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Course Outline:
Al systems In
Health and
Medicine

THE BASES: definitions, lexicon, taxonomy, core aspects

THE WORKFLOW: the key steps of the Al pipeline

THE DATA CURATION: how to collect, prepare and feed data
to Al systems

THE EXPERIMENTAL PHASES: how to lead or participate to the
development and testing of new or existing Al-based solutions

THE DEPLOYMENT: ethical and regulatory aspects for reliable,
explainable, trustworthy Al in health and medicine
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Th e course | N 5 p | Ct ures a_o THE WORKFLOW: the key steps of the Al pipeline

Data Collection Model Training Improve Performance

Study Design Data Preparation Model Evaluation
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Th e course | N 5 p | Ct ures E THE DATA CURATION: how to collect, prepare and feed data
-—

to Al systems

Raw data

Ethical approval Data selection

De-identification Data extraction Data curation Data annotation
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Th e CO u rse | n 5 p | Ct u FES 9 THE EXPERIMENTAL PHASES: how to lead or participate to the

development and testing of new or existing Al-based solutions
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The course in 5 pictures
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THE DEPLOYMENT: ethical and regulatory aspects for reliable,
explainable, trustworthy Al in health and medicine

Trustworthy
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https://doi.org/10.1016/j.compbiomed.2022.106043
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FIrst: we need a shared language
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Artificial Intelligence vs Human intelligence

Performance

Early efforts

Current state

Future outlook

Al with subhuman
performance is
occasionally used in
commercial expert
systems with varying
degrees of utility

Narrow task-specific Al has
started to match and, in
some instances, exceed
human performance in tasks
including conversational
speech recognition, driving
vehicles, playing Go and
classifying skin cancer

General Al exceeds human
performance and reasoning
in complex tasks, including
writing best-selling novels
and performing surgery.
Human intelligence
improves as we learn

from Al

(GPT-4)

chatGPT

Human

Al

=)

You are allowed to be a
bit skeptical or worried
but also realistic and

optimistic... ©©®

Time
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Computers
only see numbers
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Computer Vision vs Human Vision

A human expert easily classifies this
image as an image of the right kidney.

Why is (or was) this task difficult for a
computer?

Instead of shades of gray, a computer
“sees” a matrix of numbers
representing pixel brightness.

Computer vision typically involves

1) computing the presence of
numerical patterns (called
features) in this matrix,

2) applying model-based or machine
learning algorithms to analyze
images (local or global
understanding) on the basis of
these features.

https://doi.org/10.1148/rg.2017170077
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What is Al?

main definitions

Artificial
Intelligence

[AT#0AE]

Machine
Learning

(P E]

Deep
Learning

[REFE]

Artificial Intelligence (Al) computer systems perform
tasks that ordinarily require human intelligence.

Machine Learning (ML) subfield of Al where

algorithms can learn patterns from data, trough
predetermined data features

Representation Learning (RL) a type of ML in which
no feature engineering is used, but the algorithm learns on
its own the best features to interpret data




Main definitions: |
The role of data and features in Al

Data

Logic

Low-level features Mid-level features High-level features
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Output
Rule-tbased | Explicit computer program | * Classic ML depends on carefully
Sysiems designed features, requiring human

expertise and complicated task-specific

Classic machine L) i : dt |  Mapping from | | optimization.
learning N uman-engineered features foatiures = DL systems propose an end-to-end
é_ % approach by learning simple features
= - = T— @ (such as signal intensity, edges, and
eﬁ;iiﬁ?ng lon ) Features 5 ag;'tr:lgregom ! textures) as components of more
complex features such as shapes,
lesions, or organs, therefore leveraging
- Simple Complex |,  Mapping from the compositional nature of images
[ Deep learning ] | Features || Features features “
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From rule-based to representation learning intelligence
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From representation learning to foundation models

Representation Deep Learning Foundation
Learning Intelligence Model
intelligence Intelligence
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The pattern space dimensions are
data channels/components or
Patte r n ( O r fe at u re ) S p a Ce features extracted from data.
Which features?
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With representation learning the expectations is to learn good discriminative features
for a given task in order to guarantee easy and accurate enough discriminations



Machine learning: kind of

Supervised

Model training with labelled data
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Reinforcement
Learning

Model take actions in the environment then
received state updates and feedbacks
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Machine learning: kind of
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Machine learning: methodological notes

Component Simple | > Complex Deep learning
Intensity Edges Gabor filters Texture descriptors
Features
K-nearest neighbor (K-means)  Support vector machines (SVM) Random forest
Classifiers
N7
9,0‘8
Statistical shape models
Shape

extraction and
regularization

~"o
2

Where is
theory ??

