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Abstract
A key point to assess the applications of machine learning models in Artificial Intelligence 
(AI) is the evaluation of their predictive accuracy. This because the “automatic” choice of 
an action crucially depends on the made prediction. While the best model in terms of fit 
to the observed data can be chosen using a “universal” - and therefore automatable - cri-
terion, based on the models’ likelihood, such as AIC and BIC, this is not the case for the 
best model in terms of predictive accuracy. To fill the gap, we propose a Rank Graduation 
Accuracy (RGA​) measure which evaluates the concordance between the ranks of the pre-
dicted values and the ranks of the actual values of a series of observations to be predicted. 
We apply the RGA​ to a use-case that concerns the measurement of the financial risks that 
arise from crypto assets. The RGA​ appears as a “universal” alternative predictive model 
selection criterion that, differently from standard measures, such as the Root Mean Squared 
Error, is robust to the presence of outlying observations.

Keywords  Predictive accuracy · Robustness · Financial risk · Crypto assets

1  Introduction

The growing availability of data and computational power has allowed innovative develop-
ments in the field of Artificial Intelligence (AI). If, on the one hand, AI has the potential to 
yield economic and societal benefits, on the other hand, the consideration of the possible 
negative consequences on strongly impacting actions has led policy makers and regulators 
to a degree of suspicion towards AI applications. This because AI methods are based on a 
“black-box”, where input data are transformed through complex processes without control-
ling and monitoring the deriving risks.

In particular, “black-box” AI is not suitable in insurance services, where platform and 
cyber risks can arise (see e.g., Aldasoro et al. 2022). Indeed, as AI includes a wide set of 
technologies and methods which are disrupting the insurance domain, the main challenge 
for insurers is resorting to suitable regulatory actions to mitigate operational, reputational 
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and strategic risks (see e.g., Ceylan 2022; Eling et al. 2022; Mullins et al. 2021). To face 
this issue, AI models have to be trustworthy and reliable, providing details or reasons to 
make their functioning clear or easy to understand.

In line with the requirement of a trustworthy AI, the European Commission has pro-
posed, on 21 April 2021, an AI act (https://​artif​icial​intel​ligen​ceact.​eu), which has become 
a template for both the European and other countries in the world. The act assigns applica-
tions of AI to three risk categories. First, applications and systems that create an unaccep-
table risk are banned. Second, high-risk applications, such as those which involve ranking 
of individuals or of organisations, are permitted but conditionally on compliance require-
ments. Third, low-risk applications, not explicitly banned or listed as high-risk, are largely 
left unregulated.

To fulfill trustworthiness, AI methods have to be safe. A safe application of AI must 
satisfy four basic key-principles, summarised as: sustainability, accuracy, fairness and 
explainability. “Sustainability” means that AI methodologies have to be robust, both in 
terms of data and computation. “Fairness” implies that AI methods should not discriminate 
by age, ethnicity, gender or other population groups. The “Explainability” key-principle 
requires that AI models are interpretable in terms of their drivers (see e.g., Bracke et al. 
2019).

In this paper, we focus on predictive accuracy and explainability. Concerning the latter, 
researchers have recently addressed the issue of how machine learning models can be made 
explainable. Existing papers may be divided in two main approaches: global explanations 
and local explanations. While global explanations describe the model as a whole, in terms 
of which explanatory variables most determine the predictions, for all units, local explana-
tions aim at interpreting individual predictions, at the single unit level (see e.g., Aas et al. 
2021; Joseph 2019; Molnar 2022).

Among the local explanation methods, the Shapley value approach, originally intro-
duced in Shapley (1953) and implemented by Lundberg and Lee (2017) and Strumbelj and 
Kononenko (2010), is gaining importance due to its remarkable properties. According to 
the Shapley value procedure, the total change in prediction is divided among the features in 
a way which is fair to their contributions across all the possible sets of features. A measure 
of the contribution, associated with each predictor, to each point prediction of a machine 
learning model is then provided.

Several research papers are currently addressed to the use of the Shapley value-based 
approach to improve explaianbility of AI applications. As discussed for instance by 
Bussmann et  al. (2020), the Shapley values can be employed by resorting to the SHAP 
(SHapley Additive exPlanations) computational framework. This procedure differs from 
the GAM (Generalized Additive Models) developed by Lou et al. (2012), where the model 
is decomposed into linear combinations of simple models, trained by a single explanatory 
variable, instead of decomposed into linear combinations of all the model configurations, 
trained by all the possible combinations of the available explanatory variables. In order to 
extend Shapley values to the global setting, Song et al. (2016) provided a global decompo-
sition based on the (euclidean) variance decomposition.

In a recent research paper, Giudici and Raffinetti (2021b) suggested to combine the inter-
pretability power of the local Shapley value approach, with a more robust global approach. 
To this aim, the Shapley value game theoretic approach was applied to the Lorenz Zonoid 
model accuracy tool, proposed by Giudici and Raffinetti (2020). The main contributions 
of their work are, in summary: a) the introduction of a novel global explainable AI frame-
work, based on the combination of Lorenz Zonoids with the Shapley value approach; b) the 
mathematical derivation of the exact expression of a novel Shapley-Lorenz decomposition, 

https://artificialintelligenceact.eu
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that can explain any machine learning model in terms of the contribution of each explana-
tory variable to the Lorenz Zonoid predictive accuracy.

