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Artificial intelligence: risks

I Cyber technologies bring also risks, such as cyber risks

and model risks.

I Policy makers, regulators, supervisors and

standardisation bodies around the world are promoting

AI risk management, measuring AI risks to make it

sustainable.

I A reference model is the European Artificial Intelligence

Act, which requires risk management of high risk AI

applications.
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Requirements for a trustworthy Artificial
Intelligence
For a trustworthy AI the key principles of accuracy, sustainability,

fairness, explainability have to be developed.

Model comparison

I Machine Learning models can be compared in terms of their

associated predictive capability (accuracy).

I Complex Machine Learning models can be evaluated in terms

of their interpretability (explainability).

Evaluation of a specific model

I A specific model can be evaluated in terms of its robustness

with respect to perturbed data (sustainability).

I A specific model can be evaluated in terms of equality with

respect to the di↵erent groups (gender, ethnicity, . . . )

composing the population (fairness).
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Explainable Artificial Intelligence
Black box Artificial Intelligence (AI) is not suitable in regulated

financial services. Thus, eXplainable AI (XAI) methods are

necessary.

Definition
Explainability means that an interested stakeholder can

comprehend the main drivers of a model-driven decision.

Problem

I “Simple” machine learning-models provide a high

interpretability but, possibly, a limited predictive accuracy.

I “Complex” machine learning-models provide a high predictive

accuracy at the expense of a limited interpretability.

Solution
Boosting highly accurate machine learning-models with novel

methodologies that can explain their predictive output (local and

global explanation based-approaches).
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The Shapley value-based approach

Shapley values were originally introduced by Shapley (1953) to measure the
contribution of each explanatory variable for each point prediction of a
machine learning model.

Premises
Let:

I i = 1, . . . ,n be a statistical unit, whose (multivariate) characteristics Yi

are to be predicted with a machine learning model;

I Ŷi = f̂ (Xi ) indicate the predicted value for the response vector Yi , based
on an explanatory vector of characteristics Xi , obtained with a machine
learning model.

Definition
Given K explanatory variables, the marginal contribution of a variable
Xk ,(k = 1, . . . ,K) can be expressed as

f(f̂ (Xi )) = Â
X 0 ✓C (X )\Xk

|X 0 |!(K � |X 0 |�1)!

K !
[f̂ (X

0 [Xk )i � f̂ (X
0
)i ], (1)

where C (X )\Xk is the set of all the possible model configurations which can

be obtained excluding variable Xk ; |X
0 | denotes the number of variables

included in each possible model, f̂ (X
0 [Xk )i and f̂ (X

0
)i are the predictions

associated with all the possible model configurations including variable Xk and
excluding variable Xk , both calculated for the unit i .
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Lorenz Zonoids

Lorenz Zonoids were introduced by Koshevoy and Mosler (1996) as a
generalization of the Lorenz curve in d dimensions. When d = 1, the Lorenz
Zonoid corresponds with the well known Gini coe�cient.

Main steps to build the Lorenz Zonoid

Given a variable Y and n observations,

I build the Y Lorenz curve (LY ) by re-ordering the Y values in
non-decreasing sense, whose points have coordinates
(i/n,Âi

j=1 yrj /(nȳ)), for i = 1, . . . ,n, where r and ȳ indicate the
(non-decreasing) ranks of Y and the Y mean value, respectively;

I build the Y dual Lorenz curve (L
0
Y ) by re-ordering the Y values in a

non-increasing sense, whose points have coordinates
(i/n,Âi

j=1 ydj /(nȳ)), for i = 1, . . . ,n, where d indicates the

(non-increasing) ranks of Y ;

I the area lying between the LY and L
0
Y curves correspond to the Lorenz

Zonoid.
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The inclusion property

Consider a MLM, such that Ŷ = f̂ (X1, . . . ,XK ). It results that
LZ(Ŷ )✓ LZ(Y ).
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Features and formalization of the Lorenz Zonoids

Features:

I LZ(·) is a measure of the mutual variability that characterizes a
phenomenon of interest.

I LZ (̂·) is used to assess the contribution of additional independent
variables in explaining the variability of the response variable.

Formalization
Let:

I LZ(Y ) be the Lorenz Zonoid of the response variable Y ;

I X1 be an independent variable such that ŶX1 = f (X1);

I LZ(ŶX1 ) be the Lorenz Zonoid of ŶX1 ;

I X2 be an additional independent variable such that ŶX2 = f (X2);

I LZ(ŶX2 ) be the Lorenz Zonoid of ŶX2 .

The Lorenz Zonoid of a variable may be expressed by resorting to the
covariance operator, i.e.

LZ(Y ) =
2Cov(Y , r(Y ))

nµ
,LZ(ŶX1 ) =

2Cov(ŶX1 , r(ŶX1 ))

nµ

and LZ(ŶX2 ) =
2Cov(ŶX2 , r(ŶX2 ))

nµ
.

where µ = E(Y ) and r(·) are rank scores.
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The Lorenz Zonoid for sample data

Given a sample data of size n, the Lorenz Zonoids may be

re-expressed as:

LZ (y) =
2Cov(y , r(y))

nȳ
,LZ (ŷx1) =

2Cov(ŷx1 , r(ŷx1))

nȳ

and LZ (ŷx2) =
2Cov(ŷx2 , r(ŷx2))

nȳ

where y , ŷx1 and ŷx2 are the vectors of the observed and

estimated values, r(y), r(ŷx1) and r(ŷx2) are the ranks of the

observed and estimated values, and ȳ is the sample mean.
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The Shapley-Lorenz decomposition

The mathematical derivation of the Shapley-Lorenz decomposition

can be obtained through the following steps:

I replace LZ (·) in place of f̂ (·) in the Shapley expression in (1);

I define the marginal contribution associated with the

additional variable Xk as:

LZXk (Ŷ ) = Â
X 0 ✓C (X )\Xk

|X 0 |!(K � |X 0 |�1)!

K !
[LZ(ŶX 0 [Xk

)�LZ(ŶX 0 )],

(2)

where LZ (ŶX 0 [Xk
) and LZ (ŶX 0 ) describe the (mutual)

variability explained by the models including the X
0 [Xk

variables and the X
0
variables, respectively.
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Application to Bitcoin price prediction

We aim to build a model able to predict bitcoin prices.

Data description

I The data provide the daily bitcoin prices of the Coinbase

crypto exchange, from 18 May, 2016 to 30 April, 2018;

I The Coinbase price is the response variable to be

predicted by the available explanatory variables;

I The candidate explanatory variables are Oil, Gold and

SP500 prices are taken into account.
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The Shapley-Lorenz decomposition

A linear regression model is implemented as our selected candidate machine
learning model. The Shapley Lorenz marginal contributions, associated with
the inclusion of SP500, Gold and Oil, are determined as follows:

LZSP500( \Coinbase) = (1/3)(LZ(ŷSP500,Gold ,Oil )�LZ(ŷGold ,Oil ))

+(1/6)(LZ(ŷSP500,Gold )�LZ(ŷGold ))+(1/6)(LZ(ŷSP500,Oil )�LZ(ŷOil ))

+(1/3)(LZ(ŷSP500))

LZGold ( \Coinbase) = (1/3)(LZ(ŷGold ,SP500,Oil )�LZ(ŷSP500,Oil ))

+(1/6)(LZ(ŷGold ,SP500)�LZ(ŷSP500))+(1/6)(LZ(ŷGold ,Oil )�LZ(ŷOil ))

+(1/3)(LZ(ŷGold ))

LZOil ( \Coinbase) = (1/3)(LZ(ŷOil ,SP500,Gold )�LZ(ŷSP500,Gold ))

+(1/6)(LZ(ŷOil ,SP500)�LZ(ŷSP500))+(1/6)(LZ(ŷOil ,Gold )�LZ(ŷGold ))

+(1/3)(LZ(ŷOil )).
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The variance decomposition

The variance decomposition associated with the same variables, under the
assumption of a linear model, is provided by:

R2
SP500 = (1/3)(R2

SP500,Gold ,Oil �R2
Gold ,Oil )+(1/6)(R2

SP500,Gold �R2
Gold )

+(1/6)(R2
SP500,Oil �R2

Oil )+(1/3)R2
SP500

R2
Gold = (1/3)(R2

Gold ,SP500,Oil �R2
SP500,Oil )

+(1/6)(R2
Gold ,SP500�R2

SP500)+(1/6)(R2
Gold ,Oil �R2

Oil )+(1/3)R2
Gold

R2
Oil = (1/3)(R2

Oil ,SP500,Gold �R2
SP500,Gold )+(1/6)(R2

Oil ,SP500�R2
SP500)

+(1/6)(R2
Oil ,Gold �R2

Gold )+(1/3)R2
Oil .
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Results

Additional covariate (Xk ) LZXk ( \Coinbase) R2
Xk

Global Shapley

SP500 0.336 0.631 -96377.28

Gold 0.097 0.072 59811.19

Oil 0.075 0.049 -43428.39

Conclusions:

I employing the Lorenz Shapley approach, variable SP500

provides the highest marginal contribution in the prediction

of the Bitcoin prices, while the other two give a minimal

contribution;

I findings from the Shapley Lorenz approach are quite similar

to those obtained with the linear R2
-based Shapley approach,

indicating their robustness;

I the Global Shapley values, obtained summing the Shapley

variable contributions across all units, are the least

interpretable.
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Model sleection based on Lorenz Zonoids

The Shapley-Lorenz approach appears computationally intensive,

especially if dealing with huge datasets involving a large number of

predictors.

In order to meet the sustainability requirement, a pre-selection of

the most important predictors has to be set.

By exploiting the Lorenz Zonoid inclusion property, marginal and

partial contributions provided by each predictor can be determined

giving rise to a methodology that is able to simultaneously achieve

the goals of predictive accuracy and explainability, rather than one

after the other, as done in the explainable AI literature.

We remark that, as well as the Shapley-Lorenz decomposition, the

proposed approach is model agnostic not depending on the type of

target variable and data to be analised.
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Marginal Gini Contribution

Let Y and Xk , for k = 1, . . . ,K , the response and the k-th
explanatory variables, respectively.

