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Course Outline: 
AI systems in 
Health and 
Medicine

THE BASES: definitions, lexicon, taxonomy, core aspects

THE WORKFLOW: the key steps of the AI pipeline

THE DATA CURATION: how to collect, prepare and feed data 
to AI systems

THE EXPERIMENTAL PHASES: how to lead or participate to the 
development and testing of new or existing AI-based solutions

THE DEPLOYMENT: ethical and regulatory aspects for reliable, 
explainable, trustworthy AI in health and medicine



The course in 5 pictures THE BASES: definitions, lexicon, taxonomy, key theory

https://doi.org/10.3390/biomedinformatics2040049

https://doi.org/10.3390/biomedinformatics2040049


THE WORKFLOW: the key steps of the AI pipelineThe course in 5 pictures

https://doi.org/10.3389/fphar.2021.720694

https://doi.org/10.3389/fphar.2021.720694


THE DATA CURATION: how to collect, prepare and feed data 
to AI systemsThe course in 5 pictures



THE EXPERIMENTAL PHASES: how to lead or participate to the 
development and testing of new or existing AI-based solutionsThe course in 5 pictures

http://dx.doi.org/10.21037/atm.2020.03.63

http://dx.doi.org/10.21037/atm.2020.03.63


THE DEPLOYMENT: ethical and regulatory aspects for reliable, 
explainable, trustworthy AI in health and medicineThe course in 5 pictures

https://doi.org/10.1016/j.compbiomed.2022.106043

https://doi.org/10.1016/j.compbiomed.2022.106043
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AI systems in 
Health and 
Medicine

THE BASES: definitions, lexicon, taxonomy, core aspects
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THE DATA CURATION: how to collect, prepare and feed data 
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First: we need a shared language

https://doi.org/10.3390/biomedinformatics2040049

https://doi.org/10.3390/biomedinformatics2040049


Artificial Intelligence vs Human intelligence

https://doi.org/10.1038/s41568-018-0016-5

?
You are allowed to be a 
bit skeptical or worried 

but also realistic and 
optimistic… JKL

chatGPT
(GPT-4)

TODAY

https://doi.org/10.1038/s41568-018-0016-5


Computer Vision vs Human Vision

https://doi.org/10.1148/rg.2017170077

A human expert easily classifies this
image as an image of the right kidney. 

Why is (or was) this task difficult for a 
computer? 

Instead of shades of gray, a computer 
“sees” a matrix of numbers
representing pixel brightness. 
Computer vision typically involves
1) computing the presence of 

numerical patterns (called
features) in this matrix, 

2) applying model-based or machine 
learning algorithms to analyze
images (local or global 
understanding) on the basis of 
these features. 

Humans 
do not see numbers

Computers 
only see numbers

https://doi.org/10.1148/rg.2017170077


What is AI?
main definitions Artificial Intelligence (AI) computer systems perform

tasks that ordinarily require human intelligence.

Machine Learning (ML) subfield of AI where
algorithms can learn patterns from data, trough

predetermined data features

Representation Learning (RL) a type of ML in which
no feature engineering is used, but the algorithm learns on 

its own the best features to interpret data

Deep Learning (DL) a type of RL in which the algorithm
learns a composition of features that reflect a hierarchy in 

the data interpretation structure.

Foundation Models (FM) large scale DL models 
trained on vast amount of data to serve as a base 

(foundation) of multiple applications



Main definitions: 
The role of data and features in AI

https://doi.org/10.1148/rg.2017170077

• Classic ML depends on carefully
designed features, requiring human 
expertise and complicated task-specific
optimization. 

• DL systems propose an end-to-end 
approach by learning simple features
(such as signal intensity, edges, and 
textures) as components of more 
complex features such as shapes, 
lesions, or organs, therefore leveraging
the compositional nature of images 

(also statistics in a 
broad sense)

a.k.a. Model

https://doi.org/10.1148/rg.2017170077


From rule-based to representation learning intelligence 

Programmed 
Intelligence 
(rule-based 
systems)

Machine 
Learning 
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From representation learning to foundation models
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Pattern (or feature) space
The pattern space dimensions are  
data channels/components or 
features extracted from data. 
Which features?