It is worth mentioning that both the Shapley values and Shapley-Lorenz values are com-
putationally intensive, especially when dealing with huge datasets composed of a wide 
set of predictors. With the aim of reducing the time-consuming and the computational 
effort, a more parsimonious model, able to ensure a satisfactory degree of predictive accu-
racy, should be selected. It follows that, besides the interpretability requirement, a further 
important challenge for machine learning methods is the construction of predictive accu-
racy tools that can evaluate and monitor the quality of the predictions. For a review, see 
for example Hand and Till (2001); Gneiting (2011); Kang et al. (2021); Petropoulos et al. 
(2022) and the references therein.

The traditional paradigm compares statistical models within a model selection proce-
dure, in which a model is chosen through a sequence of pairwise comparisons, based on 
the comparison of the likelihoods (or of the posterior probabilities) of the models being 
compared. These criteria are to be preferred to those measures, like the Brier’s score (see, 
e.g. Brier 1950), that do not penalise forecasts, which predict a zero probability, strongly 
enough when they are wrong. This may lead to conclusions which appear opposite to intui-
tion (see, e.g. Redelmeier et al. 1991).

Nevertheless, the same likelihood-based criteria are not generally applicable, when an 
underlying probabilistic model is not specified, as in neural networks and random forest 
models.

These considerations suggest that classical model comparison is not sufficient to com-
pare the models that can be learned from the data. Indeed, the last few years have wit-
nessed the growing importance of model comparison methods based on the comparison 
between the predicted and the actually observed cases, typically within cross-validation 
methods. In cross-validation, the data is split in two sets, with a “training” set, used to fit a 
model, and a “test” set, used to compare the predictions made by the fitted model with the 
actual observed values.

Our aim is to compare different models, in terms of predictive accuracy. For exam-
ple, suppose we would like to build an AI tool which allows an insurer to predict, on the 
basis of all available data, the premium amount an individual has to pay. In this case, the 
response variable, corresponding to the premium amount to be paid, can be expressed on 
a continuous scale and the reliability of the predictions can be evaluated through the Root 
Mean Squared Error (RMSE) measure. But the insurer can also decide to rely on the pre-
diction of whether tomorrow the premium is above or below a certain threshold and evalu-
ate the reliability of the tool using the AUROC measure. How can an insurer decide which 
response to predict? It would be desirable if the AI itself solves this problem. Comparing 
the p-values is not a solution, as they depend on two different models. It is necessary to 
develop a more general predictive accuracy measure that is model agnostic, not only with 
respect to the type of model - function of the explanatory variables - to employ, but also 
with respect to the type of response variable to be predicted.

In this paper, we contribute to solve the problem proposing a new predictive accuracy 
measure, called Rank Graduation Accuracy (RGA​), which is based on the ranks and that 
generalises the predictive accuracy problem to all ordered variable scales. The RGA​ meas-
ure evaluates point predictions in terms of their ranks, rather than in terms of their values, 
gaining robustness.

We remark that the RGA​ is appropriate when the aim of the research is to determine the 
ordering of the observed response variable values (whether binary, ordinal or continuous), 
induced by the corresponding predicted values generated by the model. Thus, the RGA​ 
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measure differs from the Lorenz Zonoid tool described in Giudici and Raffinetti (2020), 
where instead the predicted values of the model are directly used for the assessment of the 
related predictive accuracy.

In addition, a further key-benefit derived from the RGA​ measure employment is related 
to the possibility of selecting less complex models, then fulfilling the parsimony principle, 
reducing the computational effort typically requested by the local and global explanation-
based approaches and allowing to only involve those predictors which provide a significant 
explainability of the target variable.

The remainder of the paper is organized as follows. Section  2 illustrates, as a back-
ground, the notion of the C concordance curve; Section 3 introduces our main proposal, the 
RGA​ measure and its properties; Section 4 proposes a significance test for the RGA​ meas-
ure; Section  5 presents a simulation study aimed at showing the robustness of the RGA​ 
measure for real-valued predictions; Section 6 introduces the application of the proposed 
rank accuracy measure to an insurance problem that concerns the risks arising from crypto 
asset prices; Section 7 concludes with a final discussion.

2 � The predictive role of the C concordance curve

Let D be the available data, a matrix with h + 1 columns, corresponding to h explanatory 
variables and a response variable; N = n∗ + n rows, corresponding to all the joint observa-
tions of Y and X1,X2,… ,Xh , partitioned into a training set Dtrain , of dimension n∗ × (h + 1) , 
from which the unknown parameters of a statistical model can be estimated; and a test set 
Dtest , of dimension n × (h + 1) , which can be used to obtain the n-dimensional vector ŷ of 
the predicted values whose distance from the n observed values y will measure the predic-
tive accuracy of the model.

