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A B S T R A C T

Machine learning models are boosting Artificial Intelligence applications in many domains, such as automotive,
finance and health care. This is mainly due to their advantage, in terms of predictive accuracy, with respect
to classic statistical models. However, machine learning models are much less explainable: less transparent,
less interpretable. This paper proposes to improve machine learning models, by proposing a model selection
methodology, based on Lorenz Zonoids, which allows to compare them in terms of predictive accuracy
significant gains, leading to a selected model which maintains accuracy while improving explainability. We
illustrate our proposal by means of simulated datasets and of a real credit scoring problem. The analysis of the
former shows that the proposal improves alternative methods, based on the AUROC. The analysis of the latter
shows that the proposal leads to models made up of two/three relevant variables that measure the profitability
and the financial leverage of the companies asking for credit.
1. Introduction

Machine learning models are boosting Artificial Intelligence (AI)
applications in many domains, such as automotive, finance and health
care. This is mainly due to their advantage, in terms of predictive accu-
racy, with respect to ‘‘classic’’ statistical models. However, while com-
plex machine learning models can reach high predictive performance,
they have an intrinsic black-box nature.

This is a problem in regulated industries, as authorities aimed at
monitoring the risks arising from the application of Artificial Intelli-
gence (AI) methods may not validate them (see, e.g. [1]). For example,
the application of AI to finance may lead to automated decisions
that can, for example, classify a company at risk of default, without
explaining the underlying rationale and, therefore, impeding remedial
actions.

The need to ‘‘explain’’ AI has become very important in recent years,
following the increasing application of AI methods that impact the daily
life of individuals and societies. At the institutional level, explanations
can answer different kinds of questions about a model’s operations,
depending on the stakeholder they are addressed to (see, e.g. [2]):
developers, managers, model checkers, regulators. In general, to be
explainable, AI methods have to provide details or reasons clarifying
their functioning.

The explainability requirement is fulfilled ‘‘by design’’ when classic
statistical models, such as logistic and linear regression, are employed
within AI applications. However, in complex data analysis problems,
classical statistical models may be improved using ‘‘black-box’’ machine
learning models, such as neural networks and random forests.
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From the previous discussion, it emerges the need to empower
highly predictive machine learning models with statistical tools that
can ‘‘explain’’ them.

Recent attempts in this direction are based on the work of Shapley
(see [3]) who proposed to assign a score to each candidate explanatory
variable based on its additional contribution to each prediction. The
application of Shapley’s work has led to the development of a very
promising research, especially in the field of computer science (see,
e.g. [1,4]). One of the first applications of Shapley’s work to finance is
due by [5], who proposed to apply correlation networks (see, e.g. [6])
to the Shapley scores and, then, cluster them into rating classes.

Shapley values have the advantage of being agnostic: independent
on the underlying model with which classifications and predictions
are computed; but have the disadvantage of not being normalised
and, therefore, difficult to be used in comparisons outside the specific
application.

Interpretability and explainability appear more relevant in complex
applications, where model comparison is necessary to select a model
which, maintaining accuracy, becomes parsimonious and understand-
able. In the traditional paradigm, a statistical model is chosen through
a sequence of pairwise comparisons, based on the ratio of the likeli-
hoods (or of the posterior probabilities) of the models being compared.
Unfortunately, these criteria are generally not applicable to machine
learning models such as neural networks and random forests, which do
not necessarily have an underlying probabilistic model.
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The previous consideration explains why the last few years have
witnessed the growing importance of model selection methods based on
the comparison between the predicted and the actually observed cases.
In these methods, the data is split in two sets, with a ‘‘training’’ set used
to fit a model and a ‘‘validation’’ set used to compare the predictions
made by the trained model with the actual observed values.

In this paper, we contribute to the literature on model selection
for machine learning models with a model comparison criterion based
on the extension of Shapley values. Specifically, rather than evaluating
the additional contribution of each variable to the point values of the
predictions (as in the Shapley’s approach), we propose to evaluate the
additional contribution of each variable to the predictive accuracy of
the predictions. To achieve this aim, we employ the decomposition
property of the Lorenz Zonoid tool introduced by [7].

Doing so, we extend the available likelihood comparison proce-
dures, applicable only to machine learning models that have a prob-
abilistic background, to a predictive accuracy comparison framework,
applicable to all models. To achieve this goal, we propose a statistical
test to assess the significance of the additional contribution to pre-
dictive accuracy deriving from the inclusion of an extra explanatory
variable in a sequence of models. This allows to overcome the main
drawbacks of the BIC and the AIC, which require a probabilistic model
specification to derive the likelihood of the data. When this is missing,
as in complex machine learning models, model selection needs to be
reformulated in terms of descriptive statistics of the distributions of the
residuals (see, e.g. [8] for a discussion), for which statistical tests for
variable importance can be derived only under specific conditions. This
is the case for the Diebold–Mariano test, based on the Mean Squared
Error of the residuals (see [9]).

To derive our proposed model comparison procedure, we will adapt
to the binary response case the work of [10], who have shown the
advantage of combining Lorenz Zonoids with Shapley values to select
machine learning models. We will show how to build a model com-
parison methodology which can be used to order variables in terms
of their contribution to predictive accuracy. Doing so, we provide
a methodology that is able to simultaneously achieve the goals of
predictive accuracy and explainability, rather than one after the other,
as done in the explainable AI literature (see, e.g. [5]).

We will test our methodology in two different contexts: in simulated
studies, aimed at assessing the comparative properties of our method;
and in a real application, that concerns the prediction of financial de-
fault by means of a large set of highly correlated company performance
variables, taken from balance sheets.

The paper is organised as follows. The next section illustrates the
methodology: its background, the notion of Lorenz Zonoid predictive
accuracy, and the proposed Lorenz Zonoid model comparison test;
Section 3 introduces simulation studies to assess the performance of
the methodology in the model selection context; Section 4 discusses
the empirical findings obtained applying our proposal to the available
financial data; finally, Section 5 contains some concluding remarks.

2. Methodology

In this section we adapt the Lorenz Zonoid decomposition approach
illustrated by [7] to the binary classification context. Our proposal de-
rives from the combination of two research streams. The first concerns
the development of predictive machine learning methods for classifi-
cation problems. The second concerns the development of explainable
methods to understand the contribution of each explanatory variable
to the predictive accuracy of machine learning models. The result is a
methodology to select models that are, at the same time, predictively
accurate and interpretable.
2

Fig. 1. Structure of a neural network model.

2.1. Background

Let 𝑌 be a binary response variable which can, for example and
without loss of generality, express whether a company defaults (𝑌 = 1)
or not (𝑌 = 0), as in a typical credit scoring problem. A popular model
to predict 𝑌 is the logistic regression model (see, e.g. [5]).

Given 𝐾 explanatory variables 𝑋1,… , 𝑋𝐾 , a logistic regression
model for 𝑌 can be specified as follows:

log

(

𝜋𝑖
1 − 𝜋𝑖

)

= 𝛽0 +
𝐾
∑

𝑘=1
𝛽𝑘𝑥𝑘𝑖 = 𝜂𝑖,

where 𝑖 = 1,… , 𝑛; 𝜂𝑖 = 𝛽0 +
∑𝐾

𝑘=1 𝛽𝑘𝑥𝑘𝑖; 𝜋𝑖 represents the probability of
the event for the 𝑖th observation (company); x𝑖 = (𝑥1𝑖,… , 𝑥𝐾𝑖) is the
𝐾-dimensional vector reporting the values taken by the 𝐾 explanatory
variables referred to the 𝑖th observation; 𝛽0 and 𝛽𝑘 (𝑘 = 1,… , 𝐾)
are the parameters representing the intercept and the 𝑘th regression
coefficient, respectively.

By means of the maximum likelihood estimation method, the pa-
rameters 𝛽0 and 𝛽𝑘 can be estimated leading to derive the predicted
probability of default as:

̂𝑖 =
𝑒�̂�𝑖

1 + 𝑒�̂�𝑖
,

which can be employed to attach to the 𝑖th observation a ‘‘score’’: a
number between zero and one which can be interpreted to signal, for
example, the creditworthiness of a company: the higher the score the
lower the trust. A classification of each company as 𝑌 = 1 or 𝑌 = 0 can
then follow, comparing the score with an appropriate threshold, chosen
on the basis of subject matter experience.

Employing logistic regression models for the analysis of credit scor-
ing seems appropriate, as they are interpretable by default. However,
they sometimes provide a limited predictive accuracy. To improve
predictive accuracy, more complex machine learning models may be
considered, such as neural network models and ensemble tree models.
A high predictive accuracy is fundamental, particularly in the field of
credit risk classification (see, e.g., [11–13], among others). A literature
review on the use of machine learning methods in credit risk can be
found in [14].

Neural network models were developed to mimic the structure
of the human brain. The idea is to treat the brain as made up of
highly interconnected elements (neurons) that work together to solve
specific problems. Neural network models can be described by a graph
organised according to different levels: the input, the hidden and the
output layers, as displayed in Fig. 1.

