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5. Covariance and Correlation

Recall that by taking the expected value of various transformations of a random variable, we can measure many interesting characteristics of the distribution of the variable. In this section, we will study an expected value that
measures a special type of relationship between two real-valued variables. This relationship is very important both in probability and statistics.

Basic Theory

Definitions

As usual, our starting point is a random experiment, modeled by a probability space . Unless otherwise noted, we assume that all expected values mentioned in this section exist. Suppose now that  and  are real-
valued random variables for the experiment (that is, defined on the probability space) with means , , and variances , , respectively.

 1. The covariance of  is defined by

and, assuming the variances are positive, the correlation of  is defined by

a. If  then  and  are positively correlated.
b. If  then  and  are negatively correlated.
c. If  then  and  are uncorrelated.

Correlation is a scaled version of covariance; note that the two parameters always have the same sign (positive, negative, or 0). Note also that correlation is dimensionless, since the numerator and denominator have the same
physical units, namely the product of the units of  and .

As these terms suggest, covariance and correlation measure a certain kind of dependence between the variables. One of our goals is a deeper understanding of this dependence. As a start, note that  is the center
of the joint distribution of , and the vertical and horizontal lines through this point separate  into four quadrants. The function  is positive on the first and third quadrants and negative
on the second and fourth.

A joint distribution with  as the center of mass

Properties of Covariance

The following theorems give some basic properties of covariance. The main tool that we will need is the fact that expected value is a linear operation. Other important properties will be derived below, in the subsection on the
best linear predictor. As usual, be sure to try the proofs yourself before reading details. Once again, we assume that the random variables are defined on the common sample space, are real-valued, and that the indicated
expected values exist (as real numbers).

Our first result is a formula that is better than the definition for computational purposes, but gives less insight.

 2. .
Details:

From [2], we see that  and  are uncorrelated if and only if , so here is a simple but important corollary for independent variables.

 3. If  and  are independent, then they are uncorrelated.
Details:

However, the converse fails with a passion: Exercise [31] gives an example of two variables that are functionally related (the strongest form of dependence), yet uncorrelated. The computational exercises give other examples
of dependent yet uncorrelated variables also. Note also that if one of the variables has mean 0, then the covariance is simply the expected product.

Trivially, covariance is a symmetric operation.

 4. .

As the name suggests, covariance generalizes variance.

 5. .
Details:

Covariance is a linear operation in the first argument, if the second argument is fixed.

 6. If , ,  are random variables, and  is a constant, then

a. 
b. 

Details:

By symmetry, covariance is also a linear operation in the second argument, with the first argument fixed. Thus, the covariance operator is bi-linear. The general version of this property is given in [7]:

 7. Suppose that  and  are sequences of random variables, and that  and  are constants. Then

Proposition [32] given next shows how covariance is changed under a linear transformation of one of the variables. This is simply a special case of the basic properties, but is worth stating.

 8. If  then .
Details:

Of course, by symmetry, the same property holds in the second argument. Putting the two together we have that if  then .

Properties of Correlation

Next we will establish some basic properties of correlation. Most of these follow easily from corresponding properties of covariance above. We assume that  and , so that the random variable really are
random and hence the correlation is well defined. For the first result, recall the definition of the standard score of a variable.

 9. The correlation between  and  is the covariance of the corresponding standard scores:

Details:

This shows again that correlation is dimensionless, since of course, the standard scores are dimensionless. Also, correlation is symmetric:

 10. .

Under a linear transformation of one of the variables, the correlation is unchanged if the slope is positve and changes sign if the slope is negative:

 11. If  and  then

a.  if 
b.  if 

Details:

This result reinforces the fact that correlation is a standardized measure of association, since multiplying the variable by a positive constant is equivalent to a change of scale, and adding a contant to a variable is equivalent to
a change of location. For example, in the Challenger data, the underlying variables are temperature at the time of launch (in degrees Fahrenheit) and O-ring erosion (in millimeters). The correlation between these two variables
is of fundamental importance. If we decide to measure temperature in degrees Celsius and O-ring erosion in inches, the correlation is unchanged. Of course, the same property holds in the second argument, so if 

 with  and , then  if  and  if .

The most important properties of covariance and correlation will emerge from our study of the best linear predictor below.