When the Y variable is at least ordinal: continuous, ordered categorical, or binary, the Y 
values can be used to build the Lorenz curve (see e.g., Lorenz 1905), LY , arranging the Y 
values in a non-decreasing sense. More formally, for i = 1,… , n , the Lorenz curve is 
defined by the pair: (i∕n,

∑i

j=1
yrj∕(nȳ)) , where rj indicates the non-decreasing ranks of Y 

and ȳ indicates the mean of Y.
The same Y values can also be used to build the dual Lorenz curve, L′

Y
 , ordering the Y 

values in a non-increasing sense. More formally, for i = 1,… , n , the dual Lorenz curve is 
defined by the pair: (i∕n,

∑i

j=1
yrn+1−j∕(nȳ)) , where rn+1−j indicates the non-increasing ranks 

of Y.
A similar reasoning can be employed to order the predicted values Ŷ  . Let r̂i , for 

i = 1,… , n , indicate the non-decreasing ranks of Ŷ  . Giudici and Raffinetti (2011) sug-
gested to build a C concordance curve by ordering the Y values not in terms of their ranks, 
but with respect to r̂i , the ranks of the predicted Ŷ  values. Formally, for i = 1,… , n , the 
concordance curve is defined by the pairs: (i∕n,

∑i

j=1
yr̂j∕(nȳ)) , where r̂i indicates the non-

decreasing ranks of Ŷ .
To visually describe the concordance curve, Figure  1 reports, for a given test set 

Dtest , the Lorenz curve, the dual Lorenz curve and the C concordance curve, together 
with the 45-degree line. From Fig. 1, note that the Lorenz curve and its dual are sym-
metric around the 45-degree line, and that the concordance curve lies between them (as 
shown in Raffinetti and Giudici 2012). When r̂i = ri, for all i = 1,… , n , we have a per-
fect concordance: the concordance curve is equal to the Lorenz curve. When r̂i = rn+1−i, 
for all i = 1,… , n , we have perfect discordance: the concordance curve is equal to the 
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dual Lorenz curve. In general, for any given point, the distance between the concord-
ance curve and the Lorenz curve reveals how the rank of the predicted value differs 
from that of the best case, which is equal to the rank of the observed value. And, for 
any given point, the distance between the concordance curve and the dual Lorenz curve 
reveals how the rank of the predicted value differs from that of the worst case, which is 
equal to the rank of the inversely ordered value.

The number of points on which the C curve in Fig. 1 is constructed is equal to the 
number of observations n. When the response variable is continuous, the observed and 
predicted values can take all possible real values. When the response variable is ordinal, 
Y and Ŷ  can be replaced by the corresponding ranks R and R̂ , as illustrated in Giudici 
and Raffinetti (2021a). When the response variable is binary, taking one of two possible 
outcomes, corresponding to the presence ( Y = 1 ) or the absence ( Y = 0 ) of an attribute 
of interest, the predicted values take all possible real values in the interval [0, 1], which 
estimate the probability that Y = 1.

The C curve is a graphical plot of the predictive accuracy of the model predictions 
ŷi ∈ ℝ for an ordered response yi ∈ ℝ , for i = 1,… , n . The C curve is obtained joining n 
points, which correspond to the observed values, ordered by the non-decreasing magni-
tude of the predictions.

Before moving to a summary measure, it is useful to associate the C curve behaviour 
with the main reference scenarios that occur in model comparison: the best case: a per-
fectly concordant model; the worst case: a perfectly discordant model; the random case, 
in which predictions are generated randomly and, finally, a generic “intermediate” case.

It results that: 

	 (i)	 the best case occurs when the ordering of the Y response variable values corresponds 
to the ordering of the predicted values, with the C curve perfectly overlapping the 
Lorenz curve LY;

	 (ii)	 the worst case occurs when the ordering of the Y response variable values is in 
inverse correspondence with the ordering of the predicted values, with the C curve 
perfectly overlapping the dual Lorenz curve L′

Y
;

	 (iii)	 in the random case, the C curve overlaps the 45-degree line;

Fig. 1   The L
Y
 and L′

Y
 Lorenz 

curves and the C concordance 
curve, where p (on the x-axis) 
and f(p) (on the y-axis) are the 
cumulative values of the x and 
y coordinates of the L

Y
 , L′

Y
 and 

C curves
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	 (iv)	 in the generic case, the C curve lies in the area between the Y response variable 
Lorenz curve, LY , and its dual, L′

Y
 . The distance between C and the 45-degree line 

measures how a model improves over random predictions.

3 � The Rank Graduation Accuracy measure (RGA​)

Drawing on item iv) of the last section, a summary measure for the C curve of a model could 
be obtained considering the area between the dual Lorenz curve and the concordance curve, 
and dividing it by its maximum possible value: the area between the dual Lorenz curve and 
the Lorenz curve.

More formally, we define a Rank Graduation Accuracy (RGA​) measure with the following 
expression:

Remark 1  When tied predictions occur, it may be unclear how to order the observed values 
in the expression of RGA​. In this case, we suggest to follow Ferrari and Raffinetti (2015), 
who proposed to replace the observed response values corresponding to the same predic-
tions with their mean values.

We now present some important properties of the RGA​ measure.

Property 1  - Simplification

Through some algebraic manipulations, the RGA​ measure can be simplified as follows:

The proof of Property 1 is reported in the Appendix.