While the input layer receives information from the external en-
vironment and each neuron in it usually corresponds to a predictor,
the output layer provides the final result to be sent outside of the
system. The hidden layers define the complexity of the neural network
as they contain intermediate computational neurons, whose role is to
increase the model fit. Data allow to learn the weights of the different
connections between the neurons of the network.
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Fig. 2. [(a)] The Lorenz curve (𝐿𝑌 ) and the dual Lorenz curve (𝐿′
𝑌 ) in the binary case; [(b)] The inclusion property 𝐿𝑍(𝑌 ) ⊂ 𝐿𝑍(𝑌 ) in the binary case.
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More formally, a generic neuron 𝑗 receives 𝑛 input signals 𝑥 =
[𝑥1, 𝑥2,… , 𝑥𝑛] from the neurons it is connected to in the previous
layer. Each signal has an importance weight: 𝑤𝑗 = [𝑤1𝑗 , 𝑤2𝑗 ,… , 𝑤𝑛𝑗 ].
The same neuron elaborates the input signals through a combination
function which gives rise to a value, called ‘‘potential’’, computed as:

𝑃𝑗 =
𝑛
∑

𝑗=1
(𝑥𝑖𝑤𝑖𝑗 − 𝜃𝑗 ),

where 𝜃𝑗 is a threshold which is activated only above a certain value:
a cut-off point. The output of the 𝑗th neuron, denoted with 𝑦𝑗 , derives
from the application of a function, called activation function, to the
potential 𝑃𝑗 :

𝑦𝑗 = 𝑓 (𝑥,𝑤𝑗 ) = 𝑓 (𝑃𝑗 ) = 𝑓

( 𝑛
∑

𝑗=1
𝑥𝑖𝑤𝑖𝑗 − 𝜃𝑗

)

.

Ensemble tree models aim to combine the predictions derived from
alternative tree models, thereby improving generalisation and robust-
ness (see, e.g. [15] and the references therein).

The eXtreme Gradient Boosting (XGBoost) is one of the most popu-
lar ensemble tree models, particularly in the context of credit scoring,
as discussed by [5]. The XGBoost is a supervised model based on a
Gradient Boosting Machine (GBM), which combines distinct decision
trees’ predictions to obtain an ‘‘average’’ final prediction. In each
decision tree, the nodes are built on a different subset of the features,
implying that the trees are all different from each other and can catch
distinct information from the data. At each step of the procedure, a
new tree is built, learning from the errors generated by the previous
trees. The XGBoost method shares the same functioning as the GBM,
but it is faster and more advanced, as it provides specific regularisation
techniques that reduce under-fitting and over-fitting of the model, in-
creasing its performance. A mathematical formalisation of the XGBoost
is illustrated in [16].

2.2. Lorenz Zonoid predictive accuracy

Lorenz Zonoids were introduced in [17] as a generalisation of the
ROC curve in a multidimensional setting. They were further developed
by [7] who proposed a Lorenz Zonoid decomposition approach that
can be employed for model comparison purposes. The Lorenz Zonoid
is based on the notion of mutual variability and can be exploited
to develop a partial dependence measure that allows to detect the
additional contribution of a new predictor to the predictive accuracy
of an existing model.
3

p

Given a variable 𝑌 and 𝑛 observations, the Lorenz Zonoid is the area
between the Lorenz and the dual Lorenz curves (see, e.g. [18]).

The Lorenz curve for a variable 𝑌 , denoted with 𝐿𝑌 and obtained
re-ordering the 𝑌 values in non-decreasing sense, has points whose
coordinates can be specified as (𝑖∕𝑛,

∑𝑖
𝑗=1 𝑦𝑟𝑗 ∕(𝑛�̄�)), for 𝑖 = 1,… , 𝑛,

here 𝑟 and �̄� indicate the (non-decreasing) ranks of 𝑌 and the 𝑌 mean
alue, respectively. Similarly, the dual Lorenz curve of 𝑌 , indicated as
′
𝑌 and obtained re-ordering the 𝑌 values in a non-increasing sense,
as points with coordinates (𝑖∕𝑛,

∑𝑖
𝑗=1 𝑦𝑑𝑗 ∕(𝑛�̄�)), for 𝑖 = 1,… , 𝑛, where

indicates the (non-increasing) ranks of 𝑌 . The area lying between the
𝑌 and 𝐿′

𝑌 curves corresponds to the Lorenz Zonoid, whose graphical
epresentation in the case of a binary response variable 𝑌 = {0, 1} is
isplayed in Fig. 2(a).

It is worth mentioning that the Lorenz Zonoid fulfils some relevant
roperties. An important one is the ‘‘inclusion’’ of the Lorenz Zonoid
uilt on the predicted values 𝑌 (𝐿𝑍(𝑌 )) into the Lorenz Zonoid of the
esponse variable 𝑌 (𝐿𝑍(𝑌 )). This property is graphically depicted in

Fig. 2(b).
As shown in [7], given a set of covariates 𝑋′, denote with 𝑌𝑋′∪𝑋𝑘

nd 𝑌𝑋′ , respectively, the predicted values obtained from a model
hich includes 𝑋′ and a further covariate 𝑋𝑘, and those obtained using
nly 𝑋′. The additional contribution of a covariate 𝑋𝑘 can then be
xpressed in terms of a Partial Gini Contribution (𝑃𝐺𝐶) measure as:

𝐺𝐶𝑌 ,𝑋𝑘|𝑋′ =
𝐿𝑍(𝑌𝑋′∪𝑋𝑘

) − 𝐿𝑍(𝑌𝑋′ )

𝐿𝑍(𝑌 ) − 𝐿𝑍(𝑌𝑋′ )
, (1)

where 𝐿𝑍(𝑌𝑋′∪𝑋𝑘
), 𝐿𝑍(𝑌𝑋′ ) and 𝐿𝑍(𝑌 ) define: the Lorenz Zonoids

computed on the predicted values provided by the model that includes
also 𝑋𝑘; the Lorenz Zonoids computed on the predicted values provided
by the model that includes only 𝑋′; the Lorenz Zonoid computed on the
𝑌 target variable values.

The 𝑃𝐺𝐶 measure can be interpreted in a game theoretical context,
defining as pay-off for 𝑋𝑘 a function of the numerator of the 𝑃𝐺𝐶
measure in Eq. (1), as follows:

pay-off (𝑋𝑘) = 𝐿𝑍(𝑌𝑋′∪𝑋𝑘
) − 𝐿𝑍(𝑌𝑋′ ), (2)

where 𝐿𝑍(𝑌𝑋′∪𝑋𝑘
) and 𝐿𝑍(𝑌𝑋′ ) describe the (mutual) variability of

the response variable 𝑌 explained by the models which, respectively,
nclude the 𝑋′ ∪𝑋𝑘 predictors and only the 𝑋′ predictors.

emark 1. When the response variable is binary, 𝑌 = {0, 1}, the terms
̂𝑋′∪𝑋𝑘

and 𝑌𝑋′ in Eqs. (1) and (2) can be re-written as the predicted
robabilities of default �̂� and �̂� , using a model that includes also the
𝑋′∪𝑋𝑘 𝑋′
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explanatory variable 𝑋𝑘, or a model that does not include the explanatory
ariable 𝑋𝑘. Thus, equations in (1) and (2) become

𝐺𝐶𝑌 ,𝑋𝑘|𝑋′ =
𝐿𝑍(�̂�𝑋′∪𝑋𝑘

) − 𝐿𝑍(�̂�𝑋′ )
𝐿𝑍(𝑌 ) − 𝐿𝑍(�̂�𝑋′ )

(3)

and

pay-off (𝑋𝑘) = 𝐿𝑍(�̂�𝑋′∪𝑋𝑘
) − 𝐿𝑍(�̂�𝑋′ ). (4)

emark 2. The pay-off in Eqs. (2) and (4) measures a predictive gain,
hat is, the contribution to the explanation of the response variable due to
ach additional predictor included into the model. This result derives from
he decomposition of the Lorenz Zonoid, which can be expressed as the sum
f a component related to the explanatory variables 𝑋′, and of a further
omponent, function of the additional explanatory variable 𝑋𝑘.

The previously mentioned decomposition specialises what proved
y [7], in the case of a continuous response, to the binary case.
ore precisely, in [7] the Authors prove that the overall contribution

rovided by 𝐾 covariates to the explanation of a continuous response
ariable depends on the single contributions according to the following
ormula:

𝐺𝐶(𝑌 |𝑋1 ,…,𝑋𝐾 ) =
𝐾
∑

𝑗=1
𝑃𝐺𝐶𝑌 ,𝑋𝑗 |𝑋𝑖<𝑗

(1 −𝑀𝐺𝐶𝑌 |𝑋1 ,…,𝑋𝑗−1
), (5)

here 𝑀𝐺𝐶(𝑌 |𝑋1 ,…,𝑋𝐾 ) denotes the overall response variable variabil-
ty explained by all the explanatory variables (i.e., 𝐿𝑍(𝑌𝑋1 ,…,𝑋𝐾

));
𝐺𝐶𝑌 ,𝑋𝑗 |𝑋𝑖<𝑗

is the contribution associated with the 𝑗th explanatory
ariable included into the model and 𝑀𝐺𝐶𝑌 |𝑋1 ,…,𝑋𝑗−1

is the overall
ontribution provided by the remaining (𝑗 − 1)th explanatory variables
i.e., 𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑗−1

)), with 𝑗 = 1,… , 𝐾.

