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A B S T R A C T   

Explainability of artificial intelligence methods has become a crucial issue, especially in the most regulated fields, 
such as health and finance. In this paper, we provide a global explainable AI method which is based on Lorenz 
decompositions, thus extending previous contributions based on variance decompositions. This allows the 
resulting Shapley-Lorenz decomposition to be more generally applicable, and provides a unifying variable 
importance criterion that combines predictive accuracy with explainability, using a normalised and easy to 
interpret metric. The proposed decomposition is illustrated within the context of a real financial problem: the 
prediction of bitcoin prices.   

1. Introduction 

The growing availability of data and computational power allows to 
develop machine learning models that are highly predictive. On the 
other hand, the consideration of the possible adverse consequences on 
activities that have a high societal impact has led policy makers and 
regulators to a degree of suspicion towards AI applications. To foster 
innovations while protecting the society, consensus is emerging on the 
development of eXplainable AI (XAI) methods, that is, methodologies 
able to make machine learning models interpretable and, therefore, 
understood, particularly in terms of causal discovery. 

Indeed, in the recent years, the increasing diffusion of artificial in
telligence applications and products has led policy makers and regula
tors to demand the underlying machine learning models to be 
explainable, so that human users could understand them: see, for 
example, the recent paper by European Commission (2020). This 
requirement is particularly evident in highly regulated economic sec
tors, such as health and finance. 

In line with the policy requirements, researchers have recently 
addressed the issue of how a machine learning model can be made 
explainable. Existing papers address the contents to different explana
tion classes. A detailed review of these methods can be found in Guidotti 
et al. (2018). In this paper, the focus is only on two approaches: global 
explanations and local explanations. This because our proposal is the 
result of the combination of local and global explanations. While global 
explanations describe the model as a whole, in terms of which explan
atory variables most determine its predictions, for all the statistical 

units, local explanations aim at interpreting individual predictions, at 
the single statistical unit level (for a recent review and comparison, see 
e.g. Aas, Jullum, & Loland, 2020; Joseph, 2019; Molnar, 2020). Among 
the local explanation methods, the Shapley value approach, originally 
introduced in Shapley (1953) and implemented by Lundberg and Lee 
(2017) and Strumbelj and Kononenko (2010), is gaining a remarkable 
relevance due to its attractive characteristics. According to the Shapley 
value procedure, the total change in prediction is divided among the 
features in a way which is fair to their contributions across all possible 
sets of features. Note that to obtain reliable explanations, the Shapley 
value method resorts to all the features. The advantage of Shapley 
values, over alternative XAI methods, is that they can be used to measure 
the contribution of each explanatory variable for each point prediction 
of a machine learning model, regardless of the underlying model itself 
(see e.g. Lundberg & Lee, 2017; Strumbelj & Kononenko, 2010). In other 
words, Shapley based XAI are model agnostic so that, differently from 
the model specific approaches, their interpretation tools are not limited 
to their respective model classes or data, allowing generality of appli
cation and personalisation of their results (they can explain any single 
point prediction) to be achieved. 

Our purpose is to combine the interpretability power of the local 
Shapley value approach with a more robust global approach, as in Owen 
and Prieur (2017) and Song, Nelson, and Staum (2016). To this aim, we 
apply the Shapley value game theoretic approach to Lorenz Zonoid 
model accuracy tool, recently proposed by Giudici and Raffinetti (2020). 
In such a way, the advantages associated with the local approach based 
on the Shapley values are exploited together with the properties of the 
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Lorenz Zonoids, giving rise to a global approach which fulfills the 
interpretability requirement. 

On the graphical view point, the Lorenz Zonoids can be seen as a 
generalisation of the ROC curve in a multidimensional setting. More
over, in one-dimensional setting, the Lorenz Zonoid is related to the 
AUROC (Area Under the ROC curve) measure. Therefore, our proposal 
has the advantage of combining predictive accuracy and explainability 
performance into one single diagnostics, as highlighted in Giudici and 
Raffinetti (2020). Furthermore, the nature of Lorenz Zonoids allows 
them to be easily replicated to any subset of the available units, allowing 
the diagnostics to be easily applied at any desired local level. 

The main contributions of our work are, in summary: (a) the intro
duction of a novel global explainable AI framework, based on the 
combination of Lorenz Zonoids with the Shapley value approach; (b) the 
mathematical derivation of the exact expression of a novel Shapley- 
Lorenz decomposition, that can explain any machine learning model 
in terms of the contribution of each explanatory variable to the Lorenz 
Zonoid goodness of fit. 