The Variance of a Sum

We will now show that the variance of a sum of variables is the sum of the pairwise covariances. This result is very useful since many random variables with special distributions can be written as sums of simpler random
variables (see in particular the binomial distribution in and hypergeometric distribution in ).

 12. If  is a sequence of real-valued random variables then

Details:

Note that the variance of a sum can be larger, smaller, or equal to the sum of the variances, depending on the pure covariance terms. As a special case of [12], when , we have

The following corollary is very important.

 13. If  is a sequence of pairwise uncorrelated, real-valued random variables then

Details:

Note that the last result holds, in particular, if the random variables are independent. We close this discussion with a couple of minor corollaries.

 14. If  and  are real-valued random variables then .
Details:

 15. If  and  are real-valued random variables with  then  and  are uncorrelated.
Details:

Random Samples

In the following exercises, suppose that  is a sequence of independent, real-valued random variables with a common distribution that has mean  and standard deviation . In statistical terms, the variables
form a random sample from the common distribution.

 16. For , let .

a. 
b. 

Details:

 17. For , let , so that  is the sample mean of .

a. 
b. 
c.  as 
d.  as  for every .

Details:

Part (c) of [17] means that  as  in mean square. Part (d) means that  as  in probability. These are both versions of the law of large numbers, one of the fundamental theorems of probability.

 18. The standard score of the sum  and the standard score of the sample mean  are the same:

a. 
b. 

Details:

The central limit theorem, the other fundamental theorem of probability, states that the distribution of  converges to the standard normal distribution as .

Events

If  and  are events in our random experiment then the covariance and correlation of  and  are defined to be the covariance and correlation, respectively, of their indicator random variables.

 19. If  and  are events, define  and . Equivalently,

a. 
b. 

Details:

In particular, note that  and  are positively correlated, negatively correlated, or independent, respectively (as defined in the section on conditional probability) if and only if the indicator variables of  and  are positively
correlated, negatively correlated, or uncorrelated, as defined in [19].

 20. If  and  are events then

a. 
b. 

Details:

 21. If  and  are events with  then

a. 

b. 

Details:

In the language of the experiment,  means that  implies . In such a case, the events are positively correlated, not surprising.

The Best Linear Predictor

What linear function of  (that is, a function of the form  where ) is closest to  in the sense of minimizing mean square error? The question is fundamentally important in the case where random variable 
(the predictor variable) is observable and random variable  (the response variable) is not. The linear function can be used to estimate  from an observed value of . Moreover, the solution will have the added benefit of
showing that covariance and correlation measure the linear relationship between  and . To avoid trivial cases, let us assume that  and , so that the random variables really are random. The solution
to our problem turns out to be the linear function of  with the same expected value as , and whose covariance with  is the same as that of .

 22. The random variable  defined as follows is the only linear function of  satisfying properties (a) and (b).

a. 
b. 

Details:

Note that in the presence of part (a), part (b) is equivalent to . Here is another minor variation, but one that will be very useful:  is the only linear function of  with the same mean as  and
with the property that  is uncorrelated with every linear function of .

 23.  is the only linear function of  that satisfies

a. 
b.  for every linear function  of .

Details:

The variance of  and its covariance with  turn out to be the same.

 24. Additional properties of :

a. 
b. 

Details:

We can now prove the fundamental result that  is the linear function of  that is closest to  in the mean square sense. We give two proofs; the first is more straightforward, but the second is more interesting and
elegant.

 25. Suppose that  is a linear function of . Then

a. 
b. Equality occurs in (a) if and only if  with probability 1.

Details:

 26. The mean square error when  is used as a predictor of  is

Details:

Our solution to the best linear perdictor problems yields important properties of covariance and correlation.

 27. Additional properties of covariance and correlation:

a. 
b. 
c.  if and only if, with probability 1,  is a linear function of  with positive slope.
d.  if and only if, with probability 1,  is a linear function of  with negative slope.

Details:

The last two results clearly show that  and  measure the linear association between  and . The equivalent inequalities (a) and (b) above are referred to as the correlation inequality. They are also
versions of the Cauchy-Schwarz inequality, named for Augustin Cauchy and Karl Schwarz

Recall that the best constant predictor of , in the sense of minimizing mean square error, is  and the minimum value of the mean square error for this predictor is . Thus, the difference between the variance of 
and the mean square error [26] for  is the reduction in the variance of  when the linear term in  is added to the predictor:

So  is the proportion of reduction in  when  is included as a predictor variable. This quantity is called the (distribution) coefficient of determination. Now let

The function  is known as the distribution regression function for  given , and its graph is known as the distribution regression line. Note that the regression line passes through , the
center of the joint distribution.