The Marginal Gini Contribution associated with the k-th
explanatory variable is defined as

MGCY |Xk
=

LZ (ŶXk
)

LZ (Y )
=

2Cov(ŶXk
, r(ŶXk

))/nµ
2Cov(Y , r(Y ))/nµ

=
Cov(ŶXk

, r(ŶXk
))

Cov(Y , r(Y ))
, (3)

whose sample version is

MGCy |xk =
Cov(ŷxk , r(ŷxk ))

Cov(y , r(y))
=

2
nȳ

h
1
n Ân

i=1 i ŷ(xk i)�
n(n+1)

2n ȳ
i

2
nȳ

h
1
n Ân

i=1 iy(i)�
n(n+1)

2n ȳ
i .
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Partial Gini Contribution

The additional contribution related to the inclusion of covariate Xh can be
determined in terms of a relative index, in analogy analogy with the partial
correlation coe�cient construction.

PGCY ,Xk |X1 ,...,Xk�1
=

LZ(ŶX1 ,...,Xk
)�LZ(ŶX1 ,...,Xk�1

)

LZ(Y )�LZ(ŶX1 ,...,Xk�1
)

=
2
nµ Cov(ŶX1 ,...,Xk

, r(ŶX1 ,...,Xk
))� 2

nµ Cov(ŶX1 ,...,Xk�1
, r(ŶX1 ,...,Xk�1

))

2
nµ Cov(Y , r(Y ))� 2

nµ Cov(ŶX1 ,...,Xk�1
, r(ŶX1 ,...,Xk�1

))

=
Cov(ŶX1 ,...,Xk

, r(ŶX1 ,...,Xk
))�Cov(ŶX1 ,...,Xk�1

, r(ŶX1 ,...,Xk�1
))

Cov(Y , r(Y ))�Cov(ŶX1 ,...,Xk�1
, r(ŶX1 ,...,Xk�1

))
.

It can be shown that PGCY ,Xh |X1 ,...,Xk�1
computed on sample data can be

expressed as:

PGCy ,xh |x1 ,...,xk�1
=

Ân
i=1 i(ŷ(x1 ,...,xk i)� ŷ(x1 ,...,xk�1 i))

Ân
i=1 i(y(i)� ŷ(x1 ,...,xk�1 i))

.

k
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Procedure

Steps:

I A stepwise model comparison procedure can be implemented

considering the term LZ (ŶX 0 [Xk
)�LZ (ŶX 0 ) The procedure

starts building K models, each depending on one of the K
predictors, and then computing the Lorenz Zonoids of the

predicted values derived from any single model.

I In a forward stepwise algorithm the predictor providing the

highest Lorenz Zonoid value can be chosen as the first

variable to be included into the model. The procedure

continues by fitting, at each step, a more complex model

that includes the predictor which provides the highest

contribution.

I In a backward stepwise algorithm, the predictor with the

lowest Lorenz Zonoid value can be chosen as the first

variable to be removed from the full model. The procedure

continues by fitting, at each step, a simpler model obtained

deleting the predictor with the lowest contribution.
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Measuring the predictive gain

According to the mentioned saving of computational e↵ort,

we suggest a forward stepwise procedure, which starts with

the construction of K models, each one depending on only

one predictor.

The application of formula (3) to all such univariate models will

provide a ranking of the candidate predictors, in terms of their

(marginal) importance. At each step, a model with also an

additional ranked variable is fitted and the predictive gain can be

calculated as:

pay-off (Xk) = LZ (ŶX 0 [Xk
)�LZ (ŶX 0 ), (4)

where LZ (ŶX 0 [Xk
) and LZ (ŶX 0 ) describe the (mutual) variability

of the response variable Y explained by the models which,

respectively, include X
0 [Xk predictors or only X

0
predictors.

The procedure can continue until the predictive gain defined in (4)

is found not significant.
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Evaluating the significance of the predictive gain

As r(·)/n is the empirical transformation of the cumulative distribution function F (·), the pay-o↵ can be
re-expressed as:

LZ(Ŷ
X
0 [Xk

)�LZ(Ŷ
X
0 ) =

2Cov(Ŷ
X
0 [Xk

,F (Ŷ
X
0 [Xk

))

E(Ŷ
X
0 [Xk

)
�

2Cov(Ŷ
X
0 ,F (Ŷ

X
0 ))

E(Ŷ
X
0 )

, (5)

where F (Ŷ
X
0 [Xk

) and F (Ŷ
X
0 ) are the cumulative distribution functions of Ŷ

X
0 [Xk

and Ŷ
X
0 ,

respectively.

Assuming the reasonable approximation, equation (5), which describes the marginal contribution (MC)
provided by Xk , can be simplified as follows:

MC =
2Cov(Ŷ

X
0 [Xk

,F (Ŷ
X
0 [Xk

))

µ
�

2Cov(Y
X
0 ,F (Ŷ

X
0 ))

µ
. (6)

In line with the previous mathematical derivations, we propose g as an adjusted version of equation (6),
i.e.

g =
µ
2
·MC = Cov(Ŷ

X
0 [Xk

,F (Ŷ
X
0 [Xk

))�Cov(Ŷ
X
0 ,F (Ŷ

X
0 )). (7)

The null hypothesis H0 : x (Ŷ
X
0 [Xk

) = x (p̂
X
0 ) can be tested by the test statistic:

Z =
ĝp

Var(ĝ)
!N(0,1) (8)

and, for a given selected significance level a, a rejection region for the null hypothesis H0 can be defined
as |Z |� z a

2
.

=

SAFE Artificial Intelligence in Finance

target values, implying that E(Y ) = E( ÇY ). For more general
models, the aforementioned condition does not fully hold,
implying that E( ÇY

X
®‰Xk

) = E( ÇY
X

® ) = � becomes a reason-
able approximation. Assuming such approximation, equa-
tion (7), which describes the marginal contribution (MC)
provided by X

k
, can be simplified as follows:

MC =
2Cov( ÇY

X
®‰Xk

,F ( ÇY
X

®‰Xk

))
�

*
2Cov(Y

X
® ,F ( ÇY

X
® ))

�
.

(8)

In line with the previous mathematical derivations, we
propose � as an adjusted version of equation (8), i.e.

� = �

2 �MC = Cov( ÇY
X

®‰Xk

,F ( ÇY
X

®‰Xk

))*Cov( ÇY
X

® ,F ( ÇY
X

® )).
(9)

By denoting the covariancesCov( ÇY
X

®‰Xk

,F ( ÇY
X

®‰Xk

)) =
⇠( ÇY

X
®‰Xk

) and Cov( ÇY
X

® ,F ( ÇY
X

® )) = ⇠( ÇY
X
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ically, the n values of Ç� , pointed out with Ç�(*i) (where i =
1,… , n), are calculated by omitting one pair ( ÇY

X
®‰Xk

, ÇY
X

® )
at a time and the estimated variance is

V ar(Ç�)
¥

= n * 1
n

n…
i=1

(Ç�(*i) * Ñ�)2,

where Ñ� is the average of Ç�(*i), for i = 1,… , n.
Following the previous derivations, the null hypothesis

H0 : ⇠( ÇY
X

®‰Xk

) = ⇠( Ç⇡
X

® ) can be tested by the test statistic:

Z = Ç�t
V ar(Ç�)
¥

ô N(0, 1) (12)
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Fairness. Fairness is a property that essentially requires
that AI applications do not present biases among di�erent
population groups.

To measure fairness we propose to extend the Gini
coe�cient, originally developed to measure the concentra-
tion of income in a population, to the measurement of the
concentration of the explanatory variables which may be
a�ected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m =
1,… ,M be the considered population groups and let K the
number of the available predictors. We denote with v

SL

mXk

the
Shapley-Lorenz value associated with the k-th predictor in
the m-th population.

Suppose that the stepwise procedure based on the ap-
plication of the Lorenz-Zonoid test leads to choose only
a subset of all the available explanatory variables as the
most contributing to the predictive accuracy of the model.
Specifically, we denote with k

<, where k
< = 1,… , k and

such that k< < K , the number of predictors which compose
the selected model.

With the purpose of measuring the explainability and
accuracy provided by each explanatory variable included
into the final model, we consider the vector V SL<
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defined
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The Gini coe�cient can be applied to the vector V SL<
M

,
obtaining a measure of concentration of the variables’ im-
portance among di�erent population groups. For a given
set of selected explanatory variables, Shapley-Lorenz values
which are similar in the M populations lead to a Gini coef-
ficient close to 0, indicating that the e�ect of these variables
is fair across the di�erent population groups. On the other

First Author et al.: Preprint submitted to Elsevier Page 4 of 9

SAFE Artificial Intelligence in Finance

target values, implying that E(Y ) = E( ÇY ). For more general
models, the aforementioned condition does not fully hold,
implying that E( ÇY

X
®‰Xk

) = E( ÇY
X

® ) = � becomes a reason-
able approximation. Assuming such approximation, equa-
tion (7), which describes the marginal contribution (MC)
provided by X

k
, can be simplified as follows:

MC =
2Cov( ÇY

X
®‰Xk

,F ( ÇY
X

®‰Xk

))
�

*
2Cov(Y

X
® ,F ( ÇY

X
® ))

�
.

(8)

In line with the previous mathematical derivations, we
propose � as an adjusted version of equation (8), i.e.

� = �

2 �MC = Cov( ÇY
X

®‰Xk

,F ( ÇY
X

®‰Xk

))*Cov( ÇY
X

® ,F ( ÇY
X

® )).
(9)

By denoting the covariancesCov( ÇY
X

®‰Xk

,F ( ÇY
X

®‰Xk

)) =
⇠( ÇY

X
®‰Xk

) and Cov( ÇY
X

® ,F ( ÇY
X

® )) = ⇠( ÇY
X

® ), � in (9) can be
re-written as:

� = ⇠( Ç⇡
X

®‰Xk

) * ⇠( Ç⇡
X

® ). (10)

A test for the equality of the two Lorenz Zonoids, can
thus be developed by setting the following hypotheses

H0 : ⇠( ÇY
X

®‰Xk

) = ⇠( ÇY
X

® ) vs H1 : ⇠( ÇY
X

®‰Xk

) ë ⇠( ÇY
X

® ).