Property 2  - Normalisation

In general, 0 ≤ RGA ≤ 1 , with RGA = 1 in the best case of a perfectly concordant 
model; RGA = 0 in the worst case of a perfectly discordant model; RGA = 0.5 in the case 
of random predictions.

(1)RGA =

∑n

i=1

�
1

nȳ

�∑i

j=1
yrn+1−j −

∑i

j=1
yr̂j

��

∑n

i=1

�
1

nȳ

�∑i

j=1
yrn+1−j −

∑i

j=1
yrj

�� .

(2)RGA =

∑n

i=1
iyr̂i −

∑n

i=1
iyrn+1−i∑n

i=1
iyri −

∑n

i=1
iyrn+1−i

.
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4 � A significance test for the RGA​ measure

To evaluate whether the RGA​ of a model significantly differs from that of another model, a 
statistical test is necessary. To this aim, the RGA​ measure can be expressed in terms of covari-
ance operators, as in the following Proposition.

Proposition 1  When the response variable is continuous:

where Yr(Ŷ) represents the Y variable re-ordered according to the ranks of the correspond-
ing predictions Ŷ  and F is the cumulative continuous distribution function of Y.

The proof of Proposition 1 is reported in the Appendix.
Note that, through some mathematical computations, Eq. (3) can be re-expressed as

and, therefore, the RGA​ is a linear function of the ratio:

The ratio in (5) was originally introduced by Schechtman and Yitzhaki (1987) to evaluate 
the correlation between total income and its sources. Here we employ it to derive statistics 
for the RGA​ measure. Intuitively, the smaller 𝜓(Y , Ŷ) , the greater the distance between a 
model and the best case.

More formally, given two alternative models ( Mod1 and Mod2 ), the statistic in (5) will be 
used to test following hypotheses:

where 𝜓(Y , ŶMod1
) = cov(Yr(ŶMod1

),F(Y))∕cov(Y ,F(Y)) and 
𝜓(Y , ŶMod2

) = cov(Yr(ŶMod2
),F(Y))∕cov(Y ,F(Y)) are functions that derive from the applica-

tion of (5), respectively to RGAMod1
 and RGAMod2

 . To derive a test statistic for the hypothe-
ses in (6), note that the estimator of 𝜓(Y , ŶMod1

) can be expressed as a function of two 
dependent U-statistics, denoted with U1 and U2:

Similarly, the estimator of 𝜓(Y , ŶMod2
) can be defined as a function of two dependent U-sta-

tistics, U3 and U2:

(3)RGA =
cov(Yr(Ŷ),F(Y)) + cov(Y ,F(Y))

2cov(Y ,F(Y))
,

(4)RGA =
1

2

cov(Yr(Ŷ),F(Y))

cov(Y ,F(Y))
+

1

2

(5)𝜓(Y , Ŷ) = cov(Yr(Ŷ),F(Y))∕cov(Y ,F(Y)).

(6)H0 ∶ 𝜓(Y , ŶMod1
) = 𝜓(Y , ŶMod2

) vs H1 ∶ 𝜓(Y , ŶMod1
) ≠ 𝜓(Y , ŶMod2

),

(7)𝜓̂(Y , ŶMod1
) =

U1

U2

=

1

4

⎛
⎜⎜⎝
n

2

⎞
⎟⎟⎠

∑n

i=1
(2i − 1 − n)Yr(ŶiMod1

)

1

4

⎛
⎜⎜⎝
n

2

⎞
⎟⎟⎠

∑n

i=1
(2i − 1 − n)Yr(Yi)

.
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It follows that 𝛿 = 𝜓(Y , ŶMod1
) − 𝜓(Y , ŶMod2

) can be estimated by 𝛿 , a function of three 
dependent U-statistics:

According to Hoeffding (1948), a function of several dependent U-statistics has a normal 
distribution, provided that the sample size is large enough. Thus, the estimator in Eq. (9) 
has a limiting normal distribution, whose variance �Var(𝛿) can be estimated by means of the 
Jackknife method (see e.g., Efron and Stein 1981) each time omitting the pairs (Y , ŶMod1

) 
and (Y , ŶMod2

).
Therefore, the test statistic for testing the null hypothesis H0 ∶ 𝜓(Y , ŶMod1

) = 𝜓(Y , ŶMod2
) 

becomes:

where �Var(𝛿) = n−1

n

∑n

i=1
(𝛿(−i) − 𝛿)2 , where 𝛿(−i) are the values of 𝛿 by omitting one pair 

(Y , Ŷ) at a time and where 𝛿 is the average of the values 𝛿(−i) , for i = 1,… , n.
For a fixed significance level � , a rejection region for the test corresponds to the region 

|Z| ≥ z�∕2 . If the test statistic falls in this region, Mod1 and Mod2 are significantly different 
from each other.

Remark 2  It is worth noting that the proposed test can be extended, without loss of general-
ity, to all types of ordinal variables. The continuity constraint of the joint distribution can 
be preserved replacing tied observations with their mean value. This adjustment gives rise 
to a continuous variable which, together with Ŷ  , provides a continuous joint distribution, 
satisfying the assumptions in Proposition 1.