Our proposal lies within the field of explainable AI methods. It ex
tends the global decompositions of Owen and Prieur (2017) and Song 
et al. (2016), based on the (euclidean) variance decomposition, to a 
decomposition based on Lorenz Zonoids. The Lorenz Zonoid decompo
sition presents similarities with the classical variance decomposition. 
Both the approaches aim to detect the variables which mainly impact the 
phenomenon of interest. Nevertheless, differently from the classical 
variance decomposition, the Lorenz Zonoid decomposition is based on 
the mutual distance between all observations, rather than deviations 
from the mean and, therefore, is more robust to outlying observations. 
These features make the Lorenz Zonoid decomposition a promising tool 
for further extensions in the AI framework, addressed to the assessment 
of the contribution related to each explanatory variable in terms of the 
explained mutual variability. As discussed by Giudici and Raffinetti 
(2020), this methodology appears more generally applicable and 
directly interpretable within a predictive accuracy context, differently 
from the approach of Joseph (2019), based on a linear regression 
approximation. 

The expression of our obtained Shapley-Lorenz decomposition also 
shows that it can be considered as a natural extension of the standard 
Shapley approach, as it can be calculated not only at the global but also 
at the local level, providing, in both cases, a normalised measure that 
can be interpreted within the ROC framework. 

The paper is organised as follows. In Section 2 we provide some 
background on Shapley values. In Section 3 we present our proposal. In 
Section 4 we exemplify our proposal in the context of a real application 
that concerns the prediction of bitcoin prices. Section 5 concludes with 
some final remarks. 

2. Background 

Shapley values were originally proposed as a pay-off concept from 
cooperative game theory (Shapley, 1953). Note that the concept of “pay- 
off” in XAI corresponds to the model prediction, as well described in the 
papers by Joseph (2019) and Lundberg and Lee (2017). 

Shapley values represent the average of the marginal contributions 
of the players associated with all their possible orders, where, for 
“order”, we intend all the possible orders of players’ arrivals to the 
coalition. The orders are equally likely and, in each order, each player 
gets his marginal contribution from the coalition he joins to. As dis
cussed by Joseph (2019), Shapley values play a crucial role in improving 
machine learning model explainability. They allow to evaluate the 
learned functional forms of a model without having to specify them ex 
ante. 

More generally, Shapley values fulfill a number of useful properties 
that allow to better understand how the model uses its features to pro
vide a reliable response in a complex decision making process. For 
example, the sum of the Shapley values is the model accuracy; they are 

equal for features with the same importance; in a linear model, the 
Shapley value of a feature is expressed as the linear combination of its 
Shapley values across the model. 

Formally, let i = 1,…, n be a statistical unit, whose (multivariate) 
characteristics Yi are to be predicted (on a “test set”) with a machine 
learning model (educated on a “training set”), so that an automated 
action (say, a(Yi)) is taken. 

Let Ŷ
l
i = f̂

l
(Xi) indicate the predicted value for the response vector 

Yi, based on an explanatory vector of characteristics Xi, obtained with 
the machine learning model l. For ease of notation, we drop the suffix l 
henceforth. 

As discussed by Bussmann, Giudici, Marinelli, and Papenbrock 
(2020), the Shapley value based approach can be developed by using the 
SHAP (SHapley Additive exPlanations) computational framework (see, 
e.g. Lundberg & Lee, 2017). This approach differs from the GAM 
(Generalized Additive Models) approach described by Lou, Caruana, and 
Gehrke (2012). While the GAM method explicitly decomposes the model 
into linear combinations of simple models trained by a single explana
tory variable, the Shapley value approach decompose the overall model 
into linear combinations of all the model configurations trained by all 
the possible combination of the available explanatory variables. 

A machine learning model can be decomposed into functions of the 
additional individual components of xi (the feature variables) according 
to a function ϕ as follows: 

ϕ

(

f̂

(

Xi

))

≡ ϕ0 +
∑K

k=1
ϕk

(

Xi

)

, ∀i = 1,…, n, (1)  

where: k indicates a single feature variable; K denotes the total number 
of available explanatory variables; n is the total number of units to be 
predicted; ϕ ∈ RK; ϕk ∈ R. The local functions ϕk(Xi) are the Shapley 
values. 