Note that the previous decomposition parallels the well known
ecomposition of the goodness of fit coefficient 𝑅2 for linear models:

2
𝑌 ,𝑋1 ,…,𝑋𝐾

=
𝐾
∑

𝑗=1
𝑟2𝑌 ,𝑋𝑗 |𝑋𝑖<𝑗

(1 − 𝑅2
𝑌 ,𝑋1 ,…,𝑋𝑗−1

), (6)

here 𝑅2
𝑌 ,𝑋1 ,…,𝑋𝐾

represents the determination coefficient of the linear
odel built on the 𝐾 explanatory variables, 𝑅2

𝑌 ,𝑋1 ,…,𝑋𝑗−1
denotes the

oefficient of multiple correlation between 𝑌 and the fitted plane deter-
ined by the explanatory variables 𝑋1,… , 𝑋𝑗−1, and 𝑟𝑌 ,𝑋𝑗 |𝑋𝑖<𝑗

denotes
he coefficient of partial correlation between 𝑌 and 𝑋𝑗 , conditional on
he explanatory variables previously included into the model.

The analogy with the 𝑅2 decomposition can be exploited to derive
decomposition of the Lorenz Zonoid for binary response variables.

o achieve this goal, we need to define goodness of fit for a binary
esponse variable. A contribution in this direction can be found in [19],
hich shows that, in the binary case

2 =
𝑉 𝑎𝑟(�̂�)

𝑉 𝑎𝑟(�̂�) +
∑𝑛

𝑖=1 �̂�𝑖(1 − �̂�𝑖)∕𝑛
, (7)

where 𝑉 𝑎𝑟(�̂�) is the sample variance (see, e.g. [20]).

Suppose to consider, for the sake of simplicity, only two explanatory
ariables 𝑋1 and 𝑋2 (i.e., 𝐾 = 2). Eq. (6) can then be expressed as:

2
𝑋1 ,𝑋2

=
𝑉 𝑎𝑟(�̂�𝑋1

)

𝑉 𝑎𝑟(�̂�𝑋1
) +

∑𝑛
𝑖=1 �̂�𝑋1𝑖

(1 − �̂�𝑋1𝑖
)∕𝑛

+
𝑉 𝑎𝑟(�̂�𝑋1∪𝑋2

) − 𝑉 𝑎𝑟(�̂�𝑋1
)

∑𝑛
𝑖=1 �̂�𝑋1𝑖

(1 − �̂�𝑋1𝑖
)∕𝑛

+

[

1 −
𝑉 𝑎𝑟(�̂�𝑋1

)

𝑉 𝑎𝑟(�̂�𝑋 ) +
∑𝑛 �̂�𝑋 (1 − �̂�𝑋 )∕𝑛

]

. (8)
4

1 𝑖=1 1𝑖 1𝑖
And the decomposition in Eq. (5) can be expressed as:

𝑀𝐺𝐶(𝑌 |𝑋1 ,𝑋2) = 𝑀𝐺𝐶𝑌 |𝑋1
+ 𝑃𝐺𝐶𝑌 ,𝑋2|𝑋1

(1 −𝑀𝐺𝐶𝑌 |𝑋1
)

=
𝐿𝑍(�̂�𝑋1

)
𝐿𝑍(𝑌 )

+
𝐿𝑍(�̂�𝑋1∪𝑋2

) − 𝐿𝑍(�̂�𝑋1
)

𝐿𝑍(𝑌 ) − 𝐿𝑍(�̂�𝑋1
)

[

1 −
𝐿𝑍(�̂�𝑋1

)
𝐿𝑍(𝑌 )

]

,

(9)

where
𝐿𝑍(�̂�𝑋1∪𝑋2 )

𝐿𝑍(𝑌 ) = 𝑀𝐺𝐶(𝑌 |𝑋1 ,𝑋2) represents the response variability
share explained by the two jointly considered explanatory variables
𝑋1 and 𝑋2;

𝐿𝑍(�̂�𝑋1∪𝑋2 )−𝐿𝑍(�̂�𝑋1 )
𝐿𝑍(𝑌 )−𝐿𝑍(�̂�𝑋1 )

= 𝑃𝐺𝐶𝑌 ,𝑋2|𝑋1
measures the partial

contribution provided by the inclusion of the explanatory variable 𝑋2

in the model;
[

1−
𝐿𝑍(�̂�𝑋1 )
𝐿𝑍(𝑌 )

]

denotes the variability not explained by 𝑋1.
We remark that the relation in Eq. (9) can be derived using the

proof of Result 5 in [7]. It can also be shown that, when used in a
stepwise model selection procedure, the path selected by the Lorenz
Zonoid has a monotonicity property. More precisely, following the
inclusion property, The Lorenz Zonoids of the predictions generated by
a more complex model is an area which is greater than that associated
with a simpler model, implying that the explained variation of 𝑌
monotonically increases with the number of predictors included into
the model.

Remark 3. The Lorenz Zonoids 𝐿𝑍(�̂�𝑋′∪𝑋𝑘
) and 𝐿𝑍(�̂�𝑋′ ) can also be

expressed using ordinary covariance operators (see, e.g. [21]):

𝐿𝑍(�̂�𝑋′∪𝑋𝑘
) =

2𝐶𝑜𝑣(�̂�𝑋′∪𝑋𝑘
, 𝑟(�̂�𝑋′∪𝑋𝑘

))
𝑛𝐸(�̂�𝑋′∪𝑋𝑘

)
and

𝐿𝑍(�̂�𝑋′ ) =
2𝐶𝑜𝑣(�̂�𝑋′ , 𝑟(�̂�𝑋′ ))

𝑛𝐸(�̂�𝑋′ )
, (10)

where 𝑟(�̂�𝑋′∪𝑋𝑘
) and r(�̂�𝑋′ ) are the rank scores of �̂�𝑋′∪𝑋𝑘

and �̂�𝑋′ ; 𝑛 is the
sample size; 𝐸(�̂�𝑋′∪𝑋𝑘

) and 𝐸(�̂�𝑋′ ) are the expected values of �̂�𝑋′∪𝑋𝑘
and

̂𝑋′ .

.3. Lorenz Zonoid model comparison

We now move to model comparison.
A stepwise model comparison procedure can be implemented con-

idering the term 𝐿𝑍(�̂�𝑋′∪𝑋𝑘
)−𝐿𝑍(�̂�𝑋′ ) in Eq. (4). The procedure starts

building 𝐾 models, each depending on one of the 𝐾 predictors, and
hen computing the Lorenz Zonoids of the predicted values derived
rom any single model.

In a forward stepwise algorithm the predictor providing the highest
orenz Zonoid value can be chosen as the first variable to be included
nto the model. Otherwise, in a backward stepwise algorithm, the
redictor with the lowest Lorenz Zonoid value can be chosen as the
irst variable to be removed from the full model.

In the former case, the procedure continues by fitting, at each step,
more complex model that includes the predictor which provides the
ighest contribution in terms of the difference in Eq. (4). In the latter
ase, the procedure continues by fitting, at each step, a simpler model
btained deleting the predictor with the lowest contribution in terms
f the same difference in Eq. (4).

To evaluate the statistical contribution of a single variable, we need
o derive the distribution of the difference 𝐿𝑍(�̂�𝑋′∪𝑋𝑘

)−𝐿𝑍(�̂�𝑋′ ), where
̂𝑋′∪𝑋𝑘

are the predicted values generated by the most complex model
involving the additional 𝑋𝑘 variable) and �̂�𝑋′ are the predicted values
enerated by the simplest model (without the 𝑋𝑘 variable).

To this aim, based on Eq. (10), the difference in Eq. (4) can be
xpressed as:

𝑍(�̂�𝑋′∪𝑋𝑘
) − 𝐿𝑍(�̂�𝑋′ ) =

2𝐶𝑜𝑣(�̂�𝑋′∪𝑋𝑘
, 𝑟(�̂�𝑋′∪𝑋𝑘

))
𝑛𝐸(�̂�𝑋′∪𝑋𝑘

)
−

2𝐶𝑜𝑣(�̂�𝑋′ , 𝑟(�̂�𝑋′ ))
𝑛𝐸(�̂�𝑋′ )

.