<

.xAIM

Features describe the
appearance of organs
and points of interest in
medical images.
Classifiers integrate
features to output a
decision (eg. pixel-wise).
Shape extraction and
regularization recover a
consistent shape despite
classification noise.
Deep Learning proposes
an end-to-end approach
where features are
learned to maximize the
classifier’s performance.
Shape extraction can
become implicit
(regularized pixel-wise
info easy to obtain).

https://doi.org/10.1148/rg.2017170077
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ML (learning from data to interpret new ones) vs
Statistics (fitting to models to explain given data)

MACHINE LEARNERS STATISTICIANS
o Network/Graphs to train and Models to create predictive
Machine Statistics vs. Models test data power
isti

learning
Weights vs. Weights used to maximize Parameters used to interpret

P accuracy scoring and hand real-world phenomena -
o Machine learning is a subset of 0 Statistics is a field of mathematics that tuning stress on magnitude
artificial intelligence. studies data through various
techniques. Confidence There is no notion of Capturing the variability and
Interval uncertainty uncertainty of parameters
e Predicting accurate outcomes is the The statistical models are intended
strength of machine learning for interference about the N Bl asanstion
algorithms. connections between the variables. A“umpuon, (wepleam fmm fhe data) Exp"clt a-priori assumptions
e The models in machine learning are Many statistical models make
designed to conclude the most predictions, but they are not accurate A p
accurate predictions possible. enough. Unknown a priori d'“:::ﬂ‘::"-deﬂngd
° Machine learning is all about Statistics is all about finding i ﬂt I i e
outcomes. relationships between variables and st fit to learning modeils < AR T
their significance. (genemlization) Fit to the distribution

/ Turing
NB Good statistics knowledge is highly beneficial for ML (not the
vice versa). For more insights read at this link and this other one

https://www.turing.com/kb/introduction-to-statistics-for-machine-learning
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https://towardsdatascience.com/how-is-machine-learning-different-from-statistics-and-why-it-matters-5a8ed539976
https://www.turing.com/kb/introduction-to-statistics-for-machine-learning
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The supervised Machine Learning paradigm

4

Machine
Learning
Algorithm

Models

Test
Data

Best
Model

Statistics == All Data
Machine
o - Training Validation
Learning
. How good
Which I
Models learn the task . ich mode is this
is the best?
model truly?
se| . Training data (_ Validation data . Test data

Model

https://odsc.com/blog/the-comprehensive-guide-to-model-

validation-framework-what-is-a-robust-machine-learning-model/

https://www.v7labs.com/blog/train-validation-test-set
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(Deep) Learning through artificial Neural Networks

* Although neural networks were known and used
for decades, in recent years three key factors have
enabled the training of large neural networks:

i. the possible availability of large quantities
of labeled data,

ii. cost-effective inexpensive and powerful
parallel computing hardware,

iii. improvements in training techniques and
architectures.

 Artificial neural networks are inspired by biologic
neuron activation process and from what we
know about the structure of the visual cortex (a).

* The artificial neuron (b) takes as an input a set of
values representing features, each multiplied by a
corresponding weight. The weighted features are
summed and passed through a non-linear
activation function. In this way, an artificial
neuron can be viewed as producing an activation
decision by weighing a set of evidence.

Simple cell
neuron

j27&/
o

Receptors Neural network Effector

Visual stimulus —) —> Edge detection

a.

)

Activation function

X, ————>
| N | | |

Input neurons Synapses Dendrites Body of neuron

Output neuron

(signal integration and activation)
b.
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(Deep) Learning through artificial Neural Networks
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(Deep) Learning through artificial Neural Networks

Artificial Neural Network —

Dendrites

Output

Structure (layers—=>deep)
Number of parameters

KWEIGHTS & BIAS 3 parameters to be estimated for every neuron

https://www.youtube.com/watch?v=Tsvxx-GGITg



(Deep) Learning through artificial Neural Networks

e Although an individual artificial neuron is simple,
neural network architectures called multilayer
perceptrons (MLP) that consist of thousands of
neurons can represent very complex nonlinear
functions.

Simple Neural Network Deep Learning Neural Network

* These multilayer perceptrons are typically
constructed by assembling multiple neurons to
form layers and by stacking these layers connecting
the output of one layer to the input of the following @ nput Layer @ Hidden Layer @ Output Layer
layer. This produces a hierarchy of features that are
an increasingly complex composition of low-level
input features, thereby modeling higher levels of
abstractions in the data.