Note that linear machine learning models (such as regression 
models) fulfill this requirement. As shown by Joseph (2019), a linear 
model satisfies the following: 

ϕ

(

f̂

(

Xi

))

≡ β̂0 +
∑K

k=1
β̂kXik, (2)  

in which ϕ0 = β̂0 and 
∑K

k=1ϕk(Xi) =
∑K

k=1 β̂kXik. 
Starting from the previous observation, Joseph (2019) proposed to 

regress the response values on the individual Shapley values to obtain a 
linear approximation to a machine learning model. While this proposal 
is tempting, as it provides local explanations which can be statistically 
tested, it may lead to a highly parameterised model, driven by a 
computationally expensive procedure. This because the expression in (2) 
has to be considered for possible subsets of the K available variables, as 
in a regular model selection procedure. 

When referring to a machine learning model, the players of a coop
erative game, aimed at generating a pay-off, are the K explanatory 
variables that can be included in the model and each model is a com
bination of several variables, which thus “cooperate” towards the pre
dictions f̂ (xi). Following Lundberg and Lee (2017) and Strumbelj and 
Kononenko (2010), and using a notation coherent with that considered 
for the construction of our proposal, the marginal contribution of a 
variable Xk, (k = 1,…,K) can be expressed in the form of Shapley values 
as 

ϕ
(

f̂ (Xi)
)
=

∑

X’⊆C (X)⧹Xk

|X’|!(K − |X’| − 1)!
K!

[
f̂ (X’ ∪ Xk)i − f̂ (X’)i

]
. (3) 

In Eq. (3): C (X)⧹Xk is the set of all the possible model configurations 
which can be obtained with K − 1 variables, excluding variable Xk; |X

′

|

denotes the number of variables included in each possible model; 
f̂ (X′

∪ Xk)i and ̂f (X′

)i are the predictions associated with all the possible 
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model configurations including variable Xk and excluding variable Xk, 
both calculated for the unit i. The quantity within the squared paren
theses defines the contribution of variable Xk to the model prediction, 
for any single unit. 

Given the challenging computational efforts needed to calculate the 
marginal contribution of each variable, especially when K is large, 
Lundberg and Lee (2017) and Strumbelj and Kononenko (2010) have 
proposed computational methods to approximate Shapley values with 
similarly additive feature methods which possess a specified set of 
properties, such as local accuracy, missingness and consistency. 

A remarkable characteristic of the obtained Shapley values approach 
is that they provide the explanation of the additional importance of each 
variable for each individual unit. This helps to explain the nature of the 
contribution of each variable but, on the other hand, it does not explain 
whether the same variable should be maintained in the model, in a more 
parsimonious version which, according to Occam’s razor principle, im
proves goodness of fit and interpretation. 

Indeed, the drawback of Shapley based XAI methods lies in their very 
power: being designed to understand point predictions, they may be 
highly unstable, in the presence of data anomalies, such as fake data, 
missing data or outliers. In relation with this, they are not suited to 
understand which variables are important, at the overall level. Although 
Shapley values can be summed over point predictions, to give an 
“overall” measure of importance of a single variable, this simple mea
sure leads to compensation, excessive leverage of single observations 
and, above all, the lack of a normalised measure to assess the relative 
importance of each variable contribution. 

This explains why the tasks of establishing model predictive accuracy 
for explainable machine learning models based on Shapley values are 
left to more classic model comparison tools, such as pairwise statistical 
tests, when possible or, in the more general machine learning context, to 
cross-validation tools, such as the Receiver Operating Characteristics 
(ROC) Curve and the corresponding AUROC or Gini value (see e.g., 
Guégan & Hassani, 2018). 

It may be the case that a variable which is highly explainable for 
most individual predictions is not included into the “best” model that 
corresponds to the highest Area Under the ROC Curve (AUROC). 
Conversely, a model selected in terms of best AUROC may contain 
variables that do not differentiate between individual predictions and, 
therefore, are not explainable at the local level. 

To reconcile the two views (predictive accuracy and local explain
ability) we propose to develop a Shapley based framework that de
composes predictive accuracy, rather than individual predictions. And 
that could, possibly, be localised. This is our main contribution. 

3. Proposal 

To achieve our aim we exploit a model selection measure, recently 
introduced by Giudici and Raffinetti (2020), which is based on the 
employment of Lorenz Zonoids and on a mutual notion of variability. 
The Lorenz Zonoid-based measure fulfills some attractive properties: it is 
akin to the well known Receiver Operating Curve (ROC), robust to the 
presence of outlying observations and independent on the nature of the 
response variable. 

Lorenz Zonoids were introduced by Koshevoy and Mosler (1996) as a 
generalization of the Lorenz curve in d dimensions. The same authors 
showed that, when d = 1, the Lorenz Zonoid corresponds with the well 
known Gini coefficient which, in turn, is related to the Area Under the 
ROC Curve. 