5 � Robustness of the RGA​ measure: a simulation study

It is important that the measurement of predictive accuracy is not affected by outlying 
observations, which may bias model comparison. For this reason, in this section we aim at 
assessing the robustness of the RGA​ measure by means of a simulation study.

Without loss of generality, let X and Z be two independent continuous random variables 
with X ∼ U(0, 10) and Z ∼ N(0, 1) and let Y = 5 + 3X + Z , from which we can simulate a 
set of observations.

To assess robustness, we replace the obtained left and right tail observations of the X 
distribution with outliers in the tails of the distribution. Without loss of generality, we con-
sider six alternative replacements, as follows: 

(8)𝜓̂(Y , ŶMod2
) =

U3

U2

=

1

4

⎛
⎜⎜⎝
n

2

⎞
⎟⎟⎠

∑n

i=1
(2i − 1 − n)Yr(ŶiMod2

)

1

4

⎛
⎜⎜⎝
n

2

⎞
⎟⎟⎠

∑n

i=1
(2i − 1 − n)Yr(Yi)

.

(9)𝛿 = 𝜓̂(Y , ŶMod1
) − 𝜓̂(Y , ŶMod2

) =
U1

U2

−
U3

U2

.

(10)Z =
𝛿√
�
Var(𝛿)

→ N(0, 1),
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(a)	 the observations greater than the 95% percentile are replaced by observations sampled 
from a U(15, 20) distribution;

(b)	 the observations lower than the 5% percentile are replaced by observations sampled 
from a U(−10,−5) distribution;

(c)	 the observations greater than the 95% percentile are replaced by observations sampled 
from a U(15, 20) distribution and the observations lower than the 5% percentile are 
replaced by observations sampled from a U(−10,−5) distribution;

(d)	 the observations greater than the 90% percentile are replaced by observations sampled 
from a U(15, 20) distribution;

(e)	 the observations lower than the 10% percentile are replaced by observations sampled 
from a U(−10,−5) distribution;

(f)	 the observations greater than the 90% percentile are replaced by observations sampled 
from a U(15, 20) distribution and the observations lower than the 10% percentile are 
replaced by observations sampled from a U(−10,−5) distribution.

For each of the six modified samples of X, we estimate a linear model and evaluate its pre-
dictive accuracy, using the same training and test samples.

The resulting distributions of the predicted Y values, along with that of the sampled 
X variable are plotted in Fig. 2 (scenarios (a), (b), (c)) and 3 (scenarios (d), (e), (f)). For 
comparison, we also report, to the left of both the figures, the distribution of X and of the 
predictions when no outliers replace the originally sampled observations.

We then proceed to calculate the RMSE and the RGA​ for all scenarios, whose distribu-
tions are presented in Fig. 2 and 3 . The results are reported in Table 1.

From Table 1, note that while the RMSE increases its value with respect to the case 
of no outliers, highlighting a decreased predictive accuracy, the RGA​ preserves its value, 
showing a superior robustness to the presence of outliers.

The results in Table 1 allow to conclude that, when real-valued forecasts are considered, 
the RGA​ measure is more robust than the RMSE, the standard measure in most predictive 
applications. A similar result can be obtained in the case of ordered categorical variables, 
replacing continuous measurement with the corresponding ranks, and binary variables.

X Predictions X Predictions X Predictions X Predictions

-20

0

20

40

60

5% of Outliers

No Outliers
Upper Outliers
Lower Outliers
Upper and Lower Outliers

Fig. 2   Distribution of X and Ŷ  for scenarios: a) upper 5% outliers; b) lower 5% outliers; c) upper and lower 
5% outliers; and in the case of no outliers
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6 � Application: financial risk

Cryptocurrencies have rapidly gained great popularity among investors, companies and 
regulators (see e.g., Angerer et al. 2021). Nevertheless, criticisms about the evolution of 
cryptocurrencies arise in relation to the management of the deriving risks, such as volatil-
ity and liquidity, together with the risk of cybercrime, and to the measurement of their 
effects on society (see e.g, Feng et al. 2018). In particular, the majority of crypto assets 
are underinsured or uninsurable according to the existing insurance standards, as there is 
no insurance deposit for this asset class, implying a lack in terms of investor security. Pre-
cisely in this perspective, the development of statistical tools to appropriately measure the 
accuracy of machine learning models emerges as a crucial issue in the risk management 
domain.

In this section we apply our proposal to the measurement of the financial risks generated 
by crypto assets. We will show how to employ the RGA​ measure and the associated statisti-
cal test to compare the accuracy of forecasts of bitcoin prices on a rolling horizon basis.

The data consist of several time series of financial prices. Among them, the series of 
the daily bitcoin prices in the Coinbase exchange, from 18 May 2016 to 30 April 2018, 
will be used as a response variable to be predicted. Whereas the daily prices of classical 
assets, such as oil, gold and sp500, together with the exchange rates (dollar/yuan and 
dollar/euro), for the same period of time, will be considered as candidate predictors.