* A neural network is trained by adjusting the parameters, which
consist of the weights of each node. Modern neural networks

* MLPs perform poorly on images in which the object contain millions of such parameters.
of interest tends to vary in shape, orientation, and » Starting from a random initial configuration, the parameters are
position because they must encode redundant adjusted via an optimization algorithm called gradient descent,
representations for the many feature arrangements which attempts to find a set of parameters that performs well on a
that this results in. training dataset.

https://doi.org/10.1148/rg.2017170077
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(Deep) Learning through artificial Neural Networks
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Backpropagation

https://www.embedded.com/training-convolutional-neural-networks/



(Deep) Learning through artificial Neural Networks

Learning process. Weights used by artificial neurons
can be billions within a deep neural network. These
parameters, are randomly initialized, are progressively
adjusted via an optimization algorithm called gradient
descent. When presenting a series of training samples to
the network, a loss function measures quantitatively how
far the prediction is to the target class or regression
value. All parameters are then slightly updated in the
direction that will favor minimization of the loss function.

Loss function

A fradient
Starting point

lterations

Minimum
found

1 »

Optimizable parameter
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0.11 0.0

Loss(p,q) = — Z;)(J')/(}g(q(.z”) )
Example of Fully Connected neural network x

with 3 hidden layers: each connection carries
a weight. and each neuron an additional one.

Learning algorithm

i

Present a batch of training samples to the network to evaluate a
prediction based on its current configuration.

Evaluate the loss function by comparing the output prediction with the
target values or classes.

Compute the gradient of the loss function with respect to every
parameter of the model.

Update the weights of the model.
Repeat steps 1 to 4 until the loss function reaches a minimum.

https://doi.org/10.1148/rg.2017170077



https://doi.org/10.1148/rg.2017170077

Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional layers
and activation
functions transform
the feature maps

Down-sampling/
pooling layers reduce
the spatial resolution

* For processing images, a deep learning architecture known as the convolutional neural network (CNN) has become dominant (from 2012 CNNs

oo Pooling

CO®e
O0O0O0O
O00O0O

Convolution

Max pooling

Convolution

Max pooling

Convolution N

Convolution

N

Input image

Flattened
feature maps

R

Final
Classifier

Input image

Hidden layers

of increasing complexity kept winning popular image classification competitions even exceeding human performance).

* CNNs introduces some robustness to image variations by passing each feature detector over every part of the image in a convolution operation.

Each feature detector is limited to detecting local features in its immediate input, which is acceptable for natural images.

* Since a feature may occur anywhere in the image, the filters’ weights are shared across all the image positions. Thus, image features can be

modeled with fewer parameters (shared kernel weights for all spatial positions), increasing model efficiency.

y
LY\ T S ]
/4§25 (RGO [

VTR, Ny

Feature map\

Coarser feature
maps are
transformed into a
vector form
through fully
connected layers.
allowing reasoning
about the entire
content of the
image.

https://doi.org/10.1148/rg.2017170077
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Convolution

Convolutional Neural Networks
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Convolutional Neural Networks

Filter kernels
representing features
are usually defined by a
small grid of learned
weights (eg, 3x3).

.xAIM

‘ Original image
1 4 1 1 0 2 3 4 |Kemels
0 1 0 0 -1 3. 4.5

r Y
A4

Original image Internal feature map
at 512 x 512 pixels representation of 32 x 32 pixels
CNNs were inspired by early findings on biological vision by Hubel & Wiesel in gg“";p'ex ‘
1962 and from an early artificial NN called Neocognitron by Fukushima in 1979. |
In CNNs, multiple different convolutional filters are learned for each layer, Simpie |

yielding many different feature maps, each highlighting where different Cells
characteristics of the input image or of the previous hidden layer have been
detected.

In a CNN, the deeper the layer of representation, the coarser the characterization
of the feature’s spatial position (due to downsampling/pooling); thus, kernels in
these deeper layers consider features over increasingly larger spatial scales.

Typical examples of feature maps extracted with different kernels

Pooling
ﬂ , Layer
"‘/ [\ ’/‘

Convolutional
Layer

https://doi.org/10.1148/rg.2017170077
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" The final classification task reli
Convolutional Neural Networks e o fonoras o
represent a large receptive field and

integrate multiscale informationin a
meaningful way.

Convolution

Pooling

Stacking multiple convolutional and max
pooling layers allows the model to learn a
hierarchy of feature representations.

* Neurons close to the input image are
activated by the presence of edges and
corners formed by a few pixels.