Suppose to consider a response variable Y and a set of explanatory 
variables X1,…,Xj,…,Xh, with j = 1,…,h. To evaluate the relationships 
between Y and the X1,…,Xh explanatory variables, a machine learning 
model can be applied, and the associated predicted values, denoted with 
ŶX1 ,…,Xh , are obtained. The Lorenz Zonoid of Y and ŶX1 ,…,Xh can be 
defined by (see, e.g. Giudici and Raffinetti, 2020): 

LZd=1

(

Y

)

=
2Cov(Y, r(Y))

nμ and LZd=1

(

Ŷ X1 ,…,Xh

)

=
2Cov

(
Ŷ X1 ,…,Xh , r

(
Ŷ X1 ,…,Xh

))

nμ , (4)  

where n is the total number of observations, μ is the response variable Y 
mean value, r(Y) and r(ŶX1 ,…,Xh ) are the rank scores corresponding to the 
Y and ŶX1 ,…,Xh variables. Given a sample data of size n, formulas in (4) 
can be reformulated as: 

LZd=1

(

y
)

=
2Cov(y, r(y))

ny
and LZd=1

(

ŷy1 ,…,yh

)

=
2Cov

(
ŷx1 ,…,xh

, r
(

ŷx1 ,…,xh

))

ny
, (5)  

where y and ̂yx1 ,…,xh 
are the vectors of the observed and predicted values, 

r(y) and r(ŷx1 ,…,xh
) are the ranks of the observed and predicted values, 

and y is the sample mean. 
In Giudici and Raffinetti (2020), the Lorenz Zonoids were exploited 

giving rise to new dependence measures suitable in assessing the 
contribution of each explanatory variable to the predictive power of a 
model. Specifically, a Marginal Gini Contribution (MGC) measure, 
allowing to measure the absolute explanatory power of any single co
variate,1 and a Partial Gini Contribution measure (PGC), allowing to 
measure the additional contribution of a new covariate to an existing 
model, were developed as follows. 

Let Xj be one of the h explanatory variables (j = 1,…, h). The mar
ginal contribution provided by a single covariate Xj is given by: 

MGCY|Xj
=

LZd=1

(
Ŷ Xj

)

LZd=1(Y)
=

Cov
(

Ŷ Xj , r
(

Ŷ Xj

))

Cov(Y, r(Y) )
. (6) 

Let ŶX1 ,…,Xh and ŶX1 ,…,Xh− 1 be the predicted values provided by a full 
model, including all the covariates, and a reduced model, excluding 
covariate Xh. The additional contribution related to the inclusion of 
covariate Xh can be determined as 

PGCY,Xh |X1 ,…,Xh− 1 =
LZd=1

(
Ŷ X1 ,…,Xh

)
− LZd=1

(
Ŷ X1 ,…,Xh− 1

)

LZd=1

(
Y
)
− LZd=1

(
Ŷ X1 ,…,Xh− 1

) . (7) 

We remark that, when the Y response variable is continuous, and the 
machine learning model is linear, the marginal contribution provided by 
a single covariate X to an existing model, in Eq. (7), simplifies to the well 
known variance decomposition of the multiple correlation coefficient, 
R2: 

R2
(Y|X1 ,…,Xh)

=
∑h

j=1
R2

Y,Xj|Xi<j

(

1 − R2
Y|X1 ,…,Xj− 1

)

, (8)  

where: R2
(Y|X1 ,…,Xh)

denotes the multiple correlation coefficient (the Y 
variability explained by all the involved h covariates); R2

Y,Xj|Xi<j 
denotes 

the partial correlation coefficient (the variability of Y, additionally 
explained by the j-th explanatory variable, after the previous i < j vari
ables, whose contribution is given by R2

(Y|X1 ,…,Xj− 1)
). 

When the covariates are independent, we obtain, as a further special 
case, that: 

1 Note that to the term ”covariate” is employed as a synonym of the term 
“explanatory variable”. The two words will be then used interchangeably. 
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R2
(Y|X1 ,…,Xh)

=
∑h

j=1
R2

Y,Xj
. (9) 

The previous remark suggests that, using a Lorenz Zonoid decom
position, we can extend the global explanations of machine learning 
models proposed by Owen and Prieur (2017) and Song et al. (2016). 
While the latter Authors employed a variance decomposition approach 
to explainable machine learning, dealing with the issue of dependent 
covariates, we extend the approach from variance decomposition to 
Lorenz Zonoid decomposition, obtaining a simpler and more versatile 
approach. 