An overview of the main summary statistics of the used data are reported in Table 2.
Our aim is to compare the model selection performance of the RGA​ against that of 

the RMSE. To this aim, we consider four different monthly time windows of bitcoin 
prices to be forecast: from January 2018 to April 2018. For each of them, we compare 
alternative linear regression models based on the time series of the considered five pre-
dictors for the previous year.

Specifically, for each possible model dimension, ranging from 1 to 5, we choose the 
best model using the Akaike Information Criterion (AIC), in order to detect the five 
candidate best models. The selected models are specified in Table 3.

X Predictions X Predictions X Predictions X Predictions

-20
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No Outliers
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Fig. 3   Distribution of X and Ŷ  for scenarios: d) upper 10% outliers; e) lower 10% outliers; f) upper and 
lower 10% outliers; and in the case of no outliers
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To predict bitcoin prices referred to the first term of the year 2018, we follow a roll-
ing window procedure. Specifically, the model is trained on rolling windows including 
data related to year 2017. To do this, we first trained a model with a sliding window of 1 
year (from 1st January 2017 to 31 December 2017) and then we predicted over the next 
month (January 2018). Then, we shifted 1 month, re-trained the model and predicted the 
next month (February 2018) and so on.

The rolling window procedure can be summarised as follows:

•	 models are trained using only data between 1st January 2017 and 31 December 
2017. Forecasts are derived for a time window (first window) that starts on 1st Janu-
ary 2018 and ends at 31 January 2018;

•	 models are trained using only data between 1st February 2017 and 31 January 2018. 
Forecasts are derived for a time window (second window) that starts on 1st February  
2018 and ends at 28 February 2018;

Table 1   Predictive accuracy 
under different outlier 
configurations

Predictive accuracy measures RMSE RGA

Without outliers 0.981 0.997
Scenario a) (upper 5% outliers) 3.769 0.997
Scenario b) (lower 5% outliers) 3.695 0.997
Scenario c) (upper and lower 5% outliers) 4.119 0.997
Scenario d) (upper 10% outliers) 4.163 0.996
Scenario e) (lower 10% outliers) 4.018 0.996
Scenario f) (upper and lower 10% outliers) 4.027 0.996

Table 2   Summary statistics for bitcoin prices, classic asset prices and exchange rates: mean value; standard 
deviations (sd); coefficient of variation (cv); minimum and maximum values

Variables Mean sd cv Min. Max.

bitcoin 3919.10 4318.98 1.10 438.38 19650.01
sp500 2399.17 212.31 0.09 2000.54 2872.87
gold 1275.58 52.34 0.04 1128.42 1366.38
oil 49.36 3.37 0.07 39.51 57.20
exchange rate dollar/euro 0.88 0.04 0.05 0.80 0.96
exchange rate dollar/yuan 6.68 0.19 0.03 6.27 6.96

Table 3   Results from the 
stepwise model selection on the 
daily time series data from May 
2016 to April 2018

Model Variables

Model 1 sp500
Model 2 sp500, exchange rate dollar/yuan
Model 3 sp500, gold, oil
Model 4 sp500, gold, oil, exchange rate dollar/euro
Model 5 sp500, gold, oil, exchange rate dollar/

euro, exchange rate dollar/yuan
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•	 models are trained using only data between 1st March 2017 and 28 February 2018. 
Forecasts are derived for a time window (third window) that starts on 1st March 2018 
and ends at 31 March 2018;

•	 models are trained using only data between 1st April 2017 and 31 March 2018. Fore-
casts are derived for a time window (fourth window) that starts on 1st April 2018 and 
ends at 30 April 2018.

For each time window, the RGA​ and the RMSE are computed and the related results are 
displayed in Fig. 4. To understand the difficulty of the forecasting exercise, the standard 
deviations (sd) of the bitcoin prices to be predicted in the four time windows are pro-
vided in the caption of the figure. Moreover, with the aim of improving the readability 
of Fig. 4, in Table 4 the RMSE and RGA​ values are reported for each time window.

The first time window in Fig.  4 is the most difficult to predict, as it has the larg-
est standard deviation of bitcoin prices. Consistently with the difficulty, neither model 
reaches a good predictive accuracy: the RGA​ takes low values, and the RMSE takes 
high values, in comparison with the other time windows. Specifically, the RGA​ selects 
Model 4 as the best model, while the RMSE chooses Model 2. To check whether the 
dimension of the model selected according to the RGA​ can be reduced, we have applied 
the RGA​ test to evaluate whether the difference in predictive accuracy between Model 
2 and Model 4 is significant. The resulting p-value is largely higher than 5%, leading to 
choose Model 2 also with the RGA​ measure.

The RGA​ and RMSE model selection differ (also for the second and third time win-
dow). The highest value for the RGA​ is achieved by Model 4, while the lowest RMSE 
is reached by Model 2. However, also for these windows, the RGA​ based test does not 
reject the simplification to Model 2.

Finally, for the fourth time window, the easiest to predict as it has the smallest devia-
tion of bitcoin prices, the RGA​ and RMSE select the same model (Model 2).