(11)
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As 𝑟(⋅)∕𝑛 is the empirical transformation of the cumulative dis-
tribution function 𝐹 (⋅), the terms in Eq. (11) can be re-written as:

𝐿𝑍(�̂�𝑋′∪𝑋𝑘
)−𝐿𝑍(�̂�𝑋′ ) =

2𝐶𝑜𝑣(�̂�𝑋′∪𝑋𝑘
, 𝐹 (�̂�𝑋′∪𝑋𝑘

))
𝐸(�̂�𝑋′∪𝑋𝑘

)
−

2𝐶𝑜𝑣(�̂�𝑋′ , 𝐹 (�̂�𝑋′ ))
𝐸(�̂�𝑋′ )

,

(12)

where 𝐹 (�̂�𝑋′∪𝑋𝑘
) and 𝐹 (�̂�𝑋′ ) are the cumulative distribution functions

f �̂�𝑋′∪𝑋𝑘
and �̂�𝑋′ , respectively.

In the case of linear regression, the mean of the predicted response
alues is always equal to the mean of the original target values, imply-
ng that 𝐸(𝑌 ) = 𝐸(𝑌 ). For more general models, the aforementioned
ondition does not fully hold, implying that 𝐸(�̂�𝑋′∪𝑋𝑘

) = 𝐸(�̂�𝑋′ ) = 𝜇
becomes a reasonable approximation. Assuming such approximation,
Eq. (12), which describes the marginal contribution (𝑀𝐶) provided by
𝑋𝑘, can be simplified as follows:

𝑀𝐶 =
2𝐶𝑜𝑣(�̂�𝑋′∪𝑋𝑘

, 𝐹 (�̂�𝑋′∪𝑋𝑘
))

𝜇
−

2𝐶𝑜𝑣(�̂�𝑋′ , 𝐹 (�̂�𝑋′ ))
𝜇

. (13)

In line with the previous mathematical derivations, we propose 𝛾 as
an adjusted version of Eq. (13), i.e.

𝛾 =
𝜇
2
⋅𝑀𝐶 = 𝐶𝑜𝑣(�̂�𝑋′∪𝑋𝑘

, 𝐹 (�̂�𝑋′∪𝑋𝑘
)) − 𝐶𝑜𝑣(�̂�𝑋′ , 𝐹 (�̂�𝑋′ )). (14)

By indicating the covariances 𝐶𝑜𝑣(�̂�𝑋′∪𝑋𝑘
, 𝐹 (�̂�𝑋′∪𝑋𝑘

)) = 𝜉(�̂�𝑋′∪𝑋𝑘
)

and 𝐶𝑜𝑣(�̂�𝑋′ , 𝐹 (�̂�𝑋′ )) = 𝜉(�̂�𝑋′ ), 𝛾 in (14) can be re-expressed as:

= 𝜉(�̂�𝑋′∪𝑋𝑘
) − 𝜉(�̂�𝑋′ ). (15)

A test for the equality of the two Lorenz Zonoids, assuming the
ontinuity of the �̂� distribution, can thus be developed by setting the
ollowing hypotheses:

0 ∶ 𝜉(�̂�𝑋′∪𝑋𝑘
) = 𝜉(�̂�𝑋′ ) vs 𝐻1 ∶ 𝜉(�̂�𝑋′∪𝑋𝑘

) ≠ 𝜉(�̂�𝑋′ ).

To proceed with the test, 𝜉(�̂�𝑋′∪𝑋𝑘
) and 𝜉(�̂�𝑋′ ) can be derived

n terms of 𝑈 -statistics, which estimate 𝐶𝑜𝑣(�̂�𝑋′∪𝑋𝑘
, 𝐹 (�̂�𝑋′∪𝑋𝑘

)) and
𝑜𝑣(�̂�𝑋′ , 𝐹 (�̂�𝑋′ )), respectively.

To better clarify this issue, let us first provide the general definition
f a 𝑈 -statistic.

efinition 1. A 𝑈 -statistic of order 𝑝 with kernel ℎ is defined as

= 1
(𝑛
𝑝

)

∑

𝑖⊆[𝑛]
ℎ(𝑋𝑖1 ,… , 𝑋𝑖𝑝 ),

here ℎ is a real-valued measurable function symmetric in its argu-
ments (see, e.g. [22]).

For a generic variable 𝑋, [23] has shown that 𝐶𝑜𝑣(𝑋,𝐹 (𝑋)) can be
expressed in terms of a 𝑈 -statistic as follows:

𝑈 = 1
(𝑛
2

)

∑∑

𝑖<𝑗
ℎ(𝑋𝑖, 𝑋𝑗 ) (16)

= 1
(𝑛
2

)

∑∑

𝑖<𝑗

1
4
[

(𝑋𝑖 −𝑋𝑗 )𝐼𝑋𝑖>𝑋𝑗
+ (𝑋𝑗 −𝑋𝑖)𝐼𝑋𝑗>𝑋𝑖

]

= 1
(𝑛
2

)

∑∑

𝑖<𝑗

1
4
|𝑋𝑖 −𝑋𝑗 |,

here 𝐼𝑋𝑖>𝑋𝑗
and 𝐼𝑋𝑗>𝑋𝑖

are the indicator functions taking values equal
o 1 if 𝑋𝑖 > 𝑋𝑗 and 𝑋𝑗 > 𝑋𝑖, respectively, and values equal to 0

otherwise.
In Eq. (16), the 𝑈 -statistic’s kernel ℎ(𝑋𝑖, 𝑋𝑗 ) is symmetric of degree

2 for the parameter 𝐶𝑜𝑣(𝑋,𝐹 (𝑋)) and it thus results a consistent
estimate of 𝐶𝑜𝑣(𝑋,𝐹 (𝑋)) (see, e.g. [23]). Note that 4𝑈 corresponds to
the Gini’s mean difference.

It is also worth remarking that a direct computation of a 𝑈 -statistic
is computationally intensive, with a complexity 𝑂(𝑛2) (see, e.g. [24]).
To overcome this drawback, 𝑈 can be written as a linear combination of
order statistics, reducing the computation to 𝑂(𝑛 log 𝑛). For this reason,
5

as shown by [25] and subsequently by [26] (page 199), 𝑈 can be
re-formulated as:

𝑈 = 1
4
(𝑛
2

)

𝑛
∑

𝑖=1
(2𝑖 − 1 − 𝑛)𝑋(𝑖). (17)

Following the previous arguments, the estimators of 𝜉(�̂�𝑋′∪𝑋𝑘
) and

̂(�̂�𝑋′ ) in Eq. (15) can be defined as:

̂(�̂�𝑋′∪𝑋𝑘
) = 𝑈1 =

1
4
(𝑛
2

)

𝑛
∑

𝑖=1
(2𝑖 − 1 − 𝑛)�̂�𝑋′∪𝑋𝑘 (𝑖)

and

𝜉(�̂�𝑋′ ) = 𝑈2 =
1

4
(𝑛
2

)

𝑛
∑

𝑖=1
(2𝑖 − 1 − 𝑛)�̂�𝑋′

(𝑖)
,

where �̂�𝑋′∪𝑋𝑘 (𝑖)
and �̂�𝑋′

(𝑖)
are the 𝑖th order statistics of �̂�𝑋′∪𝑋𝑘1

,… ,
̂𝑋′∪𝑋𝑘𝑛

and �̂�𝑋′
1
,… , �̂�𝑋′

𝑛
, respectively.

Inference on the single parameters 𝜉(�̂�𝑋′∪𝑋𝑘
) and 𝜉(�̂�𝑋′ ) can then be

ormalised based on Theorem 10.1, reported in [26], as follows:

heorem 1.
Let 𝑋1,… , 𝑋𝑛 be independent random variables having a distribution

unction 𝐹 with finite second moment. The 𝑈 -statistic for the parameter 𝜃,
with a symmetric kernel ℎ(𝑋1,… , 𝑋𝑝) of degree 𝑝, is an unbiased estimator
for 𝜃 and the distribution of

√

𝑛(𝑈 − 𝜃) converges to a normal distribution
as 𝑛 → ∞ under the condition that 𝐸(ℎ2(𝑋1,… , 𝑋𝑝)) exists.

From Theorem 1, it follows that
√

𝑛(𝑈1 − 𝜉(�̂�𝑋′∪𝑋𝑘
)) and

√

𝑛(𝑈2 −
𝜉(�̂�𝑋′ )) converge to a normal distribution as 𝑛 → ∞.

An estimator of 𝛾 in Eq. (15) can then be provided as a function of
two dependent 𝑈 -statistics:

�̂� = 𝜉(�̂�𝑋′∪𝑋𝑘
) − 𝜉(�̂�𝑋′ ) = 𝑈1 − 𝑈2. (18)

According to Theorem 3.5 proposed by [27] and further reported as
Theorem 10.4 in [26], it also results that the asymptotic distribution of
a function of several (dependent) 𝑈 -statistics converges to the normal
distribution as 𝑛 → ∞. Thus, it follows that

√

𝑛(�̂� − 𝛾) is gaussian.
To be generalisable, the proposed test should be applicable in a

large class of distributions, including the gaussian, and should be es-
sentially ‘‘distribution-free’’ or at least asymptotically distribution free
(see, e.g. [26]). In order to draw inference on Lorenz Zonoids, we can
exploit the fact that their estimators are 𝑈 -statistics of degree 2. Then,
we can resort to the 𝑈 -statistic theory (Theorem 1 above) to develop
hypotheses tests, based on the asymptotic normality of 𝑈1 and 𝑈2, so
to find the asymptotic variance of �̂�. Following this line of reasoning,
the test can be applied to any kind of data distributions (binary, ordinal
and continuous).