To proceed with the test, ⇠( ÇY
X

®‰Xk

) can be derived in
terms of a U -statistic, U1, which estimates Cov( ÇY

X
®‰Xk

,

F ( ÇY
X

®‰Xk

)). The estimator is defined as:

Ç⇠( ÇY
X

®‰Xk

) = U1 =
1

4
�
n

2
�

n…
i=1

(2i * 1 * n) ÇY
X

®‰Xk(i)
,

where ÇY
X

®‰Xk(i)
is the i-th order statistic of ÇY

X
®‰Xk1

,… ,

ÇY
X

®‰Xkn

.
Similarly, the estimator of ⇠( ÇY

X
® ) is U2, specified as:

Ç⇠( ÇY
X

® ) = U2 =
1

4
�
n

2
�

n…
i=1

(2i * 1 * n) ÇY
X

®
(i)
,

where ÇY
X

®
(i)

is the i-th order statistic of ÇY
X

®
1
,… ,

ÇY
X

®
n

.
An estimator of � = ⇠( ÇY

X
®‰Xk

) * ⇠( ÇY
X

® ) can then be
provided as a function of two dependent U -statistics:

Ç� = Ç⇠( ÇY
X

®‰Xk

) * Ç⇠( ÇY
X

® ) = U1 * U2. (11)

Based on [11], a function of several dependent U -
statistics has, after appropriate normalisation, an asymptoti-
cally normal distribution. As suggested by [16], a way to esti-
mate the variance is to resort to the jackknife method. Specif-
ically, the n values of Ç� , pointed out with Ç�(*i) (where i =
1,… , n), are calculated by omitting one pair ( ÇY

X
®‰Xk

, ÇY
X

® )
at a time and the estimated variance is

V ar(Ç�)
¥

= n * 1
n

n…
i=1

(Ç�(*i) * Ñ�)2,

where Ñ� is the average of Ç�(*i), for i = 1,… , n.
Following the previous derivations, the null hypothesis

H0 : ⇠( ÇY
X

®‰Xk

) = ⇠( Ç⇡
X

® ) can be tested by the test statistic:

Z = Ç�t
V ar(Ç�)
¥

ô N(0, 1) (12)

and, for a given selected significance level ↵, a rejection
region for the null hypothesis H0 can be defined as Z g
z↵

2
.

Fairness. Fairness is a property that essentially requires
that AI applications do not present biases among di�erent
population groups.

To measure fairness we propose to extend the Gini
coe�cient, originally developed to measure the concentra-
tion of income in a population, to the measurement of the
concentration of the explanatory variables which may be
a�ected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m =
1,… ,M be the considered population groups and let K the
number of the available predictors. We denote with v

SL

mXk

the
Shapley-Lorenz value associated with the k-th predictor in
the m-th population.

Suppose that the stepwise procedure based on the ap-
plication of the Lorenz-Zonoid test leads to choose only
a subset of all the available explanatory variables as the
most contributing to the predictive accuracy of the model.
Specifically, we denote with k

<, where k
< = 1,… , k and

such that k< < K , the number of predictors which compose
the selected model.

With the purpose of measuring the explainability and
accuracy provided by each explanatory variable included
into the final model, we consider the vector V SL<

M
defined

as V
SL<
M

=
�
v
SL<
1 ,… , v

SL<
m

,… , v
SL<
M

�
, where v

SL<
m

=
v
SL

mX1
+…+v

SL

mXk<
represents the sum of the Shapley-Lorenz

values related to the predictors X1,… ,X
k< .

The Gini coe�cient can be applied to the vector V SL<
M

,
obtaining a measure of concentration of the variables’ im-
portance among di�erent population groups. For a given
set of selected explanatory variables, Shapley-Lorenz values
which are similar in the M populations lead to a Gini coef-
ficient close to 0, indicating that the e�ect of these variables
is fair across the di�erent population groups. On the other

First Author et al.: Preprint submitted to Elsevier Page 4 of 9

SAFE Artificial Intelligence in Finance

target values, implying that E(Y ) = E( ÇY ). For more general
models, the aforementioned condition does not fully hold,
implying that E( ÇY

X
®‰Xk

) = E( ÇY
X

® ) = � becomes a reason-
able approximation. Assuming such approximation, equa-
tion (7), which describes the marginal contribution (MC)
provided by X

k
, can be simplified as follows:

MC =
2Cov( ÇY

X
®‰Xk

,F ( ÇY
X

®‰Xk

))
�

*
2Cov(Y

X
® ,F ( ÇY

X
® ))

�
.

(8)

In line with the previous mathematical derivations, we
propose � as an adjusted version of equation (8), i.e.

� = �

2 �MC = Cov( ÇY
X

®‰Xk

,F ( ÇY
X

®‰Xk

))*Cov( ÇY
X

® ,F ( ÇY
X

® )).
(9)

By denoting the covariancesCov( ÇY
X

®‰Xk

,F ( ÇY
X

®‰Xk

)) =
⇠( ÇY

X
®‰Xk

) and Cov( ÇY
X

® ,F ( ÇY
X

® )) = ⇠( ÇY
X

® ), � in (9) can be
re-written as:

� = ⇠( Ç⇡
X

®‰Xk

) * ⇠( Ç⇡
X

® ). (10)

A test for the equality of the two Lorenz Zonoids, can
thus be developed by setting the following hypotheses

H0 : ⇠( ÇY
X

®‰Xk

) = ⇠( ÇY
X

® ) vs H1 : ⇠( ÇY
X

®‰Xk

) ë ⇠( ÇY
X

® ).

To proceed with the test, ⇠( ÇY
X

®‰Xk

) can be derived in
terms of a U -statistic, U1, which estimates Cov( ÇY

X
®‰Xk

,

F ( ÇY
X

®‰Xk

)). The estimator is defined as:

Ç⇠( ÇY
X

®‰Xk

) = U1 =
1

4
�
n

2
�

n…
i=1

(2i * 1 * n) ÇY
X

®‰Xk(i)
,

where ÇY
X

®‰Xk(i)
is the i-th order statistic of ÇY

X
®‰Xk1

,… ,

ÇY
X

®‰Xkn

.
Similarly, the estimator of ⇠( ÇY

X
® ) is U2, specified as:

Ç⇠( ÇY
X

® ) = U2 =
1

4
�
n

2
�

n…
i=1

(2i * 1 * n) ÇY
X

®
(i)
,

where ÇY
X

®
(i)

is the i-th order statistic of ÇY
X

®
1
,… ,

ÇY
X

®
n

.
An estimator of � = ⇠( ÇY

X
®‰Xk

) * ⇠( ÇY
X

® ) can then be
provided as a function of two dependent U -statistics:

Ç� = Ç⇠( ÇY
X

®‰Xk

) * Ç⇠( ÇY
X

® ) = U1 * U2. (11)

Based on [11], a function of several dependent U -
statistics has, after appropriate normalisation, an asymptoti-
cally normal distribution. As suggested by [16], a way to esti-
mate the variance is to resort to the jackknife method. Specif-
ically, the n values of Ç� , pointed out with Ç�(*i) (where i =
1,… , n), are calculated by omitting one pair ( ÇY

X
®‰Xk

, ÇY
X

® )
at a time and the estimated variance is

V ar(Ç�)
¥

= n * 1
n

n…
i=1

(Ç�(*i) * Ñ�)2,

where Ñ� is the average of Ç�(*i), for i = 1,… , n.
Following the previous derivations, the null hypothesis

H0 : ⇠( ÇY
X

®‰Xk

) = ⇠( Ç⇡
X

® ) can be tested by the test statistic:

Z = Ç�t
V ar(Ç�)
¥

ô N(0, 1) (12)

and, for a given selected significance level ↵, a rejection
region for the null hypothesis H0 can be defined as Z g
z↵

2
.

Fairness. Fairness is a property that essentially requires
that AI applications do not present biases among di�erent
population groups.

To measure fairness we propose to extend the Gini
coe�cient, originally developed to measure the concentra-
tion of income in a population, to the measurement of the
concentration of the explanatory variables which may be
a�ected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m =
1,… ,M be the considered population groups and let K the
number of the available predictors. We denote with v

SL

mXk

the
Shapley-Lorenz value associated with the k-th predictor in
the m-th population.

Suppose that the stepwise procedure based on the ap-
plication of the Lorenz-Zonoid test leads to choose only
a subset of all the available explanatory variables as the
most contributing to the predictive accuracy of the model.
Specifically, we denote with k

<, where k
< = 1,… , k and

such that k< < K , the number of predictors which compose
the selected model.

With the purpose of measuring the explainability and
accuracy provided by each explanatory variable included
into the final model, we consider the vector V SL<

M
defined

as V
SL<
M

=
�
v
SL<
1 ,… , v

SL<
m

,… , v
SL<
M

�
, where v

SL<
m

=
v
SL

mX1
+…+v

SL

mXk<
represents the sum of the Shapley-Lorenz

values related to the predictors X1,… ,X
k< .

The Gini coe�cient can be applied to the vector V SL<
M

,
obtaining a measure of concentration of the variables’ im-
portance among di�erent population groups. For a given
set of selected explanatory variables, Shapley-Lorenz values
which are similar in the M populations lead to a Gini coef-
ficient close to 0, indicating that the e�ect of these variables
is fair across the di�erent population groups. On the other

First Author et al.: Preprint submitted to Elsevier Page 4 of 9

V ar(�̂)
V

=
n � 1

n

nX

i=1

(�̂(�i) � �̄)2,

where �̄ is the average of �̂(�i), for i = 1, . . . , n.

Following the previous derivations, the null hypothesis H0 : ⇠(ŶX0[Xk
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To measure fairness we propose to extend the Gini coe�cient, originally
developed to measure the concentration of income in a population, to the
measurement of the concentration of the explanatory variables which may
be a↵ected by bias, in terms of the Shapley-Lorenz values.
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the Shapley-Lorenz value associated with the
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As r(·)/n is the empirical transformation of the cumulative distribution function F (·), the pay-o↵ can be
re-expressed as:
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X
0 [Xk

)
�

2Cov(Ŷ
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!N(0,1) (8)

and, for a given selected significance level a, a rejection region for the null hypothesis H0 can be defined
as |Z |� z a

2
.