The distribution regression line

However, the choice of predictor variable and response variable is crucial.

 28. The regression line for  given  and the regression line for  given  are not the same line, except in the trivial case where the variables are perfectly correlated. However, the coefficient of determination is the
same, regardless of which variable is the predictor and which is the response.

Details:

 29. Suppose that  and  are events with  and . Then

a.  if and only . (That is,  and  are equivalent events.)
b.  if and only . (That is,  and  are equivalent events.)

Details:

The concept of best linear predictor is more powerful than might first appear, because it can be applied to transformations of the variables. Specifically, suppose that  and  are random variables for our experiment, taking
values in general spaces  and , respectively. Suppose also that  and  are real-valued functions defined on  and , respectively. We can find , the linear function of  that is closest to  in the mean
square sense. The results of this subsection apply, of course, with  replacing  and  replacing . Of course, we must be able to compute the appropriate means, variances, and covariances.

We close this subsection with two additional properties of the best linear predictor, the linearity properties. Once again, the details give two proofs.

 30. Suppose that , , and  are random variables and that  is a constant. Then

a. 
b. 

Details:

There are several extensions and generalizations of the ideas in the subsection:

The corresponding statistical problem of estimating  and , when these distribution parameters are unknown, is considered in the section on sample covariance.
The problem finding the function of  that is closest to  in the mean square error sense (using all reasonable functions, not just linear functions) is considered in the section on conditional expected value.
The best linear prediction problem when the predictor and response variables are random vectors is considered in the section on expected value and covariance matrices.

The use of characterizing properties will play a crucial role in these extensions.

Examples and Applications

Uniform Distributions

 31. Suppose that  is uniformly distributed on the interval  and . Then  and  are uncorrelated even though  is a function of  (the strongest form of dependence).
Details:

 32. Suppose that  is uniformly distributed on the region . Find  and  and determine whether the variables are independent in each of the following cases:

a.  where  and , so  is a rectangle.
b.  where , so  is a triangle
c.  where , so  is a circle

Details:

 33. In the bivariate uniform experiment, select each of the regions below in turn. For each region, run the simulation 2000 times and note the value of the correlation and the shape of the cloud of points in the scatterplot.
Compare with the results in [32].

a. Square
b. Triangle
c. Circle

 34. Suppose that  is uniformly distributed on the interval  and that given ,  is uniformly distributed on the interval . Find each of the following:

a. 
b. 
c. 
d. 

Details:

Dice

Recall that a standard die is a six-sided die. A fair die is one in which the faces are equally likely. An ace-six flat die is a standard die in which faces 1 and 6 have probability  each, and faces 2, 3, 4, and 5 have probability 
each.

 35. A pair of standard, fair dice are thrown and the scores  recorded. Let  denote the sum of the scores,  the minimum scores, and  the maximum score. Find
the covariance and correlation of each of the following pairs of variables:

a. 
b. 
c. 
d. 
e. 

Details:

 36. Suppose that  fair dice are thrown. Find the mean and variance of each of the following variables:

a. , the sum of the scores.
b. , the average of the scores.

Details:

 37. In the dice experiment, select fair dice, and select the following random variables. In each case, increase the number of dice and observe the size and location of the probability density function and the mean  standard
deviation bar. With  dice, run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean and standard deviation.

a. The sum of the scores.
b. The average of the scores.

 38. Suppose that  ace-six flat dice are thrown. Find the mean and variance of each of the following variables:

a. , the sum of the scores.
b. , the average of the scores.

Details:

 39. In the dice experiment, select ace-six flat dice, and select the following random variables. In each case, increase the number of dice and observe the size and location of the probability density function and the mean 
standard deviation bar. With  dice, run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean and standard deviation.

a. The sum of the scores.
b. The average of the scores.

 40. A pair of fair dice are thrown and the scores  recorded. Let  denote the sum of the scores,  the minimum score, and  the maximum score. Find each of the
following:

a. 
b. 
c. 