Fig. 4   RMSE and RGA​ behaviours across the four considered windows. For each time window, the stand-
ard deviation of the prices to be predicted are as follows. First window: sd = 2046.594 ; second window: 
sd = 1159.363 ; third window: sd = 1290.287 ; fourth window: sd = 986.027
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The previous considerations can be summarised by a general finding: the RGA​ always 
selects more complex models than the RMSE, and it especially does so for the most vola-
tile responses. This behaviour is correlated with the higher robustness of the RGA​, less 
affected by outliers in the predictor variable.

While the RGA​ leads to select more complex models than the RMSE, the application of 
the RGA​ test allows to simplify the chosen model to the same dimension chosen with the 
RMSE.

To better strength the RGA​ role to the evaluation of predictive accuracy, we suppose that 
bitcoin prices are only available on an ordinal scale based on five categories encoded by 
1, 2, 3, 4, and 5. Following Giudici and Raffinetti (2021a), we deal with the ordinal nature 
of the response by resorting to the rank regression model. Formally, the generic variable 
Y assuming M ordered categories is transformed into ranks by assigning rank r1 = 1 to the 
smallest ordered category of Y and rank rm = rm−1 + nm−1 to the m-th ordered category of 
Y (where m = 1,… ,M ; rm−1 is the rank related to the (m − 1)-th ordered category of Y and 
nm−1 is the associated frequency).

Given the ordinal nature of the response variable, the analysis is led without applying a 
rolling window procedure which instead is recommended to adjust the forecast in order to 
accommodate recent changes or trends.

For the sake of simplicity, the model is trained on data referred to year 2017 and tested 
on data referred to year 2018. As well as for the bitcoin price prediction, we select the best 

Table 4   Predictive accuracy 
across different time windows 
(RGA​ against RMSE)

Models RMSE RGA

First windows
Model 1 3942.024 0.075
Model 2 3919.056 0.075
Model 3 4517.832 0.074
Model 4 4748.649 0.076
Model 5 5024.660 0.068
Second windows
Model 1 2791.945 0.725
Model 2 2245.867 0.725
Model 3 2323.669 0.723
Model 4 2252.900 0.728
Model 5 3128.814 0.688
Third windows
Model 1 2788.690 0.599
Model 2 2579.766 0.599
Model 3 2782.661 0.594
Model 4 2894.766 0.610
Model 5 2855.433 0.610
Fourth windows
Model 1 1502.564 0.757
Model 2 987.583 0.796
Model 3 991.221 0.710
Model 4 1122.098 0.678
Model 5 1243.969 0.684
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model configurations using the Akaike Information Criterion (AIC). The resulting models 
are specified in Table 5.

Gaudette and Japkowicz (2009) compared several metrics to assess the ordinal classi-
fication accuracy. They showed that both the RMSE and MSE (Mean Squared Error) per-
form well for ordinal data converted to small integers. Therefore, we consider the MSE as 
a competitor of the RGA​ and we graphically report in Fig. 5 their behaviours across the 
different model dimensions together with the corresponding values in Table 6.

From Fig. 5, it results that the best model (characterised by the highest RGA​ and the 
lowest MSE) is the simplest model with only the explanatory variable sp500. For more 
complex model configurations, the predictive accuracy generally worsens, both in terms 
of RGA​ and MSE. An improvement is provided by the full model, although the RGA​ and 
MSE values are smaller and higher than those associated with the simplest model. It fol-
lows that RGA​ and MSE are coherent in selecting the most accurate model.

Beside the issue of the bitcoin price prediction, also the forecast of the returns 
derived from cryptocurrencies becomes a crucial topic, especially for those investors 
who are interested in measuring the potential gains or losses. In order to cover this 

Table 5   Results from the 
stepwise model selection on 
ordered categorised bitcoin 
prices from May 2016 to April 
2018

Model Variables

Model 1 sp500
Model 2 sp500, exchange rate dollar/yuan
Model 3 sp500, exchange rate dollar/yuan, oil
Model 4 sp500, exchange rate dollar/yuan, oil, gold
Model 5 sp500, exchange rate dollar/yuan, oil, 

gold, exchange rate dollar/euro
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Fig. 5   MSE and RGA​ behaviours

Table 6   Predictive accuracy 
(RGA​ against MSE)

Models MSE RGA

Model 1 10369.55 0.848
Model 2 16127.49 0.791
Model 3 16456.40 0.790
Model 4 15520.03 0.813
Model 5 14155.12 0.819
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perspective, we first transform the bitcoin prices into returns and then we proceed to 
their binarisation by assigning value equal to 1 to the negative returns (losses) and 
value equal to 0 to the positive returns (gains).

Given the binary nature of the target variable, our purpose is to compare the model 
selection performance of the RGA​ against that of the AUROC. As well as for the case 
of the ordinal response, the analysis can be simplified without following a rolling win-
dow procedure.

A logistic regression model is trained on data referred to year 2017 and tested on 
data referred to year 2018 and the best model configurations are determined by using 
the Akaike Information Criterion (AIC). The chosen models are specified in Table 7.

To evaluate the predictive accuracy, the RGA​ and AUROC behaviours across the 
different model dimensions are depicted in Fig. 6 and the related values are provided 
in Table  8.