With representation learning the expectations is to learn good discriminative features 
for a given task in order to guarantee easy and accurate enough discriminations



Machine learning: kind of

https://doi.org/10.3389/fphar.2021.720694

https://doi.org/10.3389/fphar.2021.720694


http://dx.doi.org/10.1109/MCAS.2006.1688199

Machine learning: kind of

Ensemble learningFitting data according to the kind of data/knowledge

different training sets or 
different (weak) classifiers

http://dx.doi.org/10.1109/MCAS.2006.1688199


Machine learning: methodological notes

https://doi.org/10.1148/rg.2017170077

Features describe the 
appearance of organs
and points of interest in 
medical images. 
Classifiers integrate 
features to output a 
decision (eg. pixel-wise). 
Shape extraction and 
regularization recover a 
consistent shape despite
classification noise.
Deep Learning proposes
an end-to-end approach
where features are 
learned to maximize the 
classifier’s performance. 
Shape extraction can
become implicit
(regularized pixel-wise
info easy to obtain). 

Where is 
theory ??

https://doi.org/10.1148/rg.2017170077


ML (learning from data to interpret new ones) vs 
Statistics (fitting to models to explain given data)

NB Good statistics knowledge is highly beneficial for ML (not the 
vice versa). For more insights read at this link and this other one

https://www.turing.com/kb/introduction-to-statistics-for-machine-learning

https://towardsdatascience.com/the-actual-difference-between-statistics-and-machine-learning-64b49f07ea3
https://towardsdatascience.com/how-is-machine-learning-different-from-statistics-and-why-it-matters-5a8ed539976
https://www.turing.com/kb/introduction-to-statistics-for-machine-learning


The supervised Machine Learning paradigm

https://odsc.com/blog/the-comprehensive-guide-to-model-
validation-framework-what-is-a-robust-machine-learning-model/ https://www.v7labs.com/blog/train-validation-test-set

https://odsc.com/blog/the-comprehensive-guide-to-model-validation-framework-what-is-a-robust-machine-learning-model/
https://www.v7labs.com/blog/train-validation-test-set


(Deep) Learning through artificial Neural Networks
• Although neural networks were known and used

for decades, in recent years three key factors have
enabled the training of large neural networks:

i. the possible availability of large quantities
of labeled data,

ii. cost-effective inexpensive and powerful
parallel computing hardware,

iii. improvements in training techniques and 
architectures.

• Artificial neural networks are inspired by biologic
neuron activation process and from what we
know about the structure of the visual cortex (a). 

• The artificial neuron (b) takes as an input a set of 
values representing features, each multiplied by a 
corresponding weight. The weighted features are 
summed and passed through a non-linear 
activation function. In this way, an artificial
neuron can be viewed as producing an activation
decision by weighing a set of evidence. https://doi.org/10.1148/rg.2017170077

https://doi.org/10.1148/rg.2017170077


(Deep) Learning through artificial Neural Networks



(Deep) Learning through artificial Neural Networks

WEIGHTS & BIAS       parameters to be estimated for every neuron 
https://www.youtube.com/watch?v=Tsvxx-GGlTg

Artificial Neural Network
Structure (layersàdeep)
Number of parameters



(Deep) Learning through artificial Neural Networks
• Although an individual artificial neuron is simple, 

neural network architectures called multilayer
perceptrons (MLP) that consist of thousands of 
neurons can represent very complex nonlinear
functions. 

• These multilayer perceptrons are typically
constructed by assembling multiple neurons to 
form layers and by stacking these layers connecting
the output of one layer to the input of the following
layer. This produces a hierarchy of features that are 
an increasingly complex composition of low-level
input features, thereby modeling higher levels of 
abstractions in the data. 

• MLPs perform poorly on images in which the object
of interest tends to vary in shape, orientation, and 
position because they must encode redundant
representations for the many feature arrangements
that this results in. 

https://doi.org/10.1148/rg.2017170077

• A neural network is trained by adjusting the parameters, which
consist of the weights of each node. Modern neural networks 
contain millions of such parameters. 