* Neurons located deeper in the network are
activated by combinations of edges and
corners that represent characteristic parts
of organs and eventually whole organs.

* At each successive level of representation,
neurons gain a larger receptive field in the
input image.

https://doi.org/10.1148/rg.2017170077
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CNNs for segmentation (coding+decoding)

Input

RGB Image

* If pixel-level outputs are desired, we have to upsample the features again

Convolutional Encoder-Decoder

Pooling Indices

.

4,

B Pooling I Upsampling

- Conv + Batch Normalisation + RelLU

Softmax

Output

Segmentation

* e.g. to obtain semantic level maps, typically pixel-wise semantic classification (or segmentation, or contouring)

* Why we need downsampling (coding) first and then upsampling (decoding)?

'xAIM

* Downsampling provides strong features with large receptive field (quick information aggregation with limited number of

network parameters)

e Upsampling yields output at the same resolution as input

e Usually skip connections are used, like in ResNet, but longer, as we will see in U-Nets
Skip connections allow maintaining high level of accuracy related e.g. to object boundaries
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CNNs for segmentation (coding+decoding)

‘ Input ‘ ’ Output

j’
N’

/ Bridge
x1 x2 x4
- Convolution + Batch Norm + PRelLU Upsample Block
Convolution (stride 2) + Batch Norm + PRelLU | | Residual Block
~ 1x1 Convolution + Batch Norm + PRelLU - SoftMax

Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks, J.Dolz et al., Medical Physics, 2018
https://doi.org/10.1002/mp.13240
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JAMA | Special Communication | AlIN MEDICINE

Three Epochs of Artificial Intelligence in Health Care
Jan 2024

The Al “epochs”
categorization

Michael D. Howell, MD, MPH; Greg S. Corrado, PhD; Karen B. DeSalvo, MD, MPH, MSc

Approximate
beginning year

Core functionality
and key features

Training method

Al 1.0 Symbolic Al and probabilistic models

Follows directly encoded rules (if-then rules
or decision trees)

Rules based on expert knowledge are
hand-encoded in traditional programming

2011

Al 2.0 Deep learning

Predicts and/or classifies information

Task-specific (1 task at a time); requires new
data and retraining to perform new tasks

Learning patterns based on examples
labeled as ground truth

2018-2022
Al 3.0 Foundation models

-

Generates new content (text, sound, images)

Performs different types of tasks without new data
or retraining; prompt creates new model behaviors

Self-supervised learning from large datasets
to predict the next word or sentence in a sequence

Good for

Follow rules or decision paths

Classify/detect based on training

Interpret and respond/assist

Issues and risks

Underfit real-world complexity,
Errors in the model/rules

Unrepresentative/uncomplete data
Bias in the training data

Hallucinations (plausible but incorrect)
Bias in the training data

Healthcare
applications

Rule-based clinical decision
supporting systems

Diabetic retinopathy detection, lung
cancer screening, skin condition
classification, predictions based on
electronic health records

Medically tuned large language models
improve patient/clinician communication

NB Foundation Models not only LLM! (ndr)

JAMA. 2024;331(3):242-244. d0i:10.1001/jama.2023.25057




Single task VS Foundation (generative) Al

Single Task DL Models Foundation Models
Typical technology Typical technology
Convolutional Neural Networks Transformers (are a kind of Deep Neural Network)

(are a kind of Deep Neural Network)

% % % % Large Language Models
E E =

are a kind of Foundation Models

=
L

Al 3.0

.xAIM



Applications

The “big-mix” of

Al 2.0 Alin - B ==

e d i C i n e Fully-connected neural network Classification Plaque risk assessment
oo
"I sl
. .’..

. . Convolutional neural network RAS R
Countless combinations among -4 T
_ H Regression Calcium scoring
Algorithms I ______ *.

- Tasks
- Applications ..>iH] . | . -
are possible. m

Segmentation Ejection fraction
Fully-convolutional neural network estimation

The need of a sound

partnership between technical S £ | -
(computer scientists, s e° >
information engineers, data e ° Report generation Content-based

Recurrent neural network image retrieval

scientists) and clinical

spe:al'lcles. (phys..lcllan.s, medical SnE-N - \
technologists, biologists, ﬁ/- Image enhancement or
physicists,... ) is evident. Generative adversarial network generation G doseireduction

Litjens, G. et al. J Am Coll Cardiol Img. 2019;12(8):1549-65.