=

SAFE Artificial Intelligence in Finance
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1,… , n), are calculated by omitting one pair ( ÇY

X
®‰Xk

, ÇY
X

® )
at a time and the estimated variance is

V ar(Ç�)
¥

= n * 1
n

n…
i=1

(Ç�(*i) * Ñ�)2,

where Ñ� is the average of Ç�(*i), for i = 1,… , n.
Following the previous derivations, the null hypothesis

H0 : ⇠( ÇY
X

®‰Xk

) = ⇠( Ç⇡
X

® ) can be tested by the test statistic:

Z = Ç�t
V ar(Ç�)
¥

ô N(0, 1) (12)

and, for a given selected significance level ↵, a rejection
region for the null hypothesis H0 can be defined as Z g
z↵

2
.

Fairness. Fairness is a property that essentially requires
that AI applications do not present biases among di�erent
population groups.

To measure fairness we propose to extend the Gini
coe�cient, originally developed to measure the concentra-
tion of income in a population, to the measurement of the
concentration of the explanatory variables which may be
a�ected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m =
1,… ,M be the considered population groups and let K the
number of the available predictors. We denote with v

SL

mXk

the
Shapley-Lorenz value associated with the k-th predictor in
the m-th population.

Suppose that the stepwise procedure based on the ap-
plication of the Lorenz-Zonoid test leads to choose only
a subset of all the available explanatory variables as the
most contributing to the predictive accuracy of the model.
Specifically, we denote with k

<, where k
< = 1,… , k and

such that k< < K , the number of predictors which compose
the selected model.

With the purpose of measuring the explainability and
accuracy provided by each explanatory variable included
into the final model, we consider the vector V SL<

M
defined

as V
SL<
M

=
�
v
SL<
1 ,… , v

SL<
m

,… , v
SL<
M

�
, where v

SL<
m

=
v
SL

mX1
+…+v

SL

mXk<
represents the sum of the Shapley-Lorenz

values related to the predictors X1,… ,X
k< .

The Gini coe�cient can be applied to the vector V SL<
M

,
obtaining a measure of concentration of the variables’ im-
portance among di�erent population groups. For a given
set of selected explanatory variables, Shapley-Lorenz values
which are similar in the M populations lead to a Gini coef-
ficient close to 0, indicating that the e�ect of these variables
is fair across the di�erent population groups. On the other
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target values, implying that E(Y ) = E( ÇY ). For more general
models, the aforementioned condition does not fully hold,
implying that E( ÇY

X
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) = E( ÇY
X

® ) = � becomes a reason-
able approximation. Assuming such approximation, equa-
tion (7), which describes the marginal contribution (MC)
provided by X
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ically, the n values of Ç� , pointed out with Ç�(*i) (where i =
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region for the null hypothesis H0 can be defined as Z g
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.

Fairness. Fairness is a property that essentially requires
that AI applications do not present biases among di�erent
population groups.

To measure fairness we propose to extend the Gini
coe�cient, originally developed to measure the concentra-
tion of income in a population, to the measurement of the
concentration of the explanatory variables which may be
a�ected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m =
1,… ,M be the considered population groups and let K the
number of the available predictors. We denote with v

SL

mXk

the
Shapley-Lorenz value associated with the k-th predictor in
the m-th population.

Suppose that the stepwise procedure based on the ap-
plication of the Lorenz-Zonoid test leads to choose only
a subset of all the available explanatory variables as the
most contributing to the predictive accuracy of the model.
Specifically, we denote with k

<, where k
< = 1,… , k and

such that k< < K , the number of predictors which compose
the selected model.

With the purpose of measuring the explainability and
accuracy provided by each explanatory variable included
into the final model, we consider the vector V SL<

M
defined

as V
SL<
M

=
�
v
SL<
1 ,… , v

SL<
m

,… , v
SL<
M

�
, where v

SL<
m

=
v
SL

mX1
+…+v

SL

mXk<
represents the sum of the Shapley-Lorenz
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The Gini coe�cient can be applied to the vector V SL<
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,
obtaining a measure of concentration of the variables’ im-
portance among di�erent population groups. For a given
set of selected explanatory variables, Shapley-Lorenz values
which are similar in the M populations lead to a Gini coef-
ficient close to 0, indicating that the e�ect of these variables
is fair across the di�erent population groups. On the other
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® ) = U1 * U2. (11)

Based on [11], a function of several dependent U -
statistics has, after appropriate normalisation, an asymptoti-
cally normal distribution. As suggested by [16], a way to esti-
mate the variance is to resort to the jackknife method. Specif-
ically, the n values of Ç� , pointed out with Ç�(*i) (where i =
1,… , n), are calculated by omitting one pair ( ÇY
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where Ñ� is the average of Ç�(*i), for i = 1,… , n.
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and, for a given selected significance level ↵, a rejection
region for the null hypothesis H0 can be defined as Z g
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Fairness. Fairness is a property that essentially requires
that AI applications do not present biases among di�erent
population groups.

To measure fairness we propose to extend the Gini
coe�cient, originally developed to measure the concentra-
tion of income in a population, to the measurement of the
concentration of the explanatory variables which may be
a�ected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m =
1,… ,M be the considered population groups and let K the
number of the available predictors. We denote with v

SL

mXk

the
Shapley-Lorenz value associated with the k-th predictor in
the m-th population.

Suppose that the stepwise procedure based on the ap-
plication of the Lorenz-Zonoid test leads to choose only
a subset of all the available explanatory variables as the
most contributing to the predictive accuracy of the model.
Specifically, we denote with k

<, where k
< = 1,… , k and

such that k< < K , the number of predictors which compose
the selected model.

With the purpose of measuring the explainability and
accuracy provided by each explanatory variable included
into the final model, we consider the vector V SL<
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values related to the predictors X1,… ,X
k< .

The Gini coe�cient can be applied to the vector V SL<
M

,
obtaining a measure of concentration of the variables’ im-
portance among di�erent population groups. For a given
set of selected explanatory variables, Shapley-Lorenz values
which are similar in the M populations lead to a Gini coef-
ficient close to 0, indicating that the e�ect of these variables
is fair across the di�erent population groups. On the other

First Author et al.: Preprint submitted to Elsevier Page 4 of 9

V ar(�̂)
V

=
n � 1

n

nX

i=1

(�̂(�i) � �̄)2,

where �̄ is the average of �̂(�i), for i = 1, . . . , n.

Following the previous derivations, the null hypothesis H0 : ⇠(ŶX0[Xk
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Fairness. Fairness is a property that essentially requires that AI applications
do not present biases among di↵erent population groups.

To measure fairness we propose to extend the Gini coe�cient, originally
developed to measure the concentration of income in a population, to the
measurement of the concentration of the explanatory variables which may
be a↵ected by bias, in terms of the Shapley-Lorenz values.

Our proposal can be illustrated as follows. Let m = 1, . . . ,M be the
considered population groups and let K the number of the available predic-
tors. We denote with v

SL
mXk

the Shapley-Lorenz value associated with the
k-th predictor in the m-th population.

Suppose that the stepwise procedure based on the application of the
Lorenz-Zonoid test leads to choose only a subset of all the available ex-
planatory variables as the most contributing to the predictive accuracy of
the model. Specifically, we denote with k

⇤, where k
⇤ = 1, . . . , k and such

that k⇤
< K, the number of predictors which compose the selected model.
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Application to the risk of default

We data supplied by Modefinance, a European Credit Assessment

Institution (ECAI) that specializes in credit scoring for P2P

platforms focused on SME commercial lending.

twelve considered explanatory variables selected are: Total

Assets/Total Liabilities (X1); Current Assets/Current Liabilities

(X2); (Profit or Loss before tax+Interest paid)/Total Assets (X3);

Return on Equity (X4); Operating Revenues/Total Assets (X5);

Interest paid/(Profit before taxes+Interest paid) (X6);

EBITDA/Interest paid (X7); EBITDA/Operating Revenues (X8);

EBITDA/Sales (X9); Trade Receivables/Operating Revenues

(X10); Inventories/Operating Revenues (X11); Turnover (X12).

The data on the above mentioned explanatory variables are

extracted from the balance-sheets of 15,045 SMEs, mostly based

in Southern Europe, for the year 2015. The data on the response

variable are obtained from information about the status (0 =

active, 1 = defaulted) of each SME one year later (2016),

The 12
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Results

Machine learning classification model comparison

Table 8
Neural network model (forward stepwise) - Marginal contribu-
tions (AUROC); additional contributions in terms of AUROC
difference; significance (�-value) of the additional contribu-
tion; �1 metric. Legend: TA/TL=Total assets/Total Liabilities;
EBITDA/IP=EBITDA/Interest paid; IP/(PBT+IP)=Interest
paid/(Profit before taxes+Interest paid).

ID Variable ������� ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.7809 1 - - -
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

Table 9
XGBoost model (forward stepwise)- Marginal contribution in
terms of each single explanatory variable (��( ����

)); marginal
contribution in terms of any additional explanatory variable
(pay-o� (��)); the marginal contribution significance (�-value);
�1 metric. Legend: TA/TL=Total assets/Total Liabilities;
EBITDA/IP=EBITDA/Interest paid; IP/(PBT+IP)=Interest
paid/(Profit before taxes+Interest paid); ROE=Return on
Equity.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.5565 1 - - -
7 EBITDA/IP 0.5496 1, 7 0.0747 <0.001 0.4170
6 IP/(PBT+IP) 0.5212 1, 7, 6 0.0052 <0.001 0.4386
4 ROE 0.5210 1, 7, 6, 4 0.0035 0.0758 0.4390

the results are indeed similar, as both �3 and �6 measure
profitability, whereas �1 indicates financial leverage.

Similar conclusions can be derived when the AUROC
metric is employed in place of the Lorenz Zonoid pay-
o�. Table 8 shows that, again, two explanatory variables
are included in the selected model. While the first one is
confirmed to be �1, the second is �7, instead of �6: another
function of the profitability. These results are confirmed
when a backward selection procedure is implemented, for
robustness.