• Starting from a random initial configuration, the parameters are 
adjusted via an optimization algorithm called gradient descent, 
which attempts to find a set of parameters that performs well on a 
training dataset. 

https://doi.org/10.1148/rg.2017170077


(Deep) Learning through artificial Neural Networks

Input data

Feedforward

Backpropagation

Actual outputs Target Values

Loss Function
Correction values

Adjusted weights and biases

Repeat until
below a 

thresholdParameter 
adjustment through
BACKPROPAGATION

https://www.embedded.com/training-convolutional-neural-networks/

Supervised LearningUnsupervised Learning



(Deep) Learning through artificial Neural Networks

https://doi.org/10.1148/rg.2017170077

Learning process. Weights used by artificial neurons
can be billions within a deep neural network. These
parameters, are randomly initialized, are progressively
adjusted via an optimization algorithm called gradient
descent. When presenting a series of training samples to 
the network, a loss function measures quantitatively how
far the prediction is to the target class or regression
value. All parameters are then slightly updated in the 
direction that will favor minimization of the loss function. 

Example of Fully Connected neural network 
with 3 hidden layers: each connection carries 
a weight. and each neuron an additional one.

https://doi.org/10.1148/rg.2017170077


Convolutional Neural Networks
Convolution



Convolutional Neural Networks
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• For processing images, a deep learning architecture known as the convolutional neural network (CNN) has become dominant (from 2012 CNNs
of increasing complexity kept winning popular image classification competitions even exceeding human performance). 

• CNNs introduces some robustness to image variations by passing each feature detector over every part of the image in a convolution operation. 
Each feature detector is limited to detecting local features in its immediate input, which is acceptable for natural images. 

• Since a feature may occur anywhere in the image, the filters’ weights are shared across all the image positions. Thus, image features can be 
modeled with fewer parameters (shared kernel weights for all spatial positions), increasing model efficiency. 

Convolutional layers
and activation
functions transform
the feature maps

Down-sampling/ 
pooling layers reduce 
the spatial resolution

Coarser feature
maps are 
transformed into a 
vector form
through fully
connected layers. 
allowing reasoning
about the entire
content of the 
image. 

Pooling

Convolution

https://doi.org/10.1148/rg.2017170077


Convolutional Neural Networks
Convolution



Convolutional Neural Networks

• CNNs were inspired by early findings on biological vision by Hubel & Wiesel in 
1962 and from an early artificial NN called Neocognitron by Fukushima in 1979.

• In CNNs, multiple different convolutional filters are learned for each layer, 
yielding many different feature maps, each highlighting where different
characteristics of the input image or of the previous hidden layer have been
detected.

• In a CNN, the deeper the layer of representation, the coarser the characterization
of the feature’s spatial position (due to downsampling/pooling); thus, kernels in 
these deeper layers consider features over increasingly larger spatial scales.

ht
tp
s:/

/d
oi
.o
rg
/1
0.
11

48
/r
g.
20

17
17

00
77

ht
tp
s:/

/d
oi
.o
rg
/1
0.
11

62
/jo

cn
_a
_0
15

44

Filter kernels
representing features
are usually defined by a 
small grid of learned
weights (eg, 3x3). 

https://doi.org/10.1148/rg.2017170077
https://doi.org/10.1162/jocn_a_01544


Convolutional Neural Networks
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Stacking multiple convolutional and max
pooling layers allows the model to learn a 
hierarchy of feature representations. 
• Neurons close to the input image are

activated by the presence of edges and 
corners formed by a few pixels. 

• Neurons located deeper in the network are 
activated by combinations of edges and 
corners that represent characteristic parts
of organs and eventually whole organs. 

• At each successive level of representation, 
neurons gain a larger receptive field in the 
input image. 