Details:

Bernoulli Trials

Recall that a Bernoulli trials process is a sequence  of independent, identically distributed indicator random variables. In the usual language of reliability,  denotes the outcome of trial , where 1 denotes
success and 0 denotes failure. The probability of success  is the basic parameter of the process. The process is named for Jacob Bernoulli.

For , the number of successes in the first  trials is . Recall that this random variable has the binomial distribution with parameters  and , which has probability density function  given by

 41. The mean and variance of  are

a. 
b. 

Details:

 42. In the binomial coin experiment, select the number of heads. Vary  and  and note the shape of the probability density function and the size and location of the mean  standard deviation bar. For selected values of the
parameters, run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean and standard deviation.

For , the proportion of successes in the first  trials is . This random variable is sometimes used as a statistical estimator of the parameter , when the parameter is unknown.

 43. The mean and variance of  are

a. 
b. 

Details:

 44. In the binomial coin experiment, select the proportion of heads. Vary  and  and note the shape of the probability density function and the size and location of the mean  standard deviation bar. For selected values of
the parameters, run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean and standard deviation.

As a special case of [17] note that  as  in mean square and in probability.

The Hypergeometric Distribution

Suppose that a population consists of  objects;  of the objects are type 1 and  are type 0. A sample of  objects is chosen at random, without replacement. The parameters  and  with  and 
. For , let  denote the type of the th object selected. Recall that  is a sequence of identically distributed (but not independent) indicator random variables.

Let  denote the number of type 1 objects in the sample, so that . Recall that this random variable has the hypergeometric distribution, which has probability density function  given by

 45. For distinct ,

a. 
b. 
c. 
d. 

Details:

Note that the event of a type 1 object on draw  and the event of a type 1 object on draw  are negatively correlated, but the correlation depends only on the population size and not on the number of type 1 objects. Note also
that the correlation is perfect if . Think about these result intuitively.

 46. The mean and variance of  are

a. 
b. 

Details:

Note that if the sampling were with replacement,  would have a binomial distribution, and so in particular  and . The additional factor  that occurs in the variance of the
hypergeometric distribution is sometimes called the finite population correction factor. Note that for fixed ,  is decreasing in , and is 0 when . Of course, we know that we must have  if ,
since we would be sampling the entire population, and so deterministically, . On the other hand, for fixed ,  as . More generally, the hypergeometric distribution is well approximated by the binomial
when the population size  is large compared to the sample size .

 47. In the ball and urn experiment, select sampling without replacement. Vary , , and  and note the shape of the probability density function and the size and location of the mean  standard deviation bar. For selected
values of the parameters, run the experiment 1000 times and compare the sample mean and standard deviation to the distribution mean and standard deviation.

Exercises on Basic Properties

 48. Suppose that  and  are real-valued random variables with . Find .
Details:

 49. Suppose  and  are real-valued random variables with , , and . Find

a. 
b. 
c. 
d. 

Details:

 50. Suppose that  and  are independent, real-valued random variables with  and . Find .
Details:

 51. Suppose that  and  are events in an experiment with , , and . Find each of the following:

a. 
b. 

Details:

 52. Suppose that , , and  are real-valued random variables for an experiment, and that  and . Find .
Details:

 53. Suppose that  and  are real-valued random variables for an experiment, and that , , and . Find each of the following:

a. 
b. 

Details:

Simple Continuous Distributions

 54. Suppose that  has probability density function  given by  for , . Find each of the following

a. 
b. 
c. 
d. 

Details:

 55. Suppose that  has probability density function  given by  for . Find each of the following:

a. 
b. 
c. 
d. 

Details:

 56. Suppose again that  has probability density function  given by  for .

a. Find .
b. Find .
c. Find .
d. Which predictor of  is better, the one based on  or the one based on ?

Details:

 57. Suppose that  has probability density function  given by  for , . Find each of the following:

a. 
b. 
c. 
d. 

Details:

 58. Suppose that  has probability density function  given by  for . Find each of the following:

a. 
b. 
c. 
d. 

Details:

 59. Suppose again that  has probability density function  given by  for .

a. Find .

b. Find .

c. Find .
d. Which of the predictors of  is better, the one based on  of the one based on ?

Details:

Random > 3. Expected Value > 1  2  3  4  5 6  7  8  9  10  11  12  13