As proved by [28], consistent estimators of the standard error
of 𝑈 -statistics can be obtained by the jackknife resampling method.
Specifically, the 𝑛 values of �̂�, �̂�(−𝑖) (where 𝑖 = 1,… , 𝑛), can be calculated
by omitting one pair (�̂�𝑋′∪𝑋𝑘

, �̂�𝑋′ ) at a time. The estimated variance
equals to:

𝑉 𝑎𝑟(�̂�) = 𝑛 − 1
𝑛

𝑛
∑

𝑖=1
(�̂�(−𝑖) − �̄�)2,

where �̄� is the average of �̂�(−𝑖), for 𝑖 = 1,… , 𝑛.
Following the previous derivations, the null hypothesis 𝐻0 ∶ 𝜉

(�̂�𝑋′∪𝑋𝑘
) = 𝜉(�̂�𝑋′ ) can be tested by the test statistic:

𝑍 =
�̂�

√

𝑉 𝑎𝑟(�̂�)
⋀

→ 𝑁(0, 1) (19)

and, for a given selected significance level 𝛼, a rejection region for the
null hypothesis 𝐻 can be defined by: |𝑍| ≥ 𝑧 𝛼 .
0 2
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Table 1
Correlation matrix.

𝑌 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6

𝑌 1 0.8 0.5 0.3 0.1 0 0
𝑋1 1 0.2 0.7 0.3 0 0
𝑋2 1 0.05 0.1 0 0
𝑋3 1 0.5 0 0
𝑋4 1 0 0
𝑋5 1 0
𝑋6 1

3. Simulation studies

In this section we present simulation studies aimed at examining
the performance of the proposed model comparison procedure based
on Lorenz Zonoids.

The simulation designs are illustrated in Section 3.1, whereas the
corresponding results are reported and commented in Section 3.2.

3.1. Simulation designs

To validate our proposal, we focus on three different simulation
designs:

1. we first consider a vector of seven random variables, including a
response variable 𝑌 and six explanatory variables 𝑋1,… , 𝑋6, and
we assume it to be distributed as a seven-dimensional normal
distribution, with a correlation matrix specified as in Table 1.
Table 1 assumes that:

- 𝑌 is highly correlated with 𝑋1: 𝜌 = 0.8;
- 𝑌 is correlated with 𝑋2: 𝜌 = 0.5;
- 𝑌 has a low correlation with 𝑋3: 𝜌 = 0.3;
- 𝑌 has a very low correlation with 𝑋4: 𝜌 = 0.1;
- 𝑌 is not correlated with 𝑋5 and 𝑋6: 𝜌 = 0.
- Variables 𝑋5 and 𝑋6 are not correlated with the other four

explanatory variables 𝑋1, 𝑋2, 𝑋3 and 𝑋4.

From the above distribution, we generate two samples with,
respectively, 1,000 and 10,000 observations.
In line with the paper, we then binarise the response variable
𝑌 around its average, with a resulting proportion of 1s approx-
imately equal to 50%: a balanced dataset. We also binarise 𝑌
around the first quartile, leading to an unbalanced dataset with
a proportion of 1s approximately equal to 75%.
We apply our procedure to the predictions obtained from a logis-
tic regression models, explainable by design and, consequently,
simpler to be understood.
The data is split into a training set, composed of 80% of the
observations, and a test set, composed of the remaining 20%.
A forward stepwise procedure is implemented by first fitting a
logistic regression model on the training set and, then, includ-
ing the explanatory variables which progressively provide the
highest marginal contribution to predictive accuracy on the test
set, as measured by the pay-off based on the Lorenz Zonoids.
For comparison purposes, we consider a forward stepwise model
selection based on the AUROC, as well as a goodness of fit
selection procedure based on the AIC. The procedure stops when
the additional contribution provided by a new included pre-
dictor is not significant, using the proposed test to compare
Lorenz Zonoids and the DeLong test to compare ROC curves (see,
e.g. [29]);

2. we replicate the previous simulation 1,000 times. To do so, we
generate 1,000 samples of size 10,000 from the same seven-
dimensional normal distribution, whose correlation matrix is
6

displayed in Table 1 and we binarise the response variable as
before, considering, without loss of generality, the case of bal-
anced data. Because of the sample replications, we will get, for
any pairwise model comparison, 1,000 pay-offs rather than only
one. To carry out model selection, we will derive the sample cu-
mulative distribution function of the considered metrics (Lorenz
Zonoid and AUROC measures) for both models under testing
and apply the Page’s test [30] to verify whether the difference
between two cumulative distribution functions is significant;

3. we extend the simulation study to a high-dimensional setting by
increasing the number of predictors from six to nineteen, to fur-
ther investigate the performance of our proposal in comparison
with that of the AUROC. We then generate 10,000 observations
from a twenty-dimensional normal distribution, with varying
levels of correlation between the response variable 𝑌 and the
19 predictors, specified as follows:

- medium correlation (𝜌 taking values in the range [0.55;
0.44]);

- slightly low correlation: (𝜌 taking values in the range
[0.35; 0.23]);

- low correlation: (𝜌 taking values in the range [0.19; 0.14]);
- almost no correlation: (𝜌 = 0.07).

We then binarise the response variable as before (considering the
case of balanced data) and follow a forward stepwise procedure
similar to what described in the simulation design 1.

3.2. Simulation results

Results from simulation design 1.
The results for model comparison are displayed in Figs. 3 and 4, for

the case of balanced data, and Figs. 5 and 6, for the case of unbalanced
data. More precisely, Figs. 3 and 5 refer to the generating data process
with 1,000 observations, while Figs. 4 and 6 refer to the case of 10,000
observations.

At each step of the stepwise procedure, the significance of the
contribution given by an additional explanatory variable is assessed
through the Lorenz Zonoid and DeLong tests, whose results are reported
in terms of the corresponding 𝑝-values in Figs. 3, 4, 5 and 6 (a)–(b).

Figs. 3 and 5 order the six considered explanatory variables in
terms of their marginal Lorenz Zonoids, AUROC and AIC. When the
marginal Lorenz Zonoid are used (Figs. 3 and 5(a)), the ordering is
consistent with the assumed correlations between the 𝑋 variables and
the response variable. When the AUROC is applied, in Figs. 3 and
5(b) the ordering changes with 𝑋6 (not correlated with 𝑌 ) replacing

4 (correlated with 𝑌 ). Moreover, in the case of unbalanced data,
ariable 𝑋4 is the last to be included, providing the lowest contribution.
inally, the application of the AIC measure (Figs. 3 and 5(c)) reveals a
ehaviour similar to that of the Lorenz Zonoids.

Figs. 3 and 5(a)–(b) report the 𝑝-values that correspond to the
rogressive tests of variable inclusion. Fig. 3(a), for balanced data,
ndicates that a stepwise selection based on the Lorenz Zonoid tests
tops with a model that contains (𝑋1, 𝑋2, 𝑋3), the most correlated
ariables. Fig. 5 (a), for unbalanced data, highlights that the model
hould include variables 𝑋1 and 𝑋2 and, possibly, variable 𝑋3, if a
ignificance level of 𝛼 = 0.10 is considered. Figs. 3 and Fig. 5(b) indicate
imilar results when the stepwise selection is based on the DeLong test
or the AUROC.

Figs. 4 and 6 replicate the previous analysis using a larger sample
f 10,000 observations.

The 𝑝-values in Fig. 4(a), for the balanced data, indicate that, with
he Lorenz Zonoid procedure, variable 𝑋4 becomes significant. On the
ther hand, the procedure based on the AUROC (Fig. 4(b)) fails to
ecognise the correct model, as it selects, besides 𝑋1, 𝑋2, 𝑋3, 𝑋4 also

variable 𝑋6. Looking at Fig. 6, in the case of unbalanced data, the

Lorenz Zonoid procedure leads to the same model selected in the case
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Fig. 3. [(a)] Pay-off (Lorenz Zonoids): 1,000 observations (balanced data) [(b)]
AUROC: 1,000 observations (balanced data) [(c)] AIC: 1,000 observations (balanced
data).

Fig. 4. [(a)] Pay-off (Lorenz Zonoids): 10,000 observations (balanced data) [(b)]
AUROC: 10,000 observations (balanced data) [(c)] AIC: 10,000 observations (balanced
data).
7

Fig. 5. [(a)] Pay-off (Lorenz Zonoids): 1,000 observations (unbalanced data) [(b)] AU-
ROC: 1,000 observations (unbalanced data) [(c)] AIC: 1,000 observations (unbalanced
data).