The final classification task relies on 
a rich set of hidden features that

represent a large receptive field and 
integrate multiscale information in a 

meaningful way. 
PoolingConvolution

https://doi.org/10.1148/rg.2017170077


CNNs for segmentation (coding+decoding)

• If pixel-level outputs are desired, we have to upsample the features again
• e.g. to obtain semantic level maps, typically pixel-wise semantic classification (or segmentation, or contouring)

• Why we need downsampling (coding) first and then upsampling (decoding)?
• Downsampling provides strong features with large receptive field (quick information aggregation with limited number of 

network parameters)
• Upsampling yields output at the same resolution as input 
• Usually skip connections are used, like in ResNet, but longer, as we will see in U-Nets

• Skip connections allow maintaining high level of accuracy related e.g. to object boundaries



CNNs for segmentation (coding+decoding)

Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks, J.Dolz et al., Medical Physics, 2018
https://doi.org/10.1002/mp.13240

https://doi.org/10.1002/mp.13240


The AI “epochs”
categorization

JAMA. 2024;331(3):242-244. doi:10.1001/jama.2023.25057 

Good for Follow rules or decision paths Classify/detect based on training Interpret and respond/assist

Issues and risks Underfit real-world complexity, 
Errors in the model/rules

Unrepresentative/uncomplete data
Bias in the training data

Hallucinations (plausible but incorrect)
Bias in the training data

Healthcare 
applications

Rule-based clinical decision 
supporting systems

Diabetic retinopathy detection, lung 
cancer screening, skin condition 
classification, predictions based on 
electronic health records

Medically tuned large language models
improve patient/clinician communication

NB Foundation Models not only LLM! (ndr)

Jan 2024



Single task VS Foundation (generative) AI

Single Task DL Models
Typical technology
Convolutional Neural Networks
(are a kind of Deep Neural Network)

Foundation Models
Typical technology
Transformers (are a kind of Deep Neural Network)

Large Language Models
are a kind of Foundation Models

AI 2.0 AI 3.0



The “big-mix” of 
AI 2.0 AI in 
medicine

Countless combinations among
- Algorithms
- Tasks
- Applications
are possible. 

The need of a sound 
partnership between technical
(computer scientists, 
information engineers, data 
scientists) and clinical
specialties (physicians, medical 
technologists, biologists, 
physicists,…) is evident.



Interpretation tasks



Interpretation tasks: 
diagnostic imaging
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• Classification
allows to associate a “class” (output) to a 

given data (input). If the choice is among 2 
classes we say binary classification, otherwise 
we say multiclass

• Detection
allows to localize a given object or a plurality

of them by means of bounding boxes and to 
associate a class label to each of them.

• Segmentation (semantic)
allows to label every pixel in an image as to 

belonging to one of the available classes. Is a 
pixel-wise classification. Semantic segmentation
can also be contour-aware (in this case we can 
say contouring)

• Segmentation (instance)
like semantic segmentation with the 

possibility to differenciate different instances of 
the same object (in this case it is necessarily
contour-aware).

https://doi.org/10.1148/rg.2021200210


Interpretation tasks: non-image data sources 

https://doi.org/10.1109/ACCESS.2019.2928017

https://doi.org/10.1109/ACCESS.2019.2928017


Interpretation tasks: non-image data sources 

https://doi. org/10.1371/journal.pone.0268880 



Interpretation tasks: non-image data sources 

https://doi.org/10.1016/j.patcog.2020.107561

https://doi.org/10.1016/j.patcog.2020.107561


Organ-based/pathology-driven tasks

https://doi.org/10.1016/j.jcmg.2019.06.009 https://doi.org/10.3389/fcvm.2020.00025

https://doi.org/10.1016/j.jcmg.2019.06.009
https://doi.org/10.3389/fcvm.2020.00025


Composite interpretation tasks: 
multi-network approach

• Score 0: no lung 
abnormalities

• Score 1: interstitial 
infiltrates

• Score 2: interstitial and 
alveolar infiltrates 
(interstitial predominance) 

• Score 3: interstitial and 
alveolar infiltrates (alveolar 
predominance)

https://doi.org/10.1016/j.media.2021.102046

AI-driven evaluation of the «Brixia score» for 
COVID-19 pneumonia severity assessment
https://brixia.github.io

https://doi.org/10.1016/j.media.2021.102046
https://brixia.github.io/


https://doi.org/10.1007/s10586-023-04203-7

AI 3.0
Data source/sources

Foundation
Models

Core
(general)

task

Application driven tasks
(not defined in advance)

Foundation Models (FM)



GPT Generative Pre-trained Transformer

?