Interpretation tasks

Pre-processing Detection Segmentation

menen

Classification Data generation

+= P Class0

4




Object detection

diagnostic imaging

e (Classification

allows to associate a “class” (output) to a
given data (input). If the choice is among 2
classes we say binary classification, otherwise
we say multiclass

[[] Metastases [ ] Aorta [] Stomach * Detection
b. allows to localize a given object or a plurality
Instance segmentation of them by means of bounding boxes and to

associate a class label to each of them.

* Segmentation (semantic)

allows to label every pixel in an image as to
belonging to one of the available classes. Is a
pixel-wise classification. Semantic segmentation
can also be contour-aware (in this case we can
say contouring)

* Segmentation (instance)

like semantic segmentation with the
possibility to differenciate different instances of
the same object (in this case it is necessarily
contour-aware).

[] Liver metastases [T] No metastasis [] Metastasis 1 [[l] Metastasis 2 [JJ] Metastasis 3 [J] Metastasis 4

A d.

Interpretation tasks:

https://doi.org/10.1148/rg.2021200210
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Interpretation tasks: non-image data sources

s TEEEEEEETS. == ~a o == ~
/ / \
[ [ECG Original Signal [ ECG Signal Data ] \| | [ Deep 2D-CNN model ] l
d W =5 asases = g ! ' '
1 | L L ( | I I Layer 1 '
| A DARENPAREN SAREN , 1 | : :
| | PRISESN SR PP | 1 I | . :
I ,,,,, A A \ A - I I |
1 - | I | I
R X A 4 A A , | |
I I l |
I Signal /
| Segmentati* [ Spectrogram ] |
: Data I
I (3 =) I
I =—— -(_ | ,
- =—11iC )|
/ NOR] |LBB| |RBB] |PVC| |APC

.xAIM\

https://doi.org/10.1109/ACCESS.2019.2928017
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Interpretation tasks: non-image data sources

Electroencephalogram (EEG)

Machine Learning Classifier Process

https://doi. org/10.1371/journal.pone.0268880

Classification

A
2
£
3
2
ERS
15
—/\ ERD ° o
o
1000 ms
Signal Acquisition osl ! :
Time [ms]
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P g R, ,’\*‘.‘ Ak an ‘f_'-'N»_r‘f,-"«..'f-’,-'—'","¢.".-.'~"1‘. VAT

Pre-processing + Feature Extraction

.v ‘ [ ;
- 2‘3{“‘1&7 Oy

1000 ms

Signal Acquisition

Input layer Hidden layers

T M

directlyfeed Input 1
. raw data

(N
V

SN
(X NI/ NI/

i Output layer

Deep Learning Model E.g.CNN

v

Output:
Estimated
Class —
Left or
Right

Output:
Estimated
Class —
Left or

Right

Deep Learning Classifier Process

»

XxAIM
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Interpretation tasks: non-image data sources

__________________________________________________

Py i-TremmenE S
((<T>>) '

Tl

Feature extraction Feature selection Machine learning

(d) Activity recognition

(a) Data collection

(¢) Training

https://doi.org/10.1016/j.patcog.2020.107561



https://doi.org/10.1016/j.patcog.2020.107561

Organ-based/pathology-driven tasks

pmmmmmmmm e mm e ——————
e iy /1 Report eneratlon for cardlac valves inUS |
1 Vessel lumen measurement in OCT ;* s 1 port g : !
: Sourceimage  Input Network 1 : H h
1l I .-
i i | MU
1 ) 1
: : 1 Extract features using pre-" (mned VGG f 1
: 1 : Transform image lemues :
i o vextvactur
H ' i o
- 18128 1 . & H
1 : 1
: Output 1 : oot ||[—> Docavec calculm i 1
f Catheter 1 1 . msl.mces . 1
1
: 1 : nl :
1 ! ] 1
1 i 1 1
1 : 1 s 1
! 1 : :
1 1 '
1 1 1
1 PO | o T L ke i et

Left ventricle segmentation in MRI

/
II ------------ i III.
>
III- - III

NN,

Large receptive field
for spatial labeling

Low-dose chest CT Labeled candidates

CNN,

Small receptive field
for FP reduction

Detected calcifications

1 Obstructive disease prediction in SPECT |

QRS POLAR MAPS DEEP LEARNING SCORING

Quantitative

https://doi.org/10.1016/j.jcmg.2019.06.009

AO: Aorta

PA: Pulmonary Arteries
PV: Pulmonary Veins
RA: Right Atrium

RV: Right Ventricle

LA: Left Atrium

LV: Left Ventricle

MYO: Myocardium

PA

MYO

XAIM

on Applications

Bi-ventricle (LV+RV)