Fig. 6. [(a)] Pay-off (Lorenz Zonoids): 10,000 observations (unbalanced data) [(b)]
AUROC: 10,000 observations (unbalanced data) [(c)] AIC: 10,000 observations
(unbalanced data).
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Fig. 7. [(a)] Lorenz Zonoid-based measures for each single predictor [(b)] AUROC
easures for each single predictor.

f 1,000 observations, with the only difference being that variable 𝑋3
ecomes significant at a significance level smaller than 0.001.

Last, the AIC procedure provides results which are similar to those
elated to the sample composed of 1,000 observations, both in the case
f balanced and unbalanced data.

In summary, it seems that our proposal is the best performer, as it
ecognises the correct underlying correlation structure in all cases.

esults from simulation design 2.
For each simulated sample, the Lorenz Zonoid and AUROC mea-

ures, associated with any single predictor, are computed. The corre-
ponding empirical distribution functions are depicted in Figs. 7 (a) and
b).

We can now compare the empirical cumulative distribution func-
ions of the two measures, in terms of stochastic dominance. By defi-
ition, first order stochastic dominance provides an order relationship
etween cumulative distribution functions (see, e.g. [31]). Given two
ariables 𝑌 and 𝑋, and denoting with 𝐹 (𝑥) and 𝐹 (𝑦) the corresponding
umulative distribution functions, with 𝐹 (𝑥), 𝐹 (𝑦) ∶ R → [0, 1], 𝐹 (𝑥)

dominates 𝐹 (𝑦) if and only if 𝐹 (𝑥) < 𝐹 (𝑦), ∀𝑥, 𝑦 ∈ R.
From Fig. 7(a) and (b), one can gather that variables 𝑋5 and 𝑋6

present overlapping empirical cumulative distribution functions which
are dominated by the empirical distribution functions of each of the
remaining variables. Specifically, the variable 𝑋1 empirical cumula-
tive distribution function always dominates the others, meaning that
in all the 1,000 extracted samples, it provides the highest contribu-
tion. To further strengthen this conclusion, the Page’s test, which is
based on pointwise comparison of the empirical cumulative distribution
functions, is considered, testing the null hypothesis

𝐻0 ∶𝐹 (𝐿𝑍(𝑌𝑋1
)) = 𝐹 (𝐿𝑍(𝑌𝑋2

)) = 𝐹 (𝐿𝑍(𝑌𝑋3
)) = 𝐹 (𝐿𝑍(𝑌𝑋4

)) =

𝐹 (𝐿𝑍(𝑌𝑋5
)) = 𝐹 (𝐿𝑍(𝑌𝑋6

)),

against the alternative hypothesis

𝐻1 ∶𝐹 (𝐿𝑍(𝑌𝑋1
)) > 𝐹 (𝐿𝑍(𝑌𝑋2

)) > 𝐹 (𝐿𝑍(𝑌𝑋3
)) > 𝐹 (𝐿𝑍(𝑌𝑋4

)) >

𝐹 (𝐿𝑍(𝑌𝑋5
)) > 𝐹 (𝐿𝑍(𝑌𝑋6

)),

where 𝐹 (𝐿𝑍(𝑌𝑋1
)), 𝐹 (𝐿𝑍(𝑌𝑋2

)), 𝐹 (𝐿𝑍(𝑌𝑋3
)), 𝐹 (𝐿𝑍(𝑌𝑋4

)), 𝐹 (𝐿𝑍(𝑌𝑋5
)),

𝐹 (𝐿𝑍(𝑌𝑋6
)) are the cumulative distribution functions of the Lorenz

Zonoid measures calculated on the predicted values derived from the
simple logistic regression models. The same framework can be for-
malised for the AUROC measure, which indeed preserves the same
8
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Fig. 8. [(a)] Lorenz Zonoid-based measures when including variable 𝑋2 [(b)] AUROC
measures when including variable 𝑋2.

ordering induced by the Lorenz Zonoid measure, except for variable
𝑋6 anticipating variable 𝑋5.

The 𝑝-values of the test are smaller than 0.001 for both the Lorenz
Zonoid and AUROC measures, allowing to conclude that the ordered
relationship specified by the alternative hypothesis is fulfilled and that
variable 𝑋1 has the highest impact on the response variable. It follows
hat such variable is included as the first into the model. The stepwise
rocedure continues to detect the ordering of inclusion of the remaining
redictors. In the following steps, the hypotheses test can be generalised
s follows:

0 ∶ 𝐹 (𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘
)) = 𝐹 (𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘−1

))

ersus

1 ∶ 𝐹 (𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘
)) > 𝐹 (𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘−1

)),

here 𝐹 (𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘−1
)) and 𝐹 (𝐿𝑍(𝑌𝑋1 ,…,𝑋𝑘

)) are the empirical cumu-
ative distribution functions of the Lorenz Zonoid measures associated
ith the reduced and complex models, respectively.

In Figs. 8–12, the empirical cumulative distribution functions of the
orenz Zonoid and AUROC measures are displayed. In each plot we
ompare the empirical cumulative distribution function of the Lorenz
onoid and AUROC measures associated with the complex model (in-
luding 𝑘 variables) with that related to the reduced model (including
− 1 variables). The stepwise procedure stops when the difference

etween the empirical cumulative distribution functions of the complex
nd reduced models is no more significant, according to the Page’s test.
he results of the procedure are summarised in Table 2.

By looking at Figs. 8 and 9, note that the inclusion of variables 𝑋2
nd 𝑋3 has a relevant impact on the response variable. This result is
onfirmed by the Page’s test 𝑝-values which are smaller than 0.001.
hus, both variables have to be included in the model.

On the contrary, when considering Fig. 10, it seems that the ad-
itional inclusion of variable 𝑋4 does not significantly contribute to
he explanation of the response variable. However, from the Page’s test
esults, variable 𝑋4 needs to be included in the model, for both the
orenz Zonoid and the AUROC measures.

Finally, when adding variables 𝑋5 and 𝑋6, both AUROC and Lorenz
onoid based stepwise procedures indicate no improvement in model
ccuracy. Indeed, the empirical distribution functions associated with
he complex and reduced models overlap (see Figs. 11 and 12) and the
age’s test 𝑝-values are greater than 10%.

In summary, the simulation design 2, in which the stepwise proce-

ure has been repeated 1,000 times, confirms the conclusions derived
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Fig. 9. [(a)] Lorenz Zonoid-based measure when including variable 𝑋3 [(b)] AUROC
measure when including variable 𝑋3.

Fig. 10. [(a)] Lorenz Zonoid-based measure when including variable 𝑋4 [(b)] AUROC
measure when including variable 𝑋4.

Fig. 11. [(a)] Lorenz Zonoid-based measure when including variable 𝑋5 [(b)] AUROC
measure when including variable 𝑋6.
9

Fig. 12. [(a)] Lorenz Zonoid-based measure when including variable 𝑋6 [(b)] AUROC
measure when including variable 𝑋5.

Table 2
Page test 𝑝-values.

Lorenz Zonoid measure AUROC

Additional included
variable

𝑝-value Additional included
variable

𝑝-value

𝑋2 <0.001 𝑋2 <0.001
𝑋3 <0.001 𝑋3 <0.001
𝑋4 <0.001 𝑋4 <0.001
𝑋5 >0.10 𝑋6 >0.10
𝑋6 >0.10 𝑋5 >0.10

Table 3
Stepwise procedure based on Lorenz Zonoids.

Progressively included
variables

pay-off (𝑋𝑘) based
on Lorenz Zonoids

𝑝-value

𝑋19 – <0.001
𝑋8 0.0537 <0.001
𝑋6 0.0095 <0.001
𝑋9 0.0324 <0.001
𝑋16 0.0023 <0.001
𝑋14 0.0049 <0.001
𝑋7 0.0013 <0.001
𝑋13 0.0321 <0.001
𝑋11 0.0026 <0.001
𝑋18 0.0161 <0.001
𝑋1 0.0377 <0.001
𝑋15 0.0285 <0.001
𝑋12 0.0061 >0.10

from the previous one based on only a single sample. When considering
a significance level of 𝛼 = 0.05, both our proposal and the AUROC
measure lead to select the model built on the 𝑋1, 𝑋2, 𝑋3 and 𝑋4
variables.

Results from simulation design 3.
The results derived from the simulation involving the high-dimensi-

onal setting are illustrated in Tables 3 and 4. Specifically, in Tables 3
and 4, the pay-offs based on Lorenz Zonoids and AUROC are high-
lighted. The stepwise procedure ends when the contribution provided
by an additional predictor results no more significant, according to the
Lorenz Zonoid or to the DeLong tests.