In summary, the application of the procedure to neu-
ral networks shows that both the Lorenz Zonoid and the
AUROC model selection lead to choose a model with two
variables (one measuring leverage and one measuring prof-
itability), which represents a very good trade-o� between
explainability and accuracy. On one hand, the model is more
explainable than the full model, as the response depends
significantly only on two variables, and we know which ones
(whereas a full neural network model is a black-box); on the
other hand, the model is accurate as its predictive accuracy is
not significantly improved making it more complex (adding
more variables).

We can apply our procedure, in the same way, to another
type of machine learning model: the XGBoost, which be-
longs to the class of tree models. The results are illustrated,
from a graphical view point, in Figure 15 (a) and (b); and are
specified with numerical details in Tables 9 and 10.

Figure 15 (a) shows that variables �1 and �7, fol-
lowed by �6, are the factors with the highest impact on the
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Figure 15: [(a)] XGBoost model - Marginal Lorenz Zonoid [(b)]
XGBoost model - Marginal AUROC

Table 10
XGBoost model (forward stepwise) - Marginal contributions
(AUROC); additional contributions in terms of AUROC dif-
ference; significance (�-value) of the additional contribu-
tion; �1 metric. Legend: EBITDA/IP=EBITDA/Interest paid;
TA/TL=Total assets/Total Liabilities; ROE=Return on Equity.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

7 EBITDA/IP 0.7710 7 - - -
1 TA/TL 0.7672 7, 1 0.0362 < 0.001 0.4170
4 ROE 0.5210 7, 1, 4 0.0068 0.1282 0.4105

probability of default. Figure 14 (b) shows a similar result,
swapping �1 with �7 and replacing �6 with �4.

In terms of model selection, both procedures lead to
select a model that contains �1 and �7. Additionally, the
Lorenz Zonoid based procedure includes also �6, leading to
a more complex model, with three significant contributions.
We remark that also in this case, the backward model search
confirms the selected variables.

The conclusions that can be drawn from the XGBoost
model selection procedure are in line with those from the
neural network model. Overall, the empirical findings from
our analysis can be summarised with the conclusion that the
proposed model selection procedure, based on the Lorenz
Zonoids, is able to simplify a black-box machine learning
model into an explainable model.

From a financial viewpoint, all models indicate that the
most important variables for credit scoring are: a measure of
financial leverage and a measure of profitability, confirming
the previous analysis of [4] and [10] on the same data.

A natural question that arises is: which of the three model
champions is the best model overall, both in absolute terms
(predictive accuracy) and in relative terms, with respect to
the full model (explainability)? To answer this question, the
logistic regression, neural network and XGBoost models
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Table 8
Neural network model (forward stepwise) - Marginal contribu-
tions (AUROC); additional contributions in terms of AUROC
difference; significance (�-value) of the additional contribu-
tion; �1 metric. Legend: TA/TL=Total assets/Total Liabilities;
EBITDA/IP=EBITDA/Interest paid; IP/(PBT+IP)=Interest
paid/(Profit before taxes+Interest paid).

ID Variable ������� ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.7809 1 - - -
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

Table 9
XGBoost model (forward stepwise)- Marginal contribution in
terms of each single explanatory variable (��( ����

)); marginal
contribution in terms of any additional explanatory variable
(pay-o� (��)); the marginal contribution significance (�-value);
�1 metric. Legend: TA/TL=Total assets/Total Liabilities;
EBITDA/IP=EBITDA/Interest paid; IP/(PBT+IP)=Interest
paid/(Profit before taxes+Interest paid); ROE=Return on
Equity.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.5565 1 - - -
7 EBITDA/IP 0.5496 1, 7 0.0747 <0.001 0.4170
6 IP/(PBT+IP) 0.5212 1, 7, 6 0.0052 <0.001 0.4386
4 ROE 0.5210 1, 7, 6, 4 0.0035 0.0758 0.4390

the results are indeed similar, as both �3 and �6 measure
profitability, whereas �1 indicates financial leverage.

Similar conclusions can be derived when the AUROC
metric is employed in place of the Lorenz Zonoid pay-
o�. Table 8 shows that, again, two explanatory variables
are included in the selected model. While the first one is
confirmed to be �1, the second is �7, instead of �6: another
function of the profitability. These results are confirmed
when a backward selection procedure is implemented, for
robustness.

In summary, the application of the procedure to neu-
ral networks shows that both the Lorenz Zonoid and the
AUROC model selection lead to choose a model with two
variables (one measuring leverage and one measuring prof-
itability), which represents a very good trade-o� between
explainability and accuracy. On one hand, the model is more
explainable than the full model, as the response depends
significantly only on two variables, and we know which ones
(whereas a full neural network model is a black-box); on the
other hand, the model is accurate as its predictive accuracy is
not significantly improved making it more complex (adding
more variables).

We can apply our procedure, in the same way, to another
type of machine learning model: the XGBoost, which be-
longs to the class of tree models. The results are illustrated,
from a graphical view point, in Figure 15 (a) and (b); and are
specified with numerical details in Tables 9 and 10.

Figure 15 (a) shows that variables �1 and �7, fol-
lowed by �6, are the factors with the highest impact on the
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Figure 15: [(a)] XGBoost model - Marginal Lorenz Zonoid [(b)]
XGBoost model - Marginal AUROC

Table 10
XGBoost model (forward stepwise) - Marginal contributions
(AUROC); additional contributions in terms of AUROC dif-
ference; significance (�-value) of the additional contribu-
tion; �1 metric. Legend: EBITDA/IP=EBITDA/Interest paid;
TA/TL=Total assets/Total Liabilities; ROE=Return on Equity.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

7 EBITDA/IP 0.7710 7 - - -
1 TA/TL 0.7672 7, 1 0.0362 < 0.001 0.4170
4 ROE 0.5210 7, 1, 4 0.0068 0.1282 0.4105

probability of default. Figure 14 (b) shows a similar result,
swapping �1 with �7 and replacing �6 with �4.

In terms of model selection, both procedures lead to
select a model that contains �1 and �7. Additionally, the
Lorenz Zonoid based procedure includes also �6, leading to
a more complex model, with three significant contributions.
We remark that also in this case, the backward model search
confirms the selected variables.

The conclusions that can be drawn from the XGBoost
model selection procedure are in line with those from the
neural network model. Overall, the empirical findings from
our analysis can be summarised with the conclusion that the
proposed model selection procedure, based on the Lorenz
Zonoids, is able to simplify a black-box machine learning
model into an explainable model.

From a financial viewpoint, all models indicate that the
most important variables for credit scoring are: a measure of
financial leverage and a measure of profitability, confirming
the previous analysis of [4] and [10] on the same data.

A natural question that arises is: which of the three model
champions is the best model overall, both in absolute terms
(predictive accuracy) and in relative terms, with respect to
the full model (explainability)? To answer this question, the
logistic regression, neural network and XGBoost models
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Table 5
Logistic regression model (forward stepwise) - Marginal
contributions (��( ����

)); additional contributions
(pay-o� (��)); significance (�-value) of the additional
contributions; �1 metric. Legend: TA/TL=Total assets/Total
Liabilities; (PLBT+IP)/TA=(Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S=EBITDA/Sales;
TO=Turnover.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.3943 1 - - -
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 < 0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 < 0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Table 6
Logistic regression model (forward stepwise) - Marginal con-
tributions (AUROC); additional contributions (difference of
AUROC); significance (�-value) of the additional contribu-
tions; �1 metric. Legend: EBITDA/IP=EBITDA/Interest paid;
TA/TL=Total assets/Total Liabilities.

ID Variable ������� ID of the
included
variables

pay-o� (��) �-value �1

7 EBITDA/IP 0.7753 7 - - -
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

then, progressively adding the other variables, up to the full
model. At each step, the additional contribution of the new
added variable is measured by pay-o� (��). For the sake
of completeness, we also report the �1 accuracy index, a
standard practice as the AUROC, in the seventh column of
Table 5. To decide when to stop the procedure, we apply the
statistical test proposed in Subsection 2.3 and, then, continue
the process until the additional contribution is significantly
di�erent from zero. In this way the selected model repre-
sents a good trade-o� between predictive accuracy (which
increases with model complexity) and explainability (which
decreases with model complexity).

The results of the procedure, based on the Lorenz Zonoid
pay-o�s, are illustrated in Table 5.

Looking at Table 5 and, in particular, at the �-values of
the test, reported in the sixth column, we obtain that the best
model includes three explanatory variables: �1, �3, as in
the reference literature (see, e.g. [4]), and also variable �9.
For comparison purposes, Table 6 highlights the results of
the procedure based on the AUROC di�erences.

In agreement with Figure 13 (b), Table 6 shows that the
best model contains variable �7 (EBITDA/Interest paid). In
addition, the DeLong test indicates to stop at that point, lead-
ing to a very parsimonious model, with only one variable.
We remark that the result of the AUROC based procedure
is not in line with the literature, as it includes in the model
a measure of profitability but not a measure of financial
leverage.

We also remark that, for robustness purposes, we have
implemented a backward stepwise procedure, for both the
Lorenz Zonoid pay-o� and the AUROC. The results have

Table 7
Neural network model (forward stepwise) - Marginal
contributions (��( ����

)); additional contributions
(pay-o� (��)); significance (�-value) of the additional
contributions; �1 metric. Legend: TA/TL=Total assets/Total
Liabilities; IP/(PBT+IP)=Interest paid/(Profit before
taxes+Interest paid); EBITDA/IP=EBITDA/Interest paid.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.5343 1 - - -
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 < 0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

confirmed the significance of the variables contained in the
models selected with the forward procedure.

We now report the results of model comparison, for a
neural network model built (without loss of generality) with
five neurons in the hidden layer. Specifically, we apply a
feedforward multilayer perceptron neural network charac-
terised by straight forward networks (see, e.g. [30]).

The behaviour of the ��(��) and of the AUROC for
each explanatory variable is shown in Figures 14 (a) and (b),
respectively.
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Figure 14: [(a)] Neural network model - Marginal Lorenz
Zonoid [(b)] Neural network model - Marginal AUROC

From Figure 14 (a), the variables that contribute the most
are variables �7 and �1, and similarly in Figure 14 (b),
although in a reversed order. Additionally, Figure 14 (b)
indicates a high importance also for variable �6. In both
cases, the least important results to be �11.