In line with the need of diagnosing both predictive accuracy and 
explainability, we now combine the Lorenz Zonoid, aimed at evaluating 
predictive accuracy in a rather general context, with the Shapley value 
approach, aimed at obtaining individual unit explanations. 

The main intuition of our proposal is the following. Shapley pro
posed to employ game theory with pay-offs that are given by: 

poff
(
Xk

i

)
= f̂ (X ∪ Xk)i − f̂ (X)i, (10)  

for any statistical unit i. 
We propose to apply game theory with pay-offs that are given by the 

numerator of the PGC measure: 

poff

(
Xk
)
= LZd=1

(
Ŷ X1 ,…,Xk

)
− LZd=1

(
Ŷ X1 ,…,Xk− 1

)
, (11)  

for a set of statistical units (i = 1,…,n). 
The resulting expression, that we call Shapley-Lorenz decomposi

tion, allows to identify the contribution of each explanatory variable, 
not in terms of the differential contribution to the locally predicted 
values (as with standard Shapley values), but in terms of the differential 
contribution to the global predictive accuracy. 

We now proceed with the mathematical derivation of the Shapley- 
Lorenz decomposition. 

First, we replace LZd=1(⋅) in place of ̂f (⋅) in the Shapley expression in 
(3), and obtain that the marginal contribution associated with the 
additional variable Xk is equal to 

LZXk
d=1

(
Ŷ
)
=

∑

X’⊆C (X)⧹Xk

|X’|!(K − |X’| − 1)!
K!

[
LZd=1

(
Ŷ X’∪Xk

)
− LZd=1

(
Ŷ X’

) ]
,

(12)  

where LZd=1(ŶX′
∪Xk

) and LZd=1(ŶX′ ) describe the (mutual) variability 
explained by the models including the X′

∪ Xk variables and the X′

variables, respectively. Note that LZd=1(ŶX′
∪Xk

) and LZd=1(ŶX′ ) in Eq. 
(12) can be expressed as function of the covariance operator, as reported 
in Appendix Section A1. 

As what we observe is indeed a sample of n observations, we need to 
estimate the population mean μ, with the sample mean, y. Then, 
denoting with ̂yX′

∪Xk 
and ̂yX′ the predicted values provided by the model 

including and excluding the Xk covariate, ordered in non-decreasing 
sense, the formula in Eq. (12) becomes 

LZXk
d=1

(

ŷ

)

=
∑

X′ ⊆C (X)⧹Xk

|X ′

|!(K − |X ′

| − 1)!
K!

[

LZd=1

(

ŷX′
∪Xk

)

− LZd=1

(

ŷX′

)]

.

(13) 

Through some mathematical manipulations, whose details are con
tained in Appendix Section A2, Eq. (13) can be re-written as 

LZXk
d=1

(

ŷ

)

=
∑

X′ ⊆C (X)⧹Xk

|X ′

|!(K − |X ′

| − 1)!
K!

{
2

n2y

[
∑n

i=1
i
(

ŷX′
∪Xk

(
i
)

− ŷX′

(
i
))
]}

, (14)  

where ŷX′
∪Xk

(i) and ŷX′ (i) are the predicted values for the i-th statistical 
unit obtained by the model including and excluding the Xk covariate. 
Comparing Eq. (14) with (3) note, part from the different notation, the 
similarities between the two expressions. While the standard Shapley 
decomposition “explains” the covariate contributions at the individual 
level, the Shapley-Lorenz decomposition “explains” the same contribu
tions at the global level. Indeed, through Eq. (14), a description of the 
model as a whole, in terms of the explanatory variables mostly deter
mining its prediction, is provided. 

Shapley-Lorenz decomposition, differently from standard ones, al
lows to detect which variables could be eliminated, as unnecessary for 
model predictions, leading to a more parsimonious structure. Indeed 
standard Shapley values can be summed across units, leading to “global” 
variable importance measures which, however, are not normalised 
within a model accuracy context, as Shapley-Lorenz ones. 

In addition, looking at expression (14), note that Shapley-Lorenz 
decomposition can always be calculated, without loss of generality, to 
subsets of the n units to be predicted. This leads to a natural “local
isation” of the measure, without altering its predictive meaning. 

4. Application 

In line with our initial discussion, to illustrate our proposal we 
consider the application of machine learning models in the highly 
regulated field of finance. 

