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Artificial intelligence: risks

» Cyber technologies bring also risks, such as cyber risks
and model risks.

» Policy makers, regulators, supervisors and
standardisation bodies around the world are promoting
Al risk management, measuring Al risks to make it
sustainable.

» A reference model is the European Artificial Intelligence
Act, which requires risk management of high risk Al
applications.
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Requirements for a trustworthy Al

For a trustworthy Al the key principles of accuracy, sustainability,
fairness, explainability have to be developed.

Model comparison
» Machine Learning models can be compared in terms of their
associated predictive capability (accuracy).

» Complex Machine Learning models can be evaluated in terms
of their interpretability (explainability).

Evaluation of a specific model
> A specific model can be evaluated in terms of its robustness
with respect to perturbed data (sustainability).

> A specific model can be evaluated in terms of equality with
respect to the different groups (gender, ethnicity, ...)
composing the population (fairness).
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Explainable Artificial Intelligence

Black box Artificial Intelligence (Al) is not suitable in regulated
financial services. Thus, eXplainable Al (XAl) methods are
necessary.

Definition

Explainability means that an interested stakeholder can
comprehend the main drivers of a model-driven decision.

Problem

> “Simple” machine learning-models provide a high
interpretability but, possibly, a limited predictive accuracy.

> “Complex” machine learning-models provide a high predictive
accuracy at the expense of a limited interpretability.

Solution

Boosting highly accurate machine learning-models with novel
methodologies that can explain their predictive output (local and
global explanation based-approaches).
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77 Local explanation based-approach - The Shapley-value based
approach

Shapley values were originally introduced by Shapley (1953) to measure the
contribution of each explanatory variable for each point prediction of a
machine learning model.

Premises
Let:

> j=1,...,n be a statistical unit, whose (multivariate) characteristics Y;
are to be predicted with a machine learning model;

> \7, = f'\(X,) indicate the predicted value for the response vector Y;, based
on an explanatory vector of characteristics X;, obtained with a machine
learning model.

Definition
Given K explanatory variables, the marginal contribution of a variable
X, (k=1,...,K) can be expressed as

I X' |[W(K — | X'| —
K

NGED DU Uxe)r — A, (1)

X" CE (X)\ Xk

where € (X) \ X, is the set of all the possible model configurations which can
be obtained excluding variable Xj; |X/| denotes the number of variables
included in each possible model, (X UXy); and #(X'); are the predictions
associated with all the possible model configurations including variable X, and
excluding variable X, both calculated for the unit /.
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Global explanation-based approach - Lorenz Zonoid

Lorenz Zonoids were introduced by Koshevoy and Mosler (1996) as a
generalization of the Lorenz curve in d dimensions. When d = 1, the Lorenz
Zonoid corresponds with the well known Gini coefficient.

Main steps to build the Lorenz Zonoid
Given a variable Y and n observations,
» build the Y Lorenz curve (Ly) by re-ordering the Y values in
non-decreasing sense, whose points have coordinates
(i/n,z:_;::1 yr;/(ny)), for i=1,...,n, where r and y indicate the
(non-decreasing) ranks of Y and the Y mean value, respectively;

> build the Y dual Lorenz curve (L,Y) by re-ordering the Y values in a
non-increasing sense, whose points have coordinates
(i/n,Xj—1yd;/(ny)), for i=1,...,n, where d indicates the
(non-increasing) ranks of Y’;

> the area lying between the Ly and L,Y curves correspond to the Lorenz
Zonoid.
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The inclusion property

Consider a MLM, such that ¥ = #(X1,...,Xk). It results that
LZ(Y)C LZ(Y).
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Features and formalisation of the Lorenz Zonoids

Features:

XxAIM

> [ Z(-) is a measure of the mutual variability that characterizes a
phenomenon of interest.

> [ Z(7) is used to assess the contribution of additional independent
variables in explaining the variability of the response variable.

Formalization

Let:
> [ Z(Y) be the Lorenz Zonoid of the response variable Y/;
> Xi be an independent variable such that \A/Xl = F(X1);
> L Z( ?Xl) be the Lorenz Zonoid of \A/Xl;
> X5 be an additional independent variable such that \A/Xz = f(X2);
> LZ( sz) be the Lorenz Zonoid of \A/Xz-

The Lorenz Zonoid of a variable may be expressed by resorting to the
covariance operator, i.e.