The results of the stepwise procedure for the neural
network models are reported, respectively, in Table 7, for the
��(��) measure; and in Table 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs
for logistic regression models, the neural network procedure
selects two variables, and one is �1. However, the second
variable is �6 and not �3. From a financial viewpoint,
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Table 5
Logistic regression model (forward stepwise) - Marginal
contributions (��( ����

)); additional contributions
(pay-o� (��)); significance (�-value) of the additional
contributions; �1 metric. Legend: TA/TL=Total assets/Total
Liabilities; (PLBT+IP)/TA=(Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S=EBITDA/Sales;
TO=Turnover.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.3943 1 - - -
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 < 0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 < 0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Table 6
Logistic regression model (forward stepwise) - Marginal con-
tributions (AUROC); additional contributions (difference of
AUROC); significance (�-value) of the additional contribu-
tions; �1 metric. Legend: EBITDA/IP=EBITDA/Interest paid;
TA/TL=Total assets/Total Liabilities.

ID Variable ������� ID of the
included
variables

pay-o� (��) �-value �1

7 EBITDA/IP 0.7753 7 - - -
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

then, progressively adding the other variables, up to the full
model. At each step, the additional contribution of the new
added variable is measured by pay-o� (��). For the sake
of completeness, we also report the �1 accuracy index, a
standard practice as the AUROC, in the seventh column of
Table 5. To decide when to stop the procedure, we apply the
statistical test proposed in Subsection 2.3 and, then, continue
the process until the additional contribution is significantly
di�erent from zero. In this way the selected model repre-
sents a good trade-o� between predictive accuracy (which
increases with model complexity) and explainability (which
decreases with model complexity).

The results of the procedure, based on the Lorenz Zonoid
pay-o�s, are illustrated in Table 5.

Looking at Table 5 and, in particular, at the �-values of
the test, reported in the sixth column, we obtain that the best
model includes three explanatory variables: �1, �3, as in
the reference literature (see, e.g. [4]), and also variable �9.
For comparison purposes, Table 6 highlights the results of
the procedure based on the AUROC di�erences.

In agreement with Figure 13 (b), Table 6 shows that the
best model contains variable �7 (EBITDA/Interest paid). In
addition, the DeLong test indicates to stop at that point, lead-
ing to a very parsimonious model, with only one variable.
We remark that the result of the AUROC based procedure
is not in line with the literature, as it includes in the model
a measure of profitability but not a measure of financial
leverage.

We also remark that, for robustness purposes, we have
implemented a backward stepwise procedure, for both the
Lorenz Zonoid pay-o� and the AUROC. The results have

Table 7
Neural network model (forward stepwise) - Marginal
contributions (��( ����

)); additional contributions
(pay-o� (��)); significance (�-value) of the additional
contributions; �1 metric. Legend: TA/TL=Total assets/Total
Liabilities; IP/(PBT+IP)=Interest paid/(Profit before
taxes+Interest paid); EBITDA/IP=EBITDA/Interest paid.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.5343 1 - - -
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 < 0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

confirmed the significance of the variables contained in the
models selected with the forward procedure.

We now report the results of model comparison, for a
neural network model built (without loss of generality) with
five neurons in the hidden layer. Specifically, we apply a
feedforward multilayer perceptron neural network charac-
terised by straight forward networks (see, e.g. [30]).

The behaviour of the ��(��) and of the AUROC for
each explanatory variable is shown in Figures 14 (a) and (b),
respectively.
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Figure 14: [(a)] Neural network model - Marginal Lorenz
Zonoid [(b)] Neural network model - Marginal AUROC

From Figure 14 (a), the variables that contribute the most
are variables �7 and �1, and similarly in Figure 14 (b),
although in a reversed order. Additionally, Figure 14 (b)
indicates a high importance also for variable �6. In both
cases, the least important results to be �11.

The results of the stepwise procedure for the neural
network models are reported, respectively, in Table 7, for the
��(��) measure; and in Table 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs
for logistic regression models, the neural network procedure
selects two variables, and one is �1. However, the second
variable is �6 and not �3. From a financial viewpoint,
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4. Application

4.1. Data
In this section we apply our proposed method to data

supplied by Modefinance, a European Credit Assessment
Institution (ECAI) that specializes in credit scoring for P2P
platforms focused on SME commercial lending. The whole
dataset is described by [10] to which we refer for further
details. Here we focus on the twelve explanatory variables
selected by the Authors: Total Assets/Total Liabilities (�1);
Current Assets/Current Liabilities (�2); (Profit or Loss
before tax+Interest paid)/Total Assets (�3); Return on
Equity (�4); Operating Revenues/Total Assets (�5); Interest
paid/(Profit before taxes+Interest paid) (�6); EBITDA/Interest
paid (�7); EBITDA/Operating Revenues (�8); EBITDA/Sales
(�9); Trade Receivables/Operating Revenues (�10); Inven-
tories/Operating Revenues (�11); Turnover (�12).

The data on the above mentioned explanatory variables
are extracted from the balance-sheets of 15,045 SMEs,
mostly based in Southern Europe, for the year 2015. The
data on the response variable are obtained from information
about the status (0 = active, 1 = defaulted) of each SME one
year later (2016), as collected from the o�cial registers of
bankruptcy. Note that the observed proportion of defaulted
companies is equal to 10.9%.
4.2. Results

With the same data, [10] have constructed logistic re-
gression scoring models that aim at estimating the probabil-
ity of default of each company, using the available explana-
tory data and, in addition, network centrality measures that
are obtained from similarity networks.

To improve the predictive performance of the model,
[4] have applied the Gradient Boosting (XGBoost) tree
algorithm, and obtained a substantial increase in predictive
performance: the Area Under the ROC Curve (AUROC)
increases from a value of 0.81, obtained with the application
of the logistic regression, to a value of 0.93, obtained with
the Gradient Boosting method.

The same Authors identify the variables �1 and �3 as
the variables that rank highest in terms of the Shapley value
explanation of the probability of default, a result that is quite
consistent with most credit scoring models, that typically
include, among the explanatory variables of credit default,
a measure of financial leverage (such as variable �1) and a
measure of profitability (such as variable �3).

We consider the same data, and the same twelve ex-
planatory variables as in [4], to which we apply a logis-
tic regression model after the data is randomly split in a
training set (80%) and a test set (20%). We then calculate,
on the test set, the contribution of each of the explanatory
variables to the estimate of the probability of default, using
our proposed Lorenz Zonoid based approach. Additionally
to what Shapley values can do, we provide contributions that
are normalised in the [0, 1] interval, and whose additional
value can be assessed in terms of its statistical significance.

Doing so, we show how a model comparison procedure
based on the Lorenz Zonoids can improve the explainability
of a machine learning model, choosing a parsimonious set
of explanatory variables while maintaining a high predictive
accuracy.

The implementation of our proposed model comparison
procedure starts by computing the marginal contribution of
each single explanatory variable ��, for � = 1,… , 12, to the
explanation of the probability of default. The marginal con-
tributions are determined by building twelve simple logistic
regression models, each of them involving only one of the
twelve predictors, and calculating the Lorenz Zonoid value
��( ����

) for each of them. This leads to a ranking of the
explanatory variables, to be used in the stepwise procedure.
In the forward perspective, the variable with the highest
��( ����

) value is selected as the first variable to be included
in the model. Then, progressively, more complex models are
implemented by introducing at each step an additional vari-
able, according to the obtained variable ranking. Conversely,
in the backward perspective, the variable with the lowest
��( ����

) value is selected as the first variable to be removed
from the full model and, then, progressively, simpler models
are implemented by deleting at each step according to the
reversed variable ranking.

The marginal contributions of each considered explana-
tory variable, measured in terms of ��( ����

), along with
the corresponding value of the AUROC, for comparison
purposes, are displayed in Figure 13 (a) and (b), respectively.
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Figure 13: [(a)] Logistic regression model - Marginal Lorenz
Zonoid [(b)] Logistic regression model - Marginal AUROC

From Figure 13 (a), the variables that contribute the
most are variables �1 and �3, as in [4], followed by �9and, then, the others. The least important results to be �11.
Di�erently, from Figure 13 (b), the most important variable
is�7, followed by�1,�4 and the others. The least important
variable results to be �11.

We have then implemented a Lorenz Zonoid and an
AUROC forward stepwise procedure starting from �1 and,
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Table 5
Logistic regression model (forward stepwise) - Marginal
contributions (��( ����

)); additional contributions
(pay-o� (��)); significance (�-value) of the additional
contributions; �1 metric. Legend: TA/TL=Total assets/Total
Liabilities; (PLBT+IP)/TA=(Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S=EBITDA/Sales;
TO=Turnover.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.3943 1 - - -
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 < 0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 < 0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Table 6
Logistic regression model (forward stepwise) - Marginal con-
tributions (AUROC); additional contributions (difference of
AUROC); significance (�-value) of the additional contribu-
tions; �1 metric. Legend: EBITDA/IP=EBITDA/Interest paid;
TA/TL=Total assets/Total Liabilities.

ID Variable ������� ID of the
included
variables

pay-o� (��) �-value �1

7 EBITDA/IP 0.7753 7 - - -
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

then, progressively adding the other variables, up to the full
model. At each step, the additional contribution of the new
added variable is measured by pay-o� (��). For the sake
of completeness, we also report the �1 accuracy index, a
standard practice as the AUROC, in the seventh column of
Table 5. To decide when to stop the procedure, we apply the
statistical test proposed in Subsection 2.3 and, then, continue
the process until the additional contribution is significantly
di�erent from zero. In this way the selected model repre-
sents a good trade-o� between predictive accuracy (which
increases with model complexity) and explainability (which
decreases with model complexity).

The results of the procedure, based on the Lorenz Zonoid
pay-o�s, are illustrated in Table 5.

Looking at Table 5 and, in particular, at the �-values of
the test, reported in the sixth column, we obtain that the best
model includes three explanatory variables: �1, �3, as in
the reference literature (see, e.g. [4]), and also variable �9.
For comparison purposes, Table 6 highlights the results of
the procedure based on the AUROC di�erences.