In finance, the notion of XAI is increasingly discussed by public and 
private institutions, to provide transparent and effective machine 
learning methods (see, e.g. Arras, Horn, Montavon, Müller, & Samek, 
2017; Arrieta et al., 2019). The idea is to introduce a suite of techniques 
that allows to improve the interpretability of the models while preser
ving an adequate level of prediction accuracy. This idea has recently led 
some scholars to promote XAI methods aimed at making both the 
financial technology risk measurement models interpretable and trans
parent, and the risks of financial innovations, enabled by the application 
of AI, sustainable (see, e.g. Bracke, Datta, Jung, & Shayak, 2019; Buss
mann et al., 2020). In particular, in Bussmann et al. (2020) an 
explainable AI model based on similarity networks (Mantegna & Stan
ley, 1999) and Shapley values is proposed to measure the credit risks 
associated to the use of AI based credit scoring platforms. 

To exemplify our proposal, we apply it to a dataset that has been used 
to predict bitcoin prices, and their up or downtrends. As illustrated in 
Giudici and Raffinetti (2020), the available data provide information on 
the daily bitcoin prices in eight different crypto exchanges, from 18 May, 
2016 to 30 April, 2018. For the sake of brevity, we refer to the time 
series observations on Coinbase prices, which represent the response 
variable to be predicted by the available financial explanatory variables. 
Specifically, as candidate financial explanatory variables the time series 
for Oil, Gold and SP500 prices are taken into account. The choice of such 
set of variables is related with their economic importance, and with the 
need to explain our proposal with a model simple enough so that cal
culations can be clearly understood. 

In this application, we will select, as our candidate machine learning 
model, a linear regression model and we will calculate the Shapley- 
Lorenz marginal contributions, associated with the inclusion of SP500, 
Gold and Oil, according to the formula (13). When considering SP500, 
Gold and Oil as additional explanatory variable, the corresponding 
marginal contributions can be written in full as follows: 

LZSP500
d=1

(
̂Coinbase

)
=
(

1
/

3
)(

LZ
(

ŷSP500,Gold,Oil

)
− LZ

(
ŷGold,Oil

))

+
(
1
/

6
)(

LZ
(

ŷSP500,Gold
)
− LZ

(
ŷGold

))
+
(
1
/

6
)(

LZ
(

ŷSP500,Oil
)
− LZ

(
ŷOil
))

+(1/3)(LZ(ŷSP500))
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LZGold
d=1

(
̂Coinbase

)
=
(

1
/

3
)(

LZ
(

ŷGold,SP500,Oil

)
− LZ

(
ŷSP500,Oil

))

+
(
1
/

6
)(

LZ
(

ŷGold,SP500
)
− LZ

(
ŷSP500

))
+
(
1
/

6
)(

LZ
(

ŷGold,Oil
)
− LZ

(
ŷOil
))

+(1/3)(LZ(ŷGold))

LZOil
d=1

(
̂Coinbase

)
=
(

1
/

3
)(

LZ
(

ŷOil,SP500,Gold

)
− LZ

(
ŷSP500,Gold

))

+
(
1
/

6
)(

LZ
(

ŷOil,SP500
)
− LZ

(
ŷSP500

))
+
(
1
/

6
)(

LZ
(

ŷOil,Gold
)
− LZ

(
ŷGold

))

+(1/3)(LZ(ŷOil)).

For the sake of comparison, we will also consider the variance 
decomposition associated with the same variables, which holds under 
the assumption of a linear model. Applying the Shapley formula as 
before, but replacing Lorenz Zonoid with Partial correlation coefficients, 
we obtain the following marginal contributions: 

R2
SP500 =

(
1
/

3
)(

R2
SP500,Gold,Oil − R2

Gold,Oil

)
+
(

1
/

6
)(

R2
SP500,Gold − R2

Gold

)

+
(

1
/

6
)(

R2
SP500,Oil − R2

Oil

)
+
(

1
/

3
)

R2
SP500  

R2
Gold =

(
1
/

3
)(

R2
Gold,SP500,Oil − R2

SP500,Oil

)

+
(

1
/

6
)(

R2
Gold,SP500 − R2

SP500

)
+
(

1
/

6
)(

R2
Gold,Oil − R2

Oil

)
+
(

1
/

3
)

R2
Gold  

R2
Gold =

(
1
/

3
)(

R2
Oil,SP500,Gold − R2

SP500,Gold

)
+
(

1
/

6
)(

R2
Oil,SP500 − R2

SP500

)

+
(

1
/

6
)(

R2
Oil,Gold − R2

Gold

)
+
(

1
/

3
)

R2
Oil.