2Cov(Yx,r(Yx,))

2Cov(Y,r(Y ~
2Cov(¥Yx,,r(Yx,))

and LZ(Yx,) = r
n

where u = E(Y') and r(-) are rank scores.
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The Lorenz Zonoids for sample data

Given a sample data of size n, the Lorenz Zonoids may be
re-expressed as:

_ 2Cov(y_, r(y)) L 2COV()7X17 r(.)l}Xl))

LZ(y) - LZ(9) = o
2C AX 9 AX
and Lz(y)@) — Ov(yn}r(y 2))

where y, y,, and y,, are the vectors of the observed and
estimated values, r(y), r(Vx, ) and r(yx,) are the ranks of the
observed and estimated values, and y is the sample mean.
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The Shapley-Lorenz decomposition
The mathematical derivation of the Shapley-Lorenz decomposition
can be obtained through the following steps:

> replace LZ(-) in place of #(-) in the Shapley expression in (1);

» define the marginal contribution associated with the
additional variable X as:

(X (K =X
Kl

—1)! [LZ(Y, LZ(Y, )],

(2)

LZXk(Y) = Y
X' CE(X)\ Xk

UXk)_

where LZ( Yy 5 ) and LZ(Yys) describe the (mutual)

variability explained by the models including the X' U Xk
variables and the X variables, respectively.
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We aim to build a model able to predict bitcoin prices.

Data description

» The data provide the daily bitcoin prices of the Coinbase
crypto exchange, from 18 May, 2016 to 30 April, 2018;

» The Coinbase price is the response variable to be
predicted by the available explanatory variables;

» The candidate explanatory variables are Oil, Gold and
SP500 prices are taken into account.

.xAIM
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‘The Shapley-Lorenz decomposition

A linear regression model is implemented as our selected candidate machine
learning model. The Shapley Lorenz marginal contributions, associated with
the inclusion of SP500, Gold and Oil, are determined as follows:

L Z5P5% (Coinbase) = (1/3)(LZ(¥sPs00.Gold,0it) — LZ(YGoid,0il))
+(1/6)(LZ(YsPs500,Gold) — LZ(YGoia)) + (1/6)(LZ(Yspsoo,0i1) — LZ(Yoir))
+(1/3)(LZ(ysps00))

L7 ( Coinbase) = (1/3)(LZ(YGold,sps00.0i1) — LZ(Yspsoo,0ir))
+(1/6)(LZ(YGoid,sP500) — LZ(Yspso0)) + (1/6)(LZ(YGoid,0i1) — LZ(Yoir))
+(1/3)(LZ(YGold))

LZ9"(Coinbase) = (1/3)(LZ(9oir.sp500.60id) — LZ($5P500.Gold))
+(1/6)(LZ(yoir,sps00) — LZ(Yspsoo)) + (1/6)(LZ(Yoir,Gold) — LZ(YGold))
+(1/3)(LZ(Yoir))-
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The variance decomposition

The variance decomposition associated with the same variables, under the
assumption of a linear model, is provided by:

Répsoo = (1/3)(Réps00.Gold. 0il — Réold.oir) + (1/6)(Rps0o. old — Réoid)

+(1/6)(Répso0.01 — Roi) + (1/3) Répsoo

Réoid = (1/3)(R&o1d.sp500.0il — Répsoo.oi)
+(1/6)(R&ota.sp500 — Répsoo) + (1/6)(Réoi.oi — Roi) + (1/3)Reog

Rai = (1/3)(R3i1.sp500.cold — RP500.6old) + (1/6) (Rir.spsoo — Répsoo)
+ (1/6)(R3i1.Gold — Réoia) + (1/3) Ry
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Results
Additional covariate (Xk) LZXk(Co/i;l;se) R)2<k Global Shapley
SP500 0.336 0.631 -96377.28
Gold 0.097 0.072 59811.19
Oil 0.075 0.049 -43428.39

Conclusions:

» employing the Lorenz Shapley approach, variable SP500
provides the highest marginal contribution in the prediction
of the Bitcoin prices, while the other two give a minimal
contribution;

» findings from the Shapley Lorenz approach are quite similar
to those obtained with the linear R?-based Shapley approach,
indicating their robustness;

> the Global Shapley values, obtained summing the Shapley
variable contributions across all units, are the least
interpretable.
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Model selection based on Lorenz Zonoids

The Shapley-Lorenz approach appears computationally intensive,
especially if dealing with huge datasets involving a large number of

predictors.