At a significance level 𝛼 = 0.05, the Lorenz Zonoid-based model se-
lection procedure leads to include twelve variables out of the nineteen
originally considered. Conversely, the AUROC-based model selection
procedure selects six variables. From Tables 3 and 4 note also that

the first five variables progressively chosen and added into the model
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Table 4
Stepwise procedure based on AUROC.

Progressively included
variables

pay-off (𝑋𝑘) based
on AUROC

𝑝-value

𝑋19 – <0.001
𝑋8 0.0558 <0.001
𝑋6 0.0106 <0.001
𝑋9 0.0224 <0.001
𝑋16 0.0030 0.0152
𝑋11 0.0070 0.0020
𝑋7 0 >0.10

are the same for both Lorenz Zonoid and AUROC. Whereas the sixth
selected predictor is different: the Lorenz Zonoid chooses 𝑋14 whereas
AUROC chooses 𝑋11.

We remark that, although our proposal leads to a model that is more
complex than that chosen with the AUROC measure, it is more in line
with the true underlying structure, as the selected variables are those
that have a stronger relationship (𝜌 ≥ 0.23) with the response variable.

. Application

.1. Data

In this section we apply our proposed method to data supplied
y Modefinance, a European Credit Assessment Institution (ECAI)
hat specialises in credit scoring for P2P platforms focused on SME
ommercial lending. The whole dataset is described by [32] to which
e refer for further details. Here we focus on the twelve explana-

ory variables selected by the Authors: Total Assets/Total Liabilities
𝑋1); Current Assets/Current Liabilities (𝑋2); (Profit or Loss before
ax+Interest paid)/Total Assets (𝑋3); Return on Equity (𝑋4); Operating

Revenues/Total Assets (𝑋5); Interest paid/(Profit before taxes+Interest
paid) (𝑋6); EBITDA/Interest paid (𝑋7); EBITDA/Operating Revenues
(𝑋8); EBITDA/Sales (𝑋9); Trade Receivables/Operating Revenues (𝑋10);
Inventories/Operating Revenues (𝑋11); Turnover (𝑋12).

The data on the above mentioned explanatory variables are ex-
tracted from the balance-sheets of 15,045 SMEs, mostly based in South-
ern Europe, for the year 2015. The data on the response variable are
obtained from information about the status (0 = active, 1 = defaulted)
of each SME one year later (2016), as collected from the official
registers of bankruptcy. Note that the observed proportion of defaulted
companies is equal to 10.9%.

4.2. Results

With the same data, [32] have constructed logistic regression scor-
ing models that aim at estimating the probability of default of each
company, using the available explanatory data and, in addition, net-
work centrality measures that are obtained from similarity networks.

To improve the predictive performance of the model, [5] have
applied the Gradient Boosting (XGBoost) tree algorithm, and obtained
a substantial increase in predictive performance: the Area Under the
ROC Curve (AUROC) increases from a value of 0.81, obtained with the
application of the logistic regression, to a value of 0.93, obtained with
the Gradient Boosting method.

The same Authors identify the variables 𝑋1 and 𝑋3 as the variables
that rank highest in terms of the Shapley value explanation of the
probability of default, a result that is quite consistent with most credit
scoring models, that typically include, among the explanatory variables
of credit default, a measure of financial leverage (such as variable 𝑋1)
and a measure of profitability (such as variable 𝑋3).

We consider the same data, and the same twelve explanatory vari-
ables as in [5], to which we apply a logistic regression model after the
data is randomly split in a training set (80%) and a test set (20%).
We then calculate, on the test set, the contribution of each of the
10
Fig. 13. [(a)] Logistic regression model - Marginal Lorenz Zonoid [(b)] Logistic
regression model - Marginal AUROC.

explanatory variables to the estimate of the probability of default, using
our proposed Lorenz Zonoid based approach. Additionally to what
Shapley values can do, we provide contributions that are normalised
in the [0, 1] interval, and whose additional value can be assessed in
terms of its statistical significance. Doing so, we show how a model
comparison procedure based on the Lorenz Zonoids can improve the ex-
plainability of a machine learning model, choosing a parsimonious set
of explanatory variables while maintaining a high predictive accuracy.

The implementation of our proposed model comparison procedure
starts by computing the marginal contribution of each single explana-
tory variable 𝑋𝑘, for 𝑘 = 1,… , 12, to the explanation of the probability
of default. The marginal contributions are determined by building
twelve simple logistic regression models, each of them involving only
one of the twelve predictors, and calculating the Lorenz Zonoid value
𝐿𝑍(𝑌𝑋𝑘

) for each of them. This leads to a ranking of the explanatory
variables, to be used in the stepwise procedure. In the forward per-
spective, the variable with the highest 𝐿𝑍(𝑌𝑋𝑘

) value is selected as
the first variable to be included in the model. Then, progressively,
more complex models are implemented by introducing at each step
an additional variable, according to the obtained variable ranking.
Conversely, in the backward perspective, the variable with the lowest
𝐿𝑍(𝑌𝑋𝑘

) value is selected as the first variable to be removed from the
full model and, then, progressively, simpler models are implemented
by deleting at each step according to the reversed variable ranking.

The marginal contributions of each considered explanatory variable,
measured in terms of 𝐿𝑍(𝑌𝑋𝑘

), along with the corresponding value of
the AUROC, for comparison purposes, are displayed in Fig. 13(a) and
(b), respectively.

From Fig. 13(a), the variables that contribute the most are variables
𝑋1 and 𝑋3, as in [5], followed by 𝑋9 and, then, the others. The least
important results to be 𝑋11. Differently, from Fig. 13(b), the most
important variable is 𝑋7, followed by 𝑋1, 𝑋4 and the others. The least
important variable results to be 𝑋11.

We have then implemented a Lorenz Zonoid and an AUROC forward
stepwise procedure starting from 𝑋1 and, then, progressively adding
the other variables, up to the full model. At each step, the additional
contribution of the new added variable is measured by pay-off (𝑋𝑘).
For the sake of completeness, we also report the 𝐹1 accuracy index,

a standard practice as the AUROC, in the seventh column of Table 5.



Socio-Economic Planning Sciences xxx (xxxx) xxxP. Giudici et al.

t
𝐹

r
t

h

c
t
m
b
t
l

a
t
c

w
h
t
e

t

𝑋
A
𝑋

a
T

r
a

𝐹

Table 5
Logistic regression model (forward stepwise) - Marginal contributions (𝐿𝑍(𝑌𝑋𝑘

)); addi-
ional contributions (pay-off (𝑋𝑘)); significance (𝑝-value) of the additional contributions;
1 metric.
ID Variable 𝐿𝑍(𝑌𝑋𝑘

) ID of the
included
variables

pay-off
(𝑋𝑘)

𝑝-value 𝐹1

1 TA/TL 0.3943 1 – – –
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 <0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 <0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Legend: TA/TL = Total assets/Total Liabilities; (PLBT+IP)/TA = (Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S = EBITDA/Sales; TO = Turnover.

Table 6
Logistic regression model (forward stepwise) - Marginal contributions (AUROC); ad-
ditional contributions (difference of AUROC); significance (𝑝-value) of the additional
contributions; 𝐹1 metric.

ID Variable 𝐴𝑈𝑅𝑂𝐶𝑋𝑘
ID of the
included
variables

pay-off
(𝑋𝑘)

𝑝-value 𝐹1

7 EBITDA/IP 0.7753 7 – – –
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

Legend: EBITDA/IP = EBITDA/Interest paid; TA/TL = Total assets/Total Liabilities.

To decide when to stop the procedure, we apply the statistical test pro-
posed in Section 2.3 and, then, continue the process until the additional
contribution is significantly different from zero. In this way the selected
model represents a good trade-off between predictive accuracy (which
increases with model complexity) and explainability (which decreases
with model complexity).

The results of the procedure, based on the Lorenz Zonoid pay-offs,
are illustrated in Table 5.

Looking at Table 5 and, in particular, at the 𝑝-values of the test,
eported in the sixth column, we obtain that the best model includes
hree explanatory variables: 𝑋1, 𝑋3, as in the reference literature (see,

e.g. [5]), and also variable 𝑋9. For comparison purposes, Table 6
ighlights the results of the procedure based on the AUROC differences.

In agreement with Fig. 13(b), Table 6 shows that the best model
ontains variable 𝑋7 (EBITDA/Interest paid). In addition, the DeLong
est indicates to stop at that point, leading to a very parsimonious
odel, with only one variable. We remark that the result of the AUROC

ased procedure is not in line with the literature, as it includes in
he model a measure of profitability but not a measure of financial
everage.

We also remark that, for robustness purposes, we have implemented
backward stepwise procedure, for both the Lorenz Zonoid pay-off and

he AUROC. The results have confirmed the significance of the variables
ontained in the models selected with the forward procedure.

We now report the results of model comparison, for a neural net-
ork model built (without loss of generality) with five neurons in the
idden layer. Specifically, we apply a feedforward multilayer percep-
ron neural network characterised by straight forward networks (see,
.g. [33]).