FM: Large Language Models



Generalist/Generative tasks in medicine

https://www.nature.com/articles/s41586-023-05881-4

https://www.nature.com/articles/s41586-023-05881-4


Generalist/Generative 
tasks: based on LLMs

https://doi.org/10.1148/radiol.223312

https://doi.org/10.1148/radiol.223312


Generative tasks: imaging (both A2.0 and A3.0 approaches)
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https://doi.org/10.1016/j.artmed.2020.101938


Prompt: A grandmother with neatly combed grey hair
stands behind a colorful birthday cake with numerous
candles at a wood dining room table, expression is one of pure joy and happiness, with a happy glow in her eye. She leans forward and blows out the candles

with a gentle puff, the cake has pink frosting and sprinkles and the candles cease to flicker, the grandmother wears a light blue blouse adorned with floral patterns, several happy friends and family sitting at the 
table can be seen celebrating, out of focus. The scene is beautifully captured, cinematic, showing a 3/4 view of the grandmother and the dining room. Warm color tones and soft lighting enhance the mood..

Prompt: Archeologists discover a generic plastic chair in 
the desert, excavating and dusting it with great care.

Sora

2017 2024

Current frontiers: 
generative text-to-video

Impressive… but still “statistics” 
(no evidence of “meaning appropriation”)



Parameters in foundation models

https://explodingtopics.com/blog/gpt-parameters

At this point in time, we seem 
to have reached a plateau.

Today models can use 
reasoning modules and divide 
up tasks (Mixture of Experts).

GPT-4o



https://hua-hua.org/large-
model/

AI2.0

AI 3.0

Single task (imaging) networks  4x / 2 yrs

AmoebaNetB

CoAtNet-7

YoloV3

1  Bilion

1 Trilion

10 Milion

GPT-4
(1.5 T)

2023

NVIDIA DGX
8 x A100 (80GB)

2 days 
training

UNFEASIBLE training
(just fine tuning)

GPT-3 training
~25.000 A100 GPU
1 month computation
10.000 MWh ≈ 1 week 
Florence consumption
GPT-4 ≈ GPT-3 x 10

Parameter trends



AI 2.0 medicine

AI 3.0 medicine

Other higher complexity dimensions still to be fully explored, e.g.:
• Multimodality (what, where, when)
• Preventive medicine (patient timeline)
• Affordable size Foundation Models

AI in medicine: current “directions”



Large language models and foundation 
models in medicine
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A new cardiology foundation model

• 9.1 million unlabeled 
and labeled ECGs from 
multiple sources

• Self-supervised pre-
training on unlabeled 
ECGs 

• Facilitated fine-tuning 
on many specific 
clinical tasks: testing on 
many scenarios and 
164 clinical conditions

Atrial 
Fibrillation

Stroke

Survival 
Analysis

Task-specific ECG models

Atrial 
Fibrillation

Survival 
Analysis

Stroke

Many other 
tasks…

Foundation ECG model



Progress, challenges and opportunities for AI in health
• Progresses

• Almost all medical specialties have been 
impacted by AI: not only diagnosis but also
risk prediction and treatment 

• Not only experimental: growing market of 
deployed (FDA or CE certified) AI products

• Opportunities
• Multimodal data fusion (not only images)
• Not only supervised learning: many possible 

“learning” paradigms (full data labeling can be 
too expensive/time consuming)

• Not only human vs machine: collaborative 
approaches, human-in-the-loop

• Challenges
• Implementation: data/label acquisition costs, 

dataset dimensions, data biases
• Regulation: locked vs continual learning, 

accountability, explainability
• Ethics: fairness, privacy, equity, do not harm

https://doi.org/10.1038/s41591-021-01614-0

https://doi.org/10.1038/s41591-021-01614-0