(LV+LA) in 2D

Left Atrium Myocardial Scar

LVin 3D

https://doi.org/10.3389/fcvm.2020.00025
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Score 0: no lung XxAIM

abnormalities :
interstitial

infiltrates

Score 2: interstitial and

alveolar infiltrates

(interstitial predominance)

Score 3: interstitial and

alveolar infiltrates (alveolar

predominance)

Composite interpretation tasks:
multi-network approach

B S TAILAER W LA W R B e A A

ieg) | i) i¢ Al-driven evaluation of the «Brixia score» for

S A sk RS - # - e

1?(?\;Iig1|§\seveﬁy sco.re assessment proje;t ‘and database; ‘ ‘ : COVI D-19 pneu mon ia severity assessment

A HAl ,A. I https://brixia.github.io

Segmentation
probability
mask

Alignment

o e ?
M n
-1
I --"-"r-.:
Confidence

00?

Aligned
probability
mask

)
©
'

0@?

.. ¢
eﬂcl"'-»-,,,
f

Hard-attention

IEY.

Score extraction

\ ;Q o—b_:-
A T O+

Optional hard self-attention

\ Convolutional block \_ Dense layer Backbone QE Sampler ROI pooling
. Decoder stage Nested U-Net Primary feature alignment ° Pixelwise multiplication \"*_ Global average pooling

https://doi.org/10.1016/j.media.2021.10204¢



https://doi.org/10.1016/j.media.2021.102046
https://brixia.github.io/

.xAIM

Foundation Models (FM)

Data source/sources (not defined in advance)

Al 3.0

Foundation
Models

GATHER DATA AT SCALE

TRAIN FOUNDATION MODEL ONE TIME

EVALUATE MODEL'S PERFORMANCE

Application driven tasks

-

~\

/\O(\ Images
\ / Foundation
Training Model
s N .
||||I Speech | ——» ﬂ —
N J
»
Structured
O00|™ pata ]
Y
Core
{ : 3'301 J (general)
ignals
. task

https://doi.org/10.1007/s10586-023-04203-7




FM: Large Language Models

GPT Generative Pre-trained Transformer

Al

Artificial Intelligence

. GPT \

Large language
model (LLM)

ML

Machine Learning

DL

Deep Learning

GAl to gen

Generative
- e of t
CP tworks, w -
e Has content ffilters

f billions of pa eters
GPT-2 GP'RS P é% -4 GPT-5
1.5B \_175R 15T J 3 222 >




Generalist/Generative tasks in medicine

Perspective

Foundation models for generalist medical
artificial intelligence

https://doi.org/10.1038/s41586-023-05881-4
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M Check for updates

Michael Moor'¢, Oishi Banerjee??, Zahra Shakeri Hossein Abad?, Harlan M. Krumholz*,
Jure Leskovec', Eric J. Topol®*’* & Pranav Rajpurkar®’

The exceptionally rapid development of highly flexible, reusable artificial intelligence
(Al) modelsis likely to usher in newfound capabilities in medicine. We propose a new
paradigm for medical Al, which we refer to as generalist medical Al (GMAI). GMAI
models will be capable of carrying out a diverse set of tasks using very little or no
task-specific labelled data. Built through self-supervision on large, diverse datasets,
GMAI will flexibly interpret different combinations of medical modalities, including
data fromimaging, electronic health records, laboratory results, genomics, graphs
or medical text. Models will in turn produce expressive outputs such as free-text
explanations, spoken recommendations or image annotations that demonstrate
advanced medical reasoning abilities. Here we identify a set of high-impact potential
applications for GMAI and lay out specific technical capabilities and training datasets
necessary to enable them. We expect that GMAI-enabled applications will challenge
current strategies for regulating and validating Al devices for medicine and will shift
practices associated with the collection of large medical datasets.

.xAIM

https://www.nature.com/articles/s41586-023-05881-4
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Generalist/Generative
tasks: based on LLMs

https://doi.org/10.1148/radiol.223312

List of templates

CT Head %

CT Chest ‘l‘

CT Abdomen
Pelvis

Angiography |}
— _—
MRI Brain @

7
MRI Spine 5
“-

MRI Knee ‘

i

MRI Shoulder

ocoe

This is an unstructured report, choose the
appropriate template.