The behaviour of the 𝐿𝑍(𝑋𝑘) and of the AUROC for each explana-
ory variable is shown in Figs. 14 (a) and (b), respectively.

From Fig. 14(a), the variables that contribute the most are variables
7 and 𝑋1, and similarly in Fig. 14(b), although in a reversed order.
dditionally, Fig. 14(b) indicates a high importance also for variable
6. In both cases, the least important results to be 𝑋11.

The results of the stepwise procedure for the neural network models
re reported, respectively, in Table 7, for the 𝐿𝑍(𝑋𝑘) measure; and in
able 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs for logistic
egression models, the neural network procedure selects two variables,
nd one is 𝑋 . However, the second variable is 𝑋 and not 𝑋 . From a
11
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Fig. 14. [(a)] Neural network model - Marginal Lorenz Zonoid [(b)] Neural network
model - Marginal AUROC.

Table 7
Neural network model (forward stepwise) - Marginal contributions (𝐿𝑍(𝑌𝑋𝑘

)); addi-
tional contributions (pay-off (𝑋𝑘)); significance (𝑝-value) of the additional contributions;
1 metric.
ID Variable 𝐿𝑍(𝑌𝑋𝑘

) ID of the
included
variables

pay-off
(𝑋𝑘)

𝑝-value 𝐹1

1 TA/TL 0.5343 1 – – –
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 <0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

Legend: TA/TL = Total assets/Total Liabilities; IP/(PBT+IP) = Interest paid/(Profit
before taxes + Interest paid); EBITDA/IP = EBITDA/Interest paid.

Table 8
Neural network model (forward stepwise) - Marginal contributions (AUROC); additional
contributions in terms of AUROC difference; significance (𝑝-value) of the additional
contribution; 𝐹1 metric.

ID Variable 𝐴𝑈𝑅𝑂𝐶𝑋𝑘
ID of the
included
variables

pay-off
(𝑋𝑘)

𝑝-value 𝐹1

1 TA/TL 0.7809 1 – – –
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

Legend: TA/TL = Total assets/Total Liabilities; EBITDA/IP = EBITDA/Interest paid;
IP/(PBT+IP) = Interest paid/(Profit before taxes+Interest paid).

financial viewpoint, the results are indeed similar, as both 𝑋3 and 𝑋6
measure profitability, whereas 𝑋1 indicates financial leverage.

Similar conclusions can be derived when the AUROC metric is
employed in place of the Lorenz Zonoid pay-off. Table 8 shows that,
again, two explanatory variables are included in the selected model.
While the first one is confirmed to be 𝑋1, the second is 𝑋7, instead of
𝑋6: another function of the profitability. These results are confirmed
when a backward selection procedure is implemented, for robustness.

In summary, the application of the procedure to neural networks
shows that both the Lorenz Zonoid and the AUROC model selection
lead to choose a model with two variables (one measuring leverage and
one measuring profitability), which represents a very good trade-off
between explainability and accuracy. On one hand, the model is more
explainable than the full model, as the response depends significantly
only on two variables, and we know which ones (whereas a full neural
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Fig. 15. [(a)] XGBoost model - Marginal Lorenz Zonoid [(b)] XGBoost model - Marginal
AUROC.

Table 9
XGBoost model (forward stepwise)- Marginal contribution in terms of each single
explanatory variable (𝐿𝑍(𝑌𝑋𝑘

)); marginal contribution in terms of any additional
explanatory variable (pay-off (𝑋𝑘)); the marginal contribution significance (𝑝-value); 𝐹1
metric.

ID Variable 𝐿𝑍(𝑌𝑋𝑘
) ID of the

included
variables

pay-off
(𝑋𝑘)

𝑝-value 𝐹1

1 TA/TL 0.5565 1 – – –
7 EBITDA/IP 0.5496 1, 7 0.0747 <0.001 0.4170
6 IP/(PBT+IP) 0.5212 1, 7, 6 0.0052 <0.001 0.4386
4 ROE 0.5210 1, 7, 6, 4 0.0035 0.0758 0.4390

Legend: TA/TL = Total assets/Total Liabilities; EBITDA/IP = EBITDA/Interest paid;
IP/(PBT+IP) = Interest paid/(Profit before taxes+Interest paid); ROE = Return on
Equity.

Table 10
XGBoost model (forward stepwise) - Marginal contributions (AUROC); additional
contributions in terms of AUROC difference; significance (𝑝-value) of the additional
contribution; 𝐹1 metric.

ID Variable 𝐿𝑍(𝑌𝑋𝑘
) ID of the

included
variables

pay-off
(𝑋𝑘)

𝑝-value 𝐹1

7 EBITDA/IP 0.7710 7 – – –
1 TA/TL 0.7672 7, 1 0.0362 <0.001 0.4170
4 ROE 0.5210 7, 1, 4 0.0068 0.1282 0.4105

Legend: EBITDA/IP = EBITDA/Interest paid; TA/TL = Total assets/Total Liabilities;
ROE = Return on Equity.

network model is a black-box); on the other hand, the model is accurate
as its predictive accuracy is not significantly improved making it more
complex (adding more variables).

We can apply our procedure, in the same way, to another type of
machine learning model: the XGBoost, which belongs to the class of
tree models. The results are illustrated, from a graphical view point, in
Fig. 15(a) and (b); and are specified with numerical details in Tables 9
and 10.

Fig. 15(a) shows that variables 𝑋1 and 𝑋7, followed by 𝑋6, are the
factors with the highest impact on the probability of default. Fig. 14(b)
shows a similar result, swapping 𝑋 with 𝑋 and replacing 𝑋 with 𝑋 .
12
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Table 11
Predictive accuracy of the selected and full models.

AUROC
selected model

AUROC
full model

Logistic regression model 0.8037 0.8045
Neural network model 0.7800 0.7810
XGBoost 0.8110 0.8557

In terms of model selection, both procedures lead to select a model
that contains 𝑋1 and 𝑋7. Additionally, the Lorenz Zonoid based pro-
cedure includes also 𝑋6, leading to a more complex model, with
three significant contributions. We remark that also in this case, the
backward model search confirms the selected variables.

The conclusions that can be drawn from the XGBoost model selec-
tion procedure are in line with those from the neural network model.
Overall, the empirical findings from our analysis can be summarised
with the conclusion that the proposed model selection procedure, based
on the Lorenz Zonoids, is able to simplify a black-box machine learning
model into an explainable model.

From a financial viewpoint, all models indicate that the most impor-
tant variables for credit scoring are: a measure of financial leverage and
a measure of profitability, confirming the previous analysis of [5,32] on
the same data.

A natural question that arises is: which of the three model cham-
pions is the best model overall, both in absolute terms (predictive
accuracy) and in relative terms, with respect to the full model (ex-
plainability)? To answer this question, the logistic regression, neural
network and XGBoost models selected with the Lorenz Zonoid approach
are compared in terms of the predictive accuracy of their full model
and selected model. To achieve an ‘‘external’’ evaluation, predictive
accuracy is evaluated using the AUROC measure. The results can be
found in Table 11.

From Table 11 note that the best machine learning model, in terms
of predictive accuracy, is the XGBoost model, with an AUROC of 0.811;
whereas the neural network model is the worst one, with an AUROC of
0.78. On the other hand, the XGboost model is the least explainable
model: differently from what occurs for the logistic regression and
neural networks, the AUROC of the full model reduces substantially and
in a significant way (𝑝-value greater than 0.05) moving to the reduced
model.

5. Concluding remarks

The paper proposes to improve machine learning models by means
of a model selection methodology, based on the Lorenz Zonoids, which
allows to maintain a high predictive accuracy, explaining the predic-
tions with a parsimonious set of explanatory variables.

We remark that our approach is quite general, and can be applied
to different types of machine learning models: support vector ma-
chines, neural networks and deep learning, random forest and gradient
boosting.

In the case of a binary response, the approach is consistent with the
results that can be obtained applying the well known AUROC accuracy
measure.

Further advantages of our proposed procedure are: its generality (in
the paper we have considered a binary response, but the same tool can
be applied for ordinal or continuous response, differently from what
occurs for the AUROC); its computational efficiency (we do not need to
calculate the Lorenz Zonoids of all models, but only of those considered
in the stepwise path, differently from what occurs with the Shapley
value approach to explainability).

The application of the proposal to simulated data has shown that
it is capable to select the correct underlying model, and to take into
account the sample size. The application of the proposal to a real
credit scoring database has shown its capability to identify, as relevant
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variables, those that concern the profitability and the financial leverage
of the companies asking for credit, in line with the subject matter
literature.

We believe that the proposed method could be employed as a use
case to improve the compliance of Artificial Intelligence applications
in finance to the emerging regulations, such as the European AI act
(http:artificialintelligenceact.eu).

Further research may focus on the application of the methodology
to other machine learning applications, that involve different type
of variables: ordinal or continuous. The generality of the proposed
measure allows to do so, differently from what occurs with available
metrics such as the AUROC and the MSE.
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