In order to meet the sustainability requirement, a pre-selection of
the most important predictors has to be set.

By exploiting the Lorenz Zonoid inclusion property, marginal and
partial contributions provided by each predictor can be determined
giving rise to a methodology that is able to simultaneously achieve
the goals of predictive accuracy and explainability, rather than one
after the other, as done in the explainable Al literature.

We remark that, as well as the Shapley-Lorenz decomposition, the
proposed approach is model agnostic not depending on the type of
target variable and data to be analised.
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Marginal Gini contribution

Let Y and X, for k =1,..., K, the response and the k-th
explanatory variables, respectively.

The Marginal Gini Contribution associated with the k-th
explanatory variable is defined as

LZ(Yx,) 2Cov(Yx,,r(Yx,))/nu

MGCy | x, = LZ(Y) — 2Cov(Y,r(Y))/nu
_ Cov(\A/Xkar(\A/Xk)) (3)

Cov(Y,r(Y))

whose sample version is

- ~ 2 |1yn o . nntl) o

MGC, ., — Cov(Pxs r(Px.)) 7y [nzlzl 1Y (i) 2n Y]
YIXk T _ "o - 1) —
Covly.r(¥))  Z[iyr, iy — 2517
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Partial Gini contribution

The additional contribution related to the inclusion of covariate Xk can be
determined in terms of a relative index

LZ( \A/Xl,...,Xk) —LZ( \A/X1,~-,ka1 )
LZ(Y)—LZ(Yxy,.. X 1)

PGCy x,1x1,... X1 =

1 Cov( Yy oxe s F(Yxy o x ) — 1 Cov ( Yy X 10T (Yxg X 1)
% Cov(Y,r(Y))— % Cov(Yx,, . X 1-r(Yxy,.. x_1))
Cov(Yx,. . x r(Yxp. . x.)) — Cov( Y. xe 1 r(Yxq X 1))

COV( Y7 I’( Y)) - COV( \A/Xl,...,Xk,:l ’ r( \A/Xl,...,Xk,:L ))

It can be shown that PGCy x, |x;,...x, ; computed on sample data can be
expressed as:

27:1 i(.),}(xl,...,xki) - S}(X]_,...,Xk_ll.)) )
Y1 i) — Y1)

PGC,

9Xh|X1 sees Xk —1 -



F eXplainable Artificial Intelligence in healthcare Management -
Tra” 2020-EU-1A-0098 xXAIM

Procedure
Steps:

> A stepwise model comparison procedure can be implemented
considering the term LZ( YX’uXk) — LZ(Y ) The procedure
starts building K models, each depending on one of the K
predictors, and then computing the Lorenz Zonoids of the
predicted values derived from any single model.

» In a forward stepwise algorithm the predictor providing the
highest Lorenz Zonoid value can be chosen as the first
variable to be included into the model. The procedure
continues by fitting, at each step, a more complex model
that includes the predictor which provides the highest
contribution.

» In a backward stepwise algorithm, the predictor with the
lowest Lorenz Zonoid value can be chosen as the first
variable to be removed from the full model. The procedure
continues by fitting, at each step, a simpler model obtained
deleting the predictor with the lowest contribution.
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Measuring the predictive gain

According to the mentioned saving of computational effort,

we suggest a forward stepwise procedure, which starts with

the construction of K models, each one depending on only

one predictor.

The application of formula (3) to all such univariate models will
provide a ranking of the candidate predictors, in terms of their
(marginal) importance. At each step, a model with also an
additional ranked variable is fitted and the predictive gain can be
calculated as:

pay—oﬁ(Xk) - LZ(\,\/X/ka)—LZ(\A/X/), (4)

where LZ(\A/X/uXk) and LZ( \A/X/) describe the (mutual) variability
of the response variable Y explained by the models which,
respectively, include X U X, predictors or only X predictors.