We can also calculate the “standard” global Shapley value for each 
variable summing, for each variable, its contribution to any single unit 
prediction. We remark that the result is a measure that, differently from 
before, is not normalised and, therefore, not easily interpretable. 

The results of all the previous calculations are displayed in Table 1. 
Table 1 shows that, employing the Lorenz-Shapley approach, vari

able SP500 provides the highest marginal contribution in the prediction 
of the Coinbase prices (as in Giudici & Abu-Hashish, 2019), while the 
other two give a minimal contribution. This conclusion is in line with the 
economic literature, which shows that the bitcoin has reached the status 
of a speculative asset, that is used to diversify portfolios, being signifi
cantly negatively correlated with classic assets such as stock prices 
summarised by the SP500 index. 

The conclusions from the Shapley-Lorenz approach are also quite 
similar to those obtained with the linear R2-based Shapley approach. 
This shows that a non linear machine learning model does not lead to a 
substantial change of the interpretability that could be drawn from a 
linear model, applied to the same data. Note that, in general, the 
Shapley-Lorenz approach has to be preferred to the linear R2-based 
Shapley approach, especially in the presence of outlying observations. 

Finally, the Global Shapley values, obtained summing the Shapley 
variable contributions across all units are, as expected, non normalised, 
and with a sign. While the Global Shapley value fails to tell which var
iable is most important in terms of the explained variability, the sign is 
consistent with the previously commented economic finding: the SP500 
index is negatively correlated with the Coinbase prices. 

The Shapley value approach appears as more intuitive than further 
typically used AI methods, as shown by the use case about explainability 
of risk management models described and developed by Bussmann et al. 
(2020) within the European FINTECH Project (https://www.fintech-h 
o2020.eu). The use case was indeed presented, in a “human-centric” 
study, to the regulators of most European countries, and one of the main 
feedback was that the approach is nice and promising but should be 
compared to what obtained with ”classical” model assessment methods, 

which is what the Shapley-Lorenz approach provides. 

5. Conclusions 

In this paper we have introduced a novel global explainable AI 
model, based on the application of the Shapley approach to Lorenz 
Zonoid. 

The proposed decomposition extends those recently proposed in 
terms of variance decomposition, leading to a variable contribution 
measure that is more generally applicable, and easier to interpret. In 
addition, the expression of the marginal contribution shows how global 
explanations can be mapped to local ones and viceversa. 

We believe that our proposal could be quite useful, as it provides a 
unified criterion to assess both predictive accuracy and explainability of 
the explanatory variables contained in a machine learning model. In 
addition, the metric in which the measure is expressed is a normalised 
one, related to the AUROC and Gini index and, therefore, easier to 
interpret. 

The application of the measure to a financial problem that concerns 
bitcoin price prediction shows its ease of application, consistency and 
versatility. 

The potential users of our model are, besides academic researchers, 
AI developers, for compliance and regtech purposes; and policy makers 
and regulators, for AI certification, monitoring, and suptech purposes. 

Future extensions of the research concern, on one hand, the devel
opment of a statistical testing procedure, which could add to variable 
contributions a significance measure. On the other hand, the extensive 
application to several other application fields. 
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Table 1 
Marginal contribution of each explanatory variable in terms of the linear 
Shapley-Lorenz approach, in terms of the R2 coefficient and the standard 
Shapley approach.  

Additional covariate (Xk) LZXk
d=1(

̂Coinbase) R2
Xk  

Global Shapley 

SP500 0.336 0.631 − 96377.28 
Gold 0.097 0.072 59811.19 
Oil 0.075 0.049 − 43428.39  
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Appendix A 

A1. Covariance formulation of Lorenz Zonoids 

As shown in Eq. (4), LZd=1(ŶX′
∪Xk

) and LZd=1(ŶX′ ) in Eq. (12) can be written through the covariance formulation leading to 

LZd=1

(

Ŷ X′
∪Xk

)

=
2

nμ Cov
(

Ŷ X′
∪Xk

, r
(

Ŷ X′
∪Xk

))

(15)  

and 

LZd=1

(

Ŷ X′

)

=
2

nμ Cov
(

Ŷ X′ , r
(

Ŷ X′

))

. (16)  

A2. Derivation of equation in (14) 

Given a sample of n observations, formulas in Eqs. (15) and (16) become 

LZd=1

(

ŷX′
∪Xk

)

=
2
ny

Cov

(

ŷX′
∪Xk

, r

(

ŷX′
∪Xk

))