From both Fig. 6 and Table 8, it arises that the RGA​ and AUROC show the same 
performance. Specifically, the logistic regression model does not achieve a good pre-
dictive accuracy degree, being the values associated with the RGA​ and AUROC very 
close to 0.5. Thus, they almost perform as well as a random model. This because 
although the logistic regression model is characterised by a “white-box” that allows an 
easy interpretability of the results, it provides a limited predictive accuracy. Resorting 
to more complex machine learning models, such as neural network and random forest 
models, would on one side improve the accuracy of predictions but on the other side 
worsen the interpretability of the results.

Table 7   Results from the 
stepwise model selection on 
gains or losses from May 2016 to 
April 2018

Model Variables

Model 1 Gold
Model 2 Gold, exchange rate dollar/euro
Model 3 Gold, exchange rate dollar/euro, oil
Model 4 Gold, exchange rate dollar/euro, oil, sp500
Model 5 Gold, exchange rate dollar/euro, oil, 

sp500, exchange rate dollar/yuan
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Fig. 6   AUROC and RGA​ behaviours



	 E. Raffinetti 

1 3

7 � Discussion

To improve the compliance of AI applications in finance and insurance, in the paper we 
have proposed a new tool to evaluate the predictive accuracy and robustness of a machine 
learning model: the RGA​.

The adoption of the RGA​ measure can assess, monitor and improve the quality of 
machine learning models in terms of their accuracy (difference between the observed and 
the predicted values) and their robustness (stability of the estimated model with respect to 
variations in the data).

By means of a simulation study, and the application of the measure to a crypto asset 
dataset, we have shown that the proposed measure is quite consistent in model choice and 
also more robust than classical predictive accuracy measures, such as the RMSE. The RGA​ 
can thus be proposed as an additional toolkit for machine learning.

From a methodological viewpoint, the RGA​ measure provides a rather general accuracy 
statistic, applicable in the same manner to all ordered response variables. It is preferable to 
other measures when the aim is to predict the correct ordering of a point response, regard-
less of whether such response is binary, ordinal or continuous.

Future research extensions should consider the case of a multivariate response variable, 
which would require to generalise the concordance curve to a multidimensional setting.

From the applied side, the proposed measure should be employed to other comparison 
settings and, in particular, to those involving applications of machine learning models.

Appendix

In this appendix, the proof of Property  1 is reported together with the proof of 
Proposition 1.

Proof  (Property 1) We prove that Eq. (1), can be re-written as in Eq. (2).
Based on Eq. (1), it results that:

which can be re-expressed as

RGA =

∑n

i=1

�
1

nȳ

�∑i

j=1
yrn+1−j −
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j=1
yr̂j

��

∑n

i=1

�
1

nȳ

�∑i

j=1
yrn+1−j −

∑i

j=1
yrj

��
,

Table 8   Predictive accuracy 
(RGA​ against AUROC)

Models AUROC RGA

Model 1 0.521 0.521
Model 2 0.557 0.557
Model 3 0.532 0.532
Model 4 0.556 0.556
Model 5 0.559 0.559
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As 
∑n

i=1

∑i

j=1
yrn+1−j = n(n + 1)ȳ −

∑n

i=1
iyrn+1−i , 
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j=1
yr̂j = n(n + 1)ȳ −
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j=1
yrj = n(n + 1)ȳ −

∑n

i=1
iyri (see e.g., Marshall et al. 2011), Eq. (11) becomes

	�  ◻

Proof  (Proposition 1) To prove Proposition 1, we first show that the RGA​ can be written, 
through the covariance formulation, as in Eq. (3).

By exploiting Property 1, Eq. (1) can be re-written as

By adding and subtracting, at both the numerator and denominator, the term 
∑n

i=1

i

n
 , we 

derive that

As 
∑n

i=1
i =

n(n+1)

2
 , through some mathematical manipulations, Eq. (13) can then be 

expressed as

As shown by Giudici and Raffinetti (2020), ī = (n+1)

2
 , where ī represents the mean of i 

intended as the rank assigned to the Y values (i.e., i = r(yi) ) . Based on this assumption, the 
terms in (14) can be translated into covariance operators as
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ȳ

�
−

1

ȳ
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and

Thus, Eq. (14) is equivalent to

Moving from the sample to the population version, and denoting with � the expected value 
of Y, 1

ȳ
̂cov(Yr(Ŷ), r(Y)) , −

1

ȳ
̂cov(Y , r(Y)) and 1

ȳ
̂cov(Y , r(Y)) are equivalent to 1

𝜇
cov(Yr(Ŷ), r(Y)) , 

−
1

�
cov(Y , r(Y)) and 1

�
cov(Y , r(Y)) , respectively.

As stated by Lerman and Yitzhaki (1984), the r(Y)/n terms are the empirical representa-
tion of the cumulative function F(Y). It follows that, by multiplying the covariances by n, 
one can re-express 1

𝜇
cov(Yr(Ŷ), r(Y)) , −

1

�
cov(Y , r(Y)) and 1

�
cov(Y , r(Y)) as n

𝜇
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n

�
cov(Y ,F(Y)) and n

�
cov(Y ,F(Y)) , respectively.

The RGA​ measure in terms of covariance operators is finally equal to:

	�  ◻
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