In agreement with Figure 13 (b), Table 6 shows that the
best model contains variable �7 (EBITDA/Interest paid). In
addition, the DeLong test indicates to stop at that point, lead-
ing to a very parsimonious model, with only one variable.
We remark that the result of the AUROC based procedure
is not in line with the literature, as it includes in the model
a measure of profitability but not a measure of financial
leverage.

We also remark that, for robustness purposes, we have
implemented a backward stepwise procedure, for both the
Lorenz Zonoid pay-o� and the AUROC. The results have

Table 7
Neural network model (forward stepwise) - Marginal
contributions (��( ����

)); additional contributions
(pay-o� (��)); significance (�-value) of the additional
contributions; �1 metric. Legend: TA/TL=Total assets/Total
Liabilities; IP/(PBT+IP)=Interest paid/(Profit before
taxes+Interest paid); EBITDA/IP=EBITDA/Interest paid.

ID Variable ��( ���� ) ID of the
included
variables

pay-o� (��) �-value �1

1 TA/TL 0.5343 1 - - -
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 < 0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

confirmed the significance of the variables contained in the
models selected with the forward procedure.

We now report the results of model comparison, for a
neural network model built (without loss of generality) with
five neurons in the hidden layer. Specifically, we apply a
feedforward multilayer perceptron neural network charac-
terised by straight forward networks (see, e.g. [30]).

The behaviour of the ��(��) and of the AUROC for
each explanatory variable is shown in Figures 14 (a) and (b),
respectively.
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Figure 14: [(a)] Neural network model - Marginal Lorenz
Zonoid [(b)] Neural network model - Marginal AUROC

From Figure 14 (a), the variables that contribute the most
are variables �7 and �1, and similarly in Figure 14 (b),
although in a reversed order. Additionally, Figure 14 (b)
indicates a high importance also for variable �6. In both
cases, the least important results to be �11.

The results of the stepwise procedure for the neural
network models are reported, respectively, in Table 7, for the
��(��) measure; and in Table 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs
for logistic regression models, the neural network procedure
selects two variables, and one is �1. However, the second
variable is �6 and not �3. From a financial viewpoint,
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Table 5
Logistic regression model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.3943 1 – – –
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 <0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 <0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Legend: TA/TL = Total assets/Total Liabilities; (PLBT+IP)/TA = (Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S = EBITDA/Sales; TO = Turnover.

Table 6
Logistic regression model (forward stepwise) - Marginal contributions (AUROC); ad-
ditional contributions (difference of AUROC); significance (p-value) of the additional
contributions; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

7 EBITDA/IP 0.7753 7 – – –
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

Legend: EBITDA/IP = EBITDA/Interest paid; TA/TL = Total assets/Total Liabilities.

To decide when to stop the procedure, we apply the statistical test pro-
posed in Section 2.3 and, then, continue the process until the additional
contribution is significantly different from zero. In this way the selected
model represents a good trade-off between predictive accuracy (which
increases with model complexity) and explainability (which decreases
with model complexity).

The results of the procedure, based on the Lorenz Zonoid pay-offs,
are illustrated in Table 5.

Looking at Table 5 and, in particular, at the p-values of the test,
reported in the sixth column, we obtain that the best model includes
three explanatory variables: X1, X3, as in the reference literature (see,
e.g. [5]), and also variable X9. For comparison purposes, Table 6
highlights the results of the procedure based on the AUROC differences.

In agreement with Fig. 13(b), Table 6 shows that the best model
contains variable X7 (EBITDA/Interest paid). In addition, the DeLong
test indicates to stop at that point, leading to a very parsimonious
model, with only one variable. We remark that the result of the AUROC
based procedure is not in line with the literature, as it includes in
the model a measure of profitability but not a measure of financial
leverage.

We also remark that, for robustness purposes, we have implemented
a backward stepwise procedure, for both the Lorenz Zonoid pay-off and
the AUROC. The results have confirmed the significance of the variables
contained in the models selected with the forward procedure.

We now report the results of model comparison, for a neural net-
work model built (without loss of generality) with five neurons in the
hidden layer. Specifically, we apply a feedforward multilayer percep-
tron neural network characterised by straight forward networks (see,
e.g. [33]).

The behaviour of the LZ(Xk) and of the AUROC for each explana-
tory variable is shown in Figs. 14 (a) and (b), respectively.

From Fig. 14(a), the variables that contribute the most are variables
X7 and X1, and similarly in Fig. 14(b), although in a reversed order.
Additionally, Fig. 14(b) indicates a high importance also for variable
X6. In both cases, the least important results to be X11.

The results of the stepwise procedure for the neural network models
are reported, respectively, in Table 7, for the LZ(Xk) measure; and in
Table 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs for logistic
regression models, the neural network procedure selects two variables,
and one is X1. However, the second variable is X6 and not X3. From a

Fig. 14. [(a)] Neural network model - Marginal Lorenz Zonoid [(b)] Neural network
model - Marginal AUROC.

Table 7
Neural network model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.5343 1 – – –
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 <0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

Legend: TA/TL = Total assets/Total Liabilities; IP/(PBT+IP) = Interest paid/(Profit
before taxes + Interest paid); EBITDA/IP = EBITDA/Interest paid.

Table 8
Neural network model (forward stepwise) - Marginal contributions (AUROC); additional
contributions in terms of AUROC difference; significance (p-value) of the additional
contribution; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.7809 1 – – –
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

Legend: TA/TL = Total assets/Total Liabilities; EBITDA/IP = EBITDA/Interest paid;
IP/(PBT+IP) = Interest paid/(Profit before taxes+Interest paid).

financial viewpoint, the results are indeed similar, as both X3 and X6
measure profitability, whereas X1 indicates financial leverage.

Similar conclusions can be derived when the AUROC metric is
employed in place of the Lorenz Zonoid pay-off. Table 8 shows that,
again, two explanatory variables are included in the selected model.
While the first one is confirmed to be X1, the second is X7, instead of
X6: another function of the profitability. These results are confirmed
when a backward selection procedure is implemented, for robustness.

In summary, the application of the procedure to neural networks
shows that both the Lorenz Zonoid and the AUROC model selection
lead to choose a model with two variables (one measuring leverage and
one measuring profitability), which represents a very good trade-off
between explainability and accuracy. On one hand, the model is more
explainable than the full model, as the response depends significantly
only on two variables, and we know which ones (whereas a full neural
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Table 5
Logistic regression model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.3943 1 – – –
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 <0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 <0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Legend: TA/TL = Total assets/Total Liabilities; (PLBT+IP)/TA = (Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S = EBITDA/Sales; TO = Turnover.

Table 6
Logistic regression model (forward stepwise) - Marginal contributions (AUROC); ad-
ditional contributions (difference of AUROC); significance (p-value) of the additional
contributions; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

7 EBITDA/IP 0.7753 7 – – –
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

Legend: EBITDA/IP = EBITDA/Interest paid; TA/TL = Total assets/Total Liabilities.

To decide when to stop the procedure, we apply the statistical test pro-
posed in Section 2.3 and, then, continue the process until the additional
contribution is significantly different from zero. In this way the selected
model represents a good trade-off between predictive accuracy (which
increases with model complexity) and explainability (which decreases
with model complexity).

The results of the procedure, based on the Lorenz Zonoid pay-offs,
are illustrated in Table 5.

Looking at Table 5 and, in particular, at the p-values of the test,
reported in the sixth column, we obtain that the best model includes
three explanatory variables: X1, X3, as in the reference literature (see,
e.g. [5]), and also variable X9. For comparison purposes, Table 6
highlights the results of the procedure based on the AUROC differences.

In agreement with Fig. 13(b), Table 6 shows that the best model
contains variable X7 (EBITDA/Interest paid). In addition, the DeLong
test indicates to stop at that point, leading to a very parsimonious
model, with only one variable. We remark that the result of the AUROC
based procedure is not in line with the literature, as it includes in
the model a measure of profitability but not a measure of financial
leverage.

We also remark that, for robustness purposes, we have implemented
a backward stepwise procedure, for both the Lorenz Zonoid pay-off and
the AUROC. The results have confirmed the significance of the variables
contained in the models selected with the forward procedure.

We now report the results of model comparison, for a neural net-
work model built (without loss of generality) with five neurons in the
hidden layer. Specifically, we apply a feedforward multilayer percep-
tron neural network characterised by straight forward networks (see,
e.g. [33]).

The behaviour of the LZ(Xk) and of the AUROC for each explana-
tory variable is shown in Figs. 14 (a) and (b), respectively.

From Fig. 14(a), the variables that contribute the most are variables
X7 and X1, and similarly in Fig. 14(b), although in a reversed order.
Additionally, Fig. 14(b) indicates a high importance also for variable
X6. In both cases, the least important results to be X11.

The results of the stepwise procedure for the neural network models
are reported, respectively, in Table 7, for the LZ(Xk) measure; and in
Table 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs for logistic
regression models, the neural network procedure selects two variables,
and one is X1. However, the second variable is X6 and not X3. From a

Fig. 14. [(a)] Neural network model - Marginal Lorenz Zonoid [(b)] Neural network
model - Marginal AUROC.

Table 7
Neural network model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.5343 1 – – –
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 <0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

Legend: TA/TL = Total assets/Total Liabilities; IP/(PBT+IP) = Interest paid/(Profit
before taxes + Interest paid); EBITDA/IP = EBITDA/Interest paid.

Table 8
Neural network model (forward stepwise) - Marginal contributions (AUROC); additional
contributions in terms of AUROC difference; significance (p-value) of the additional
contribution; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.7809 1 – – –
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

Legend: TA/TL = Total assets/Total Liabilities; EBITDA/IP = EBITDA/Interest paid;
IP/(PBT+IP) = Interest paid/(Profit before taxes+Interest paid).

financial viewpoint, the results are indeed similar, as both X3 and X6
measure profitability, whereas X1 indicates financial leverage.

Similar conclusions can be derived when the AUROC metric is
employed in place of the Lorenz Zonoid pay-off. Table 8 shows that,
again, two explanatory variables are included in the selected model.
While the first one is confirmed to be X1, the second is X7, instead of
X6: another function of the profitability. These results are confirmed
when a backward selection procedure is implemented, for robustness.