=
2
ny

[
1
n

∑n

i=1
iŷX′

∪Xk

(

i

)

−
n(n + 1)

2n

]

(17)  

and 

LZd=1

(

ŷX′

)

=
2
ny

Cov

(

ŷX′ , r

(

ŷX′

))

=
2
ny

[
1
n
∑n

i=1
iŷX′

(

i

)

−
n(n + 1)

2n

]

. (18) 

Inserting the expressions (15) and (16) into (12), we obtain that the marginal contribution of an explanatory variable Xk is a function of: 

LZd=1

(
Ŷ X′

∪Xk

)
− LZd=1

(
Ŷ X′

)
=

2
nμ Cov

(

Ŷ X′
∪Xk

, r
(

Ŷ X′
∪Xk

))

−
2

nμ Cov
(

Ŷ X′ , r
(

Ŷ X′

))

=
2

nμ

[
Cov

(
Ŷ X′

∪Xk
, r
(

Ŷ X′
∪Xk

))
− Cov

(
Ŷ X′ , r

(
Ŷ X′

))]
,

(19)  

whose sample version, by resorting to Eqs. (17) and (18), can be obtained as: 

LZd=1
(

ŷX’∪Xk

)
− LZd=1(ŷX’ ) =

2
ny
[
Cov

(
ŷX’∪Xk

, r
(

ŷX’∪Xk

) )
− Cov(ŷX’ , r(ŷX’ ) )

]

=
2
ny

⎡

⎣1
n

∑n

i=1
iŷX’∪Xk

(i) −
1
n

∑n

i=1
iŷX’ (i)

⎤

⎦ =
2
ny

[
1
n

(
∑n

i=1
iŷX’∪Xk

(i) −
∑n

i=1
iŷX’ (i)

)]

=
2

n2y

[
∑n

i=1
i
(

ŷX’∪Xk
(i) − ŷX’ (i)

)
]

.

(20) 

The previous quantity defines the contribution of variable Xk to a particular model configuration, with X′ the considered explanatory variables. It is 
the analog of the quantity in squared parentheses in the Shapley Eq. (3). Comparing the two quantities, note that the Shapley-Lorenz decomposition is 
indeed a function of the individual Shapley differences. A function that, differently from the pure sum of the individual Shapley values, considers a 
normalised sum of their cumulative intensities. 

Completing (20) with the remaining part of Eq. (13), that takes into account all possible model configurations, the Shapley-Lorenz marginal 
contribution of a covariate Xk is finally obtained as: 

LZXk
d=1

(

ŷ

)

=
∑

X′ ⊆C (X)⧹Xk

|X ′

|!(K − |X ′

| − 1)!
K!

{
2

n2y

[
∑n

i=1
i
(

ŷX′
∪Xk

(
i
)
− ŷX′

(
i
))
]}

,

which corresponds to expression in (14). 

References 

Aas, K., Jullum, M., & Loland, A. (2020). Explaining individual predictions when features 
are dependent: More accurate approximations to Shapley values. arXiv preprint 
arXiv:1903.10464. 

Arras, L., Horn, F., Montavon, G., Müller, K.-R., & Samek, W. (2017). “What is relevant in 
a text document?”: An interpretable machine learning approach. PLoS One, 12(8), 
1–23. https://doi.org/10.1371/journal.pone.0181142 

Arrieta, A. B., Dríaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., 
Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F. (2019). 
Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and 
challenges toward responsible AI. arXiv preprint arXiv:1910.10045. 

Bracke, P., Datta, A., Jung, C., & Shayak, S. (2019). Machine learning explainability in 
finance: An application to default risk analysis. Staff Working Paper No. 816, Bank of 
England. 

P. Giudici and E. Raffinetti                                                                                                                                                                                                                   

https://doi.org/10.1371/journal.pone.0181142


Expert Systems With Applications 167 (2021) 114104

7

Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2020). Explainable AI in 
credit risk management. Frontiers in Artificial Intelligence, 3(26), 1–5. https://doi.org/ 
10.3389/frai.2020.00026 

European Commission. (2020). On artificial intelligence – A European approach to 
excellence and trust. White Paper, European Commission, Brussels, 19-02-2020. 

Giudici, P., & Abu-Hashish, I. (2019). What determines bitcoin exchange prices? A 
network VAR approach. Finance Research Letters, 28, 309–318. https://doi.org/ 
10.1016/j.frl.2018.05.013 

Giudici, P., & Raffinetti, E. (2020). Lorenz model selection. Journal of Classification. 
https://doi.org/10.1007/s00357-019-09358-w 
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