List of templates

Unstructured report
for Shoulder MRI

Use this template to structure the free text -

e report. xAIM
[l
Q
k]
a
E
Template for MRI 2
Shoulder B
k]
9
Q
n

—> —> —>

Structured report
as JSON

Unstructured report
for Shoulder MRI

HISTORY: A 42-year-old female presents with shoulder pain. COMPARISON: None available. TECHNIQUE: A 3T MRI of the right shoulder was conducted, using a variety of sequences, including axial proton density with fat}
saturation, axial GRE, coronal proton density with fat saturation, coronal T2 with fat saturation, coronal T1, sagittal T2 with fat saturation, and sagittal T1. FINDINGS: The MRI reveals preserved articular cartilage and
hematopoietic bone marrow. The acromioclavicular joint displays mild to moderate degenerative changes, with inferior joint capsule hypertrophy and enthesophytes causing mass effect on the underlying supraspinatus tendon.
Fres Text The coracoacromial ligament appears mildly thickened. Bone marrow edema is present within the clavicle, likely due to osteoarthritis, but may also be indicative of early distal clavicular osteolysis. A small amount of fluid and
TCREXE | ¢ dema can be seen within the subacromial/subdeltoid bursa, which may suggest bursitis. No glenohumeral joint effusion is observed. Mild tendinopathy is present in the supraspinatus, infraspinatus, and subscapularis tendons.
The supraspinatus tendon also exhibits mild bursal-sided fraying. The teres minor tendon appears normal. The biceps tendon and anchor are intact. Evaluation of the labrum is limited due to lack of joint fluid. A tear of the
superior labrum, posterosuperiorly, is identified. Incidentally noted are breast implants. IMPRESSION: Posterosuperior superior labral tear. Bone marrow edema in the clavicle, likely secondary to osteoarthritis but possibly due
to early changes of distal clavicular osteolysis. Mild tendinopathy in the supraspinatus, infraspinatus, and subscapularis tendons. Mild to moderate degenerative changes in the acromioclavicular joint.
INDICATION | A 42-year-old female presents with shoulder pain.
TECHNIQUE A 3T MRI of the right shoulder was conducted, using a variety of sequences, including axial proton density with fat saturation, axial GRE, coronal proton density with fat saturation, coronal T2 with fat
~ | saturation, coronal T1, sagittal T2 with fat saturation, and sagittal T1.
COMPARISON | None available.
SUPRASPINATUS Mild tendinopathy with mild bursal-sided fraying.
INFRASPINATUS Mild tendinopathy.
TERES MINOR Normal.
SUBSCAPULARIS Mild tendinopathy.
e ROTATOR CUFF Not mentioned.
Structured ?gll;gMIO'CLAVICULAR Mild to moderate degenerative changes, with inferior joint capsule hypertrophy and enthesophytes causing mass effect on the underlying supraspinatus tendon.
FINDINGS
BICEPS TENDON Intact.
GLENOID LABRUM A tear of the superior labrum, posterosuperiorly.
GLENOHUMERAL JOINT No joint effusion.
HYALINE CARTILAGE Preserved.
BONE MARROW Bone marrow edema is present within the clavicle, likely due to osteoarthritis, but may also be indicative of early distal clavicular osteolysis.
The coracoacromial ligament appears mildly thickened. Small amount of fluid and edema within the subacromial/subdeltoid bursa suggestive of bursitis. Incidentally
SOFT TISSUES Py ——
noted breast implants.
Posterosuperior superior labral tear. Bone marrow edema in the clavicle, likely secondary to osteoarthritis but possibly due to early changes of distal clavicular osteolysis. Mild tendinopathy in the
IMPRESSION X . . X . " . . . N o
supraspinatus, infraspinatus, and subscapularis tendons. Mild to moderate degenerative changes in the acromioclavicular joint.
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Generative tasks: imaging (both A2.0 and A3.0 approaches)

.'.
L6 |

oy

-

D=0:5432

XAIM |

- Classification |
Reconstruction Registration (Prostate Detection
(Brain MRI De-Aliasing) (Ultra-sound & MRI) Microscopy) (Brain Disease)

28

De-noising
(Cardiac CT)

(Brain MRI to CT)

23

13
Number of methods in:
............. Claéé,'ificatié.ri“mm“. D.enoisin.g.;" L ALAAAE
Detection @ Reconstruction

@ Segmentation @ Synthesis

unconditional synthesis

Segmentation
(Retina Vessels)

https://doi.org/10.1016/j.artmed.2020.101938
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Impressive... but still “statistics”

CU rre nt fro ntie rs. (no evidence of “meaning appropriation”)

.xAIM

generative text-to-video,
2017 r Lot qezo/:&la - 2020 m— 2021

Prompt: A grandmother with neatly combed grey hair
stands behind a colorful birthday cake with numerous

CaANAIES oot e Prompt: Archeologists discover a generic plastic chair in
the desert, excavating and dusting it with great care.

with a gentle puff, the cake has pink frosting and sprinkles and the candles cease to flicker, the grandmother wears a light blue blouse adorned with floral patterns, several happy friends and family sitting at the
table can be seen celebrating, out of focus. The scene is beautifully captured, cinematic, showing a 3/4 view of the grandmother and the dining room. Warm color tones and soft lighting enhance the mood..