The procedure can continue until the predictive gain defined in (4)
is found not significant.



eXplainable Artificial Intelligence in healthcare Management -
2020-EU-1A-0098 XAIM

Evaluating the significance of the predictive gain

As r(-)/n is the empirical transformation of the cumulative distribution function F(-), the pay-off can be
re-expressed as:

Corinanced by the Connecting Europe
Facilty of the European Union

2COV(YX’UXk’F(YX/UXk )) B 2COV(\7X/ ,F(\A/X/ ))

E(Y E(Y, /)

LZ(Y
x"Uxy )

x"Ux,

) —LZ(Y, /) = ; (5)

where F(YX/ uXk) and F(YX/) are the cumulative distribution functions of YX/ and YX"

UX
respectively.

Assuming the reasonable approximation, equation (5), which describes the marginal contribution (MC)
provided by X, can be simplified as follows:

> > 2Cov(Y, s o F(Yyr o)) 2Cov(Y_s,F(Y_1))
= = X X uX /> 4
E(fyr,x )= E(Ty) = o e — X" UXe ux ) x X)) (6)
» M u
In line with the previous mathematical derivations, we propose ¥ as an adjusted version of equation (6),
i.e.
u B . R B R R _ A~ A~
y=1735  -MC= Cov(YX/ka,F(YX/ka)) Cov(Y, s . F(Y, 1)) = é(YxluXk) —E(Yyr) .
The null hypothesis Hy : 5(\'\/)(/ Ux ) = é(VX,) can be tested by the test statistic: / = L — N(O, 1)
k —
Var(¥)

and, for a given selected significance level o, a rejection region for the null hypothesis Hg can be defined
as |Z| > za .
2
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7 Application to default risk

We data supplied by Modefinance, a European Credit Assessment
Institution (ECAI) that specializes in credit scoring for P2P
platforms focused on SME commercial lending.

The 12 considered explanatory variables selected are: Total
Assets/Total Liabilities (X7); Current Assets/Current Liabilities
(X2); (Profit or Loss before tax—+Interest paid)/Total Assets (X3);
Return on Equity (X4); Operating Revenues/Total Assets (Xs);
Interest paid/(Profit before taxes+Interest paid) (Xs);

EBITDA /Interest paid (X7); EBITDA /Operating Revenues (X3);
EBITDA /Sales (Xo); Trade Receivables/Operating Revenues
(X10); Inventories/Operating Revenues (Xi1); Turnover (Xi2).

The data on the above mentioned explanatory variables are
extracted from the balance-sheets of 15,045 SMEs, mostly based
in Southern Europe, for the year 2015. The data on the response
variable are obtained from information about the status (0 =
active, 1 = defaulted) of each SME one year later (2016),



*
. — R esu I S

Marginal LZ values — Logistic Regression model
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D Variable

LZ(¥, x,) ID of the pay-off p-value
included (X))
variables
1 TA/TL 0.3943 1 - -
3 (PLBT+IP)/TA 0.3714 1,3 0.0544 <0.001
9 EBITDA/S 0.3244 1,309 0.0081 <0.001
12 TO 0.3061 1, 3,9, 12 0.0002 0.2069
D Variable AUROCy,  ID of the pay-off p-value
included (X
variables
7 EBITDA/IP 0.7753 7 - -
1 TA/TL 0.7748 7,1 0.0016 0.9050

AUROC
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Marginal Lorenz Zonoid values — Neural Network model
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Marginal AUROC values — Neural network model
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0.70 - b
0.65 - -
0.60 - - T
)(.1 )(.2 )(.3 )(.4 )(.5 X.G )(.7 )(.8 X.S X; o X; 1
D Variable LZ (YXA) ID of the pay-off p-value
included (X))
variables
1 TA/TL 0.5343 1 - -
6 IP/(PBT+IP) 0.4684 1,6 0.0212 <0.001
7 EBITDA/IP 0.4574 1,6,7 0.0009 0.7806
ID Variable AUROCy,_ 1D of the pay-off p-value
included (X
variables
1 TA/TL 0.7809 1 - -
7 EBITDA/IP 0.7752 1,7 0.0219 0.0426
6 IP/(PBT+IP) 0.7665 1,7,6 0.0013 0.8348

XxAIM
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