In summary, the application of the procedure to neural networks
shows that both the Lorenz Zonoid and the AUROC model selection
lead to choose a model with two variables (one measuring leverage and
one measuring profitability), which represents a very good trade-off
between explainability and accuracy. On one hand, the model is more
explainable than the full model, as the response depends significantly
only on two variables, and we know which ones (whereas a full neural
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Table 5
Logistic regression model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.3943 1 – – –
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 <0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 <0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Legend: TA/TL = Total assets/Total Liabilities; (PLBT+IP)/TA = (Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S = EBITDA/Sales; TO = Turnover.

Table 6
Logistic regression model (forward stepwise) - Marginal contributions (AUROC); ad-
ditional contributions (difference of AUROC); significance (p-value) of the additional
contributions; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

7 EBITDA/IP 0.7753 7 – – –
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

Legend: EBITDA/IP = EBITDA/Interest paid; TA/TL = Total assets/Total Liabilities.

To decide when to stop the procedure, we apply the statistical test pro-
posed in Section 2.3 and, then, continue the process until the additional
contribution is significantly different from zero. In this way the selected
model represents a good trade-off between predictive accuracy (which
increases with model complexity) and explainability (which decreases
with model complexity).

The results of the procedure, based on the Lorenz Zonoid pay-offs,
are illustrated in Table 5.

Looking at Table 5 and, in particular, at the p-values of the test,
reported in the sixth column, we obtain that the best model includes
three explanatory variables: X1, X3, as in the reference literature (see,
e.g. [5]), and also variable X9. For comparison purposes, Table 6
highlights the results of the procedure based on the AUROC differences.

In agreement with Fig. 13(b), Table 6 shows that the best model
contains variable X7 (EBITDA/Interest paid). In addition, the DeLong
test indicates to stop at that point, leading to a very parsimonious
model, with only one variable. We remark that the result of the AUROC
based procedure is not in line with the literature, as it includes in
the model a measure of profitability but not a measure of financial
leverage.

We also remark that, for robustness purposes, we have implemented
a backward stepwise procedure, for both the Lorenz Zonoid pay-off and
the AUROC. The results have confirmed the significance of the variables
contained in the models selected with the forward procedure.

We now report the results of model comparison, for a neural net-
work model built (without loss of generality) with five neurons in the
hidden layer. Specifically, we apply a feedforward multilayer percep-
tron neural network characterised by straight forward networks (see,
e.g. [33]).

The behaviour of the LZ(Xk) and of the AUROC for each explana-
tory variable is shown in Figs. 14 (a) and (b), respectively.

From Fig. 14(a), the variables that contribute the most are variables
X7 and X1, and similarly in Fig. 14(b), although in a reversed order.
Additionally, Fig. 14(b) indicates a high importance also for variable
X6. In both cases, the least important results to be X11.

The results of the stepwise procedure for the neural network models
are reported, respectively, in Table 7, for the LZ(Xk) measure; and in
Table 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs for logistic
regression models, the neural network procedure selects two variables,
and one is X1. However, the second variable is X6 and not X3. From a

Fig. 14. [(a)] Neural network model - Marginal Lorenz Zonoid [(b)] Neural network
model - Marginal AUROC.

Table 7
Neural network model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.5343 1 – – –
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 <0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

Legend: TA/TL = Total assets/Total Liabilities; IP/(PBT+IP) = Interest paid/(Profit
before taxes + Interest paid); EBITDA/IP = EBITDA/Interest paid.

Table 8
Neural network model (forward stepwise) - Marginal contributions (AUROC); additional
contributions in terms of AUROC difference; significance (p-value) of the additional
contribution; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.7809 1 – – –
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

Legend: TA/TL = Total assets/Total Liabilities; EBITDA/IP = EBITDA/Interest paid;
IP/(PBT+IP) = Interest paid/(Profit before taxes+Interest paid).

financial viewpoint, the results are indeed similar, as both X3 and X6
measure profitability, whereas X1 indicates financial leverage.

Similar conclusions can be derived when the AUROC metric is
employed in place of the Lorenz Zonoid pay-off. Table 8 shows that,
again, two explanatory variables are included in the selected model.
While the first one is confirmed to be X1, the second is X7, instead of
X6: another function of the profitability. These results are confirmed
when a backward selection procedure is implemented, for robustness.

In summary, the application of the procedure to neural networks
shows that both the Lorenz Zonoid and the AUROC model selection
lead to choose a model with two variables (one measuring leverage and
one measuring profitability), which represents a very good trade-off
between explainability and accuracy. On one hand, the model is more
explainable than the full model, as the response depends significantly
only on two variables, and we know which ones (whereas a full neural
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Table 5
Logistic regression model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.3943 1 – – –
3 (PLBT+IP)/TA 0.3714 1, 3 0.0544 <0.001 0.3844
9 EBITDA/S 0.3244 1, 3, 9 0.0081 <0.001 0.3865
12 TO 0.3061 1, 3, 9, 12 0.0002 0.2069 0.3865

Legend: TA/TL = Total assets/Total Liabilities; (PLBT+IP)/TA = (Profit or Loss before
tax+Interest paid)/Total Assets; EBITDA/S = EBITDA/Sales; TO = Turnover.

Table 6
Logistic regression model (forward stepwise) - Marginal contributions (AUROC); ad-
ditional contributions (difference of AUROC); significance (p-value) of the additional
contributions; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

7 EBITDA/IP 0.7753 7 – – –
1 TA/TL 0.4113 7, 1 0.0016 0.9050 0.2942

Legend: EBITDA/IP = EBITDA/Interest paid; TA/TL = Total assets/Total Liabilities.

To decide when to stop the procedure, we apply the statistical test pro-
posed in Section 2.3 and, then, continue the process until the additional
contribution is significantly different from zero. In this way the selected
model represents a good trade-off between predictive accuracy (which
increases with model complexity) and explainability (which decreases
with model complexity).

The results of the procedure, based on the Lorenz Zonoid pay-offs,
are illustrated in Table 5.

Looking at Table 5 and, in particular, at the p-values of the test,
reported in the sixth column, we obtain that the best model includes
three explanatory variables: X1, X3, as in the reference literature (see,
e.g. [5]), and also variable X9. For comparison purposes, Table 6
highlights the results of the procedure based on the AUROC differences.

In agreement with Fig. 13(b), Table 6 shows that the best model
contains variable X7 (EBITDA/Interest paid). In addition, the DeLong
test indicates to stop at that point, leading to a very parsimonious
model, with only one variable. We remark that the result of the AUROC
based procedure is not in line with the literature, as it includes in
the model a measure of profitability but not a measure of financial
leverage.

We also remark that, for robustness purposes, we have implemented
a backward stepwise procedure, for both the Lorenz Zonoid pay-off and
the AUROC. The results have confirmed the significance of the variables
contained in the models selected with the forward procedure.

We now report the results of model comparison, for a neural net-
work model built (without loss of generality) with five neurons in the
hidden layer. Specifically, we apply a feedforward multilayer percep-
tron neural network characterised by straight forward networks (see,
e.g. [33]).

The behaviour of the LZ(Xk) and of the AUROC for each explana-
tory variable is shown in Figs. 14 (a) and (b), respectively.

From Fig. 14(a), the variables that contribute the most are variables
X7 and X1, and similarly in Fig. 14(b), although in a reversed order.
Additionally, Fig. 14(b) indicates a high importance also for variable
X6. In both cases, the least important results to be X11.

The results of the stepwise procedure for the neural network models
are reported, respectively, in Table 7, for the LZ(Xk) measure; and in
Table 8, for the AUROC measure.

From Table 7 we obtain that, similarly to what occurs for logistic
regression models, the neural network procedure selects two variables,
and one is X1. However, the second variable is X6 and not X3. From a

Fig. 14. [(a)] Neural network model - Marginal Lorenz Zonoid [(b)] Neural network
model - Marginal AUROC.

Table 7
Neural network model (forward stepwise) - Marginal contributions (LZ( ÇYXk

)); addi-
tional contributions (pay-off (Xk)); significance (p-value) of the additional contributions;
F1 metric.

ID Variable LZ( ÇYXk
) ID of the

included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.5343 1 – – –
6 IP/(PBT+IP) 0.4684 1, 6 0.0212 <0.001 0.4154
7 EBITDA/IP 0.4574 1, 6, 7 0.0009 0.7806 0.400

Legend: TA/TL = Total assets/Total Liabilities; IP/(PBT+IP) = Interest paid/(Profit
before taxes + Interest paid); EBITDA/IP = EBITDA/Interest paid.

Table 8
Neural network model (forward stepwise) - Marginal contributions (AUROC); additional
contributions in terms of AUROC difference; significance (p-value) of the additional
contribution; F1 metric.

ID Variable AUROCXk
ID of the
included
variables

pay-off
(Xk)

p-value F1

1 TA/TL 0.7809 1 – – –
7 EBITDA/IP 0.7752 1, 7 0.0219 0.0426 0.4366
6 IP/(PBT+IP) 0.7665 1, 7, 6 0.0013 0.8348 0.4000

Legend: TA/TL = Total assets/Total Liabilities; EBITDA/IP = EBITDA/Interest paid;
IP/(PBT+IP) = Interest paid/(Profit before taxes+Interest paid).

financial viewpoint, the results are indeed similar, as both X3 and X6
measure profitability, whereas X1 indicates financial leverage.

Similar conclusions can be derived when the AUROC metric is
employed in place of the Lorenz Zonoid pay-off. Table 8 shows that,
again, two explanatory variables are included in the selected model.
While the first one is confirmed to be X1, the second is X7, instead of
X6: another function of the profitability. These results are confirmed
when a backward selection procedure is implemented, for robustness.

In summary, the application of the procedure to neural networks
shows that both the Lorenz Zonoid and the AUROC model selection
lead to choose a model with two variables (one measuring leverage and
one measuring profitability), which represents a very good trade-off
between explainability and accuracy. On one hand, the model is more
explainable than the full model, as the response depends significantly
only on two variables, and we know which ones (whereas a full neural
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