across the four considered windows. For each time window, the stand-
ard deviation of the prices to be predicted are as follows. First window: sd = 2046.594 ; second window: 
sd = 1159.363 ; third window: sd = 1290.287 ; fourth window: sd = 986.027
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Description and procedure

To better strength the RGA role to the evaluation of predictive accuracy, we
suppose that bitcoin prices are only available on an ordinal scale based on five
categories encoded by 1, 2, 3, 4, and 5.

Aim
Comparing the model selection performance of the RGA against that of the
MAE.

Procedure

I Rank regression model is applied.

I Stepwise model selection is applied to the data.

I For each possible model size (from 1 to 5), we compare all possible
models by means of the AIC criterion.

I The model is trained on data referred to year 2017 and tested on data
referred to year 2018.

SS
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Rank Regression Model

Let Y be a response variable, expressed through h ordered categories (severity
of cyber attacks).

Procedure:

I assign a rank r1 = 1 to the smallest ordered category of Y ;

I assign rank (rj�1 +nj�1) to the following ordered categories, where nj�1

is the absolute frequency associated with the (j�1)-th category with
j = 2, . . . ,h;

I the phenomenon described by the Y variable can be re-formulated in
terms of its ranks R, where:

R =

8
<

:r1, . . . , r1| {z }
n1

, r2, . . . , r2| {z }
n2

, . . . , rh, . . . , rh| {z }
nh

9
=

; ,

with r1 = 1, r2 = r1 +n1 and rh = rh�1 +nh�1.

I Given K explanatory variables, a regression model for R can be specified
as:

R̂ = b̂0 + b̂1X1 + b̂2X2 + . . .+ b̂KXK ,

whose unknown parameters can be estimated by the OLS method.

.
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model configurations using the Akaike Information Criterion (AIC). The resulting models 
are specified in Table 5.

Gaudette and Japkowicz (2009) compared several metrics to assess the ordinal classi-
fication accuracy. They showed that both the RMSE and MSE (Mean Squared Error) per-
form well for ordinal data converted to small integers. Therefore, we consider the MSE as 
a competitor of the RGA  and we graphically report in Fig. 5 their behaviours across the 
different model dimensions together with the corresponding values in Table 6.

From Fig. 5, it results that the best model (characterised by the highest RGA  and the 
lowest MSE) is the simplest model with only the explanatory variable sp500. For more 
complex model configurations, the predictive accuracy generally worsens, both in terms 
of RGA  and MSE. An improvement is provided by the full model, although the RGA  and 
MSE values are smaller and higher than those associated with the simplest model. It fol-
lows that RGA  and MSE are coherent in selecting the most accurate model.

Beside the issue of the bitcoin price prediction, also the forecast of the returns 
derived from cryptocurrencies becomes a crucial topic, especially for those investors 
who are interested in measuring the potential gains or losses. In order to cover this 

Table 5  Results from the 
stepwise model selection on 
ordered categorised bitcoin 
prices from May 2016 to April 
2018

Model Variables

Model 1 sp500
Model 2 sp500, exchange rate dollar/yuan
Model 3 sp500, exchange rate dollar/yuan, oil
Model 4 sp500, exchange rate dollar/yuan, oil, gold
Model 5 sp500, exchange rate dollar/yuan, oil, 

gold, exchange rate dollar/euro
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Fig. 5  MSE and RGA  behaviours

Table 6  Predictive accuracy 
(RGA  against MSE) Models MSE RGA

Model 1 10369.55 0.848
Model 2 16127.49 0.791
Model 3 16456.40 0.790
Model 4 15520.03 0.813
Model 5 14155.12 0.819
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Description and procedure

Beside the issue of the bitcoin price prediction, also the forecast of the returns
derived from cryptocurrencies becomes a crucial topic, especially for those
investors who are interested in measuring the potential gains or losses. In order
to cover this perspective, we first transform the bitcoin prices into returns and
then we proceed to their binarisation by assigning value equal to 1 to the
negative returns (losses) and value equal to 0 to the positive returns (gains).

Aim
Comparing the model selection performance of the RGA against that of the
AUROC.

Procedure

I Logistic regression model is applied.

I Stepwise model selection is applied to the data.

I For each possible model size (from 1 to 5), we compare all possible
models by means of the AIC criterion.

I The model is trained on data referred to year 2017 and tested on data
referred to year 2018.
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perspective, we first transform the bitcoin prices into returns and then we proceed to 
their binarisation by assigning value equal to 1 to the negative returns (losses) and 
value equal to 0 to the positive returns (gains).

Given the binary nature of the target variable, our purpose is to compare the model 
selection performance of the RGA  against that of the AUROC. As well as for the case 
of the ordinal response, the analysis can be simplified without following a rolling win-
dow procedure.

A logistic regression model is trained on data referred to year 2017 and tested on 
data referred to year 2018 and the best model configurations are determined by using 
the Akaike Information Criterion (AIC). The chosen models are specified in Table 7.

To evaluate the predictive accuracy, the RGA  and AUROC behaviours across the 
different model dimensions are depicted in Fig. 6 and the related values are provided 
in Table  8.

From both Fig. 6 and Table 8, it arises that the RGA  and AUROC show the same 
performance. Specifically, the logistic regression model does not achieve a good pre-
dictive accuracy degree, being the values associated with the RGA  and AUROC very 
close to 0.5. Thus, they almost perform as well as a random model. This because 
although the logistic regression model is characterised by a “white-box” that allows an 
easy interpretability of the results, it provides a limited predictive accuracy. Resorting 
to more complex machine learning models, such as neural network and random forest 
models, would on one side improve the accuracy of predictions but on the other side 
worsen the interpretability of the results.

Table 7  Results from the 
stepwise model selection on 
gains or losses from May 2016 to 
April 2018

Model Variables

Model 1 Gold
Model 2 Gold, exchange rate dollar/euro
Model 3 Gold, exchange rate dollar/euro, oil
Model 4 Gold, exchange rate dollar/euro, oil, sp500
Model 5 Gold, exchange rate dollar/euro, oil, 

sp500, exchange rate dollar/yuan
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Fig. 6  AUROC and RGA  behaviours
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