"
iy




Parameters in foundation models

Parameters in Selected Al Models

Some of these figures are estimates. Newer models are many times larger than their

predecessors.

GPT-1

GPT-2

Gemini Nano-1
Gemini Nano-2
Llama 3 8b
Llama 3 70B
Claude 2
GPT-3

Gemini Pro
Gemini Ultra

GPT-4

117,000,000
1,500,000,000
1,800,000,000
3,250,000,000
8,000,000,000
B 70,000,000,000

- 130,000,000,000
- 175,000,000,000

<

'xAIM

At this point in time, we seem
to have reached a plateau.

Today models can use
reasoning modules and divide
up tasks (Mixture of Experts).

500,000,000,000
1,000,000,000,000
1,760,000,000,000

GPT-40

https://explodingtopics.com/blog/gpt-parameters



Parameter trends

Al and Memory Wall

.xAIM

' 10TB Baidu RecSys
10000 Single task (imaging) networks 4x / 2 yrs o -
| fori ize: 10x / 2° Switch Transformer (1.57)
1 Trilion)_ Al VY viein J & X | & _ GShard Megatron_‘ruring
c
2 SPT3 UNFEASIBLE training
@ 1004 (just fine tuning)
.E ' Microsoft T-N
o veastronal NVIDIA DGX:oc)
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Al in medicine: current “directions”

Al2.0 s>  medicine

Az em@lmmmp

Other higher complexity dimensions still to be fully explored, e.g.:
* Multimodality (what, where, when)

* Preventive medicine (patient timeline)

» Affordable size Foundation Models

.xAIM‘




arge language models and foundation
models in medicine

Question Answering

Chart Summarization

Image Analysis / Labeling h e
Natural .

Language @AY
_ N Interaction
Risk Stratification

Medical

Foundation
Model

Finding Similar Patients

Millions of EHRs

REUSABLE HUMAN-AI
HEALTHCARE DATA COMPONENTS  TASKADAPTATION COLLAEORETION

https://hai.stanford.edu/news/how-foundation-models-can-advance-ai-healthcare



Signoroni?

9.1 million unlabeled
and labeled ECGs from
multiple sources
Self-supervised pre-
training on unlabeled
ECGs

Facilitated fine-tuning
on many specific
clinical tasks: testing on
many scenarios and
164 clinical conditions

foundation model for broad and scalable
By cardiac applications

Edoardo Coppola!, Mattia Savardi?, Mauro Massussi??, Marianna Adamo??, Marco Metra?3, Alberto

Pretrain

11 datasets

9.1M samples

Task-specific ECG models

Tosicspeic G models _
~»

Atrial
Fibrillation

@ ~) @ stroke
N9

Survival
Analysis

Finetuning §

16+1 datasets

2.4M samples

Foundation ECG model

Test

16+1datasets
164 heart
related
conditions

Atrial
Fibrillation

Stroke

Survival
Analysis

Many other
tasks...




Progress, challenges and opportunities for Al in health .

255 'mplementa, * Progresses
(\\9‘&" P "alts, * Almost all medical specialties have been
(%) (2] 9@ . . . .
o = 2 s impacted by Al: not only diagnosis but also
& 5 % g risk prediction and treatment
@ & . .
- K S e %, * Not only experimental: growing market of
e B % g B <, deployed (FDA or CE certified) Al products
s : Q O
Q%% L qu\*"}\ Y « Opportunities
% Goe®  Multimodal data fusion (not only images)
Rad,o log, o aos? o

* Not only supervised learning: many possible
Patholo Eroares: | IS “learning” paradigms (tull data labeling can be
24 4 < too expensive/time consuming)

\e gical image interpreta”o,?

Ophthalmolody Slhical datause * Not only human vs machine: collaborative
e“\e‘o\og\J Oppottintios Eq‘lityan 5 approaches, human-in-the-loop
58 Tbias & * Challenges
© & %%, * Implementation: data/label acquisition costs,
&f\“ﬁ %4) %, dataset dimensions, data biases
o A ; . . .
P & & = = % ’%@a * Regulation: locked vs continual learning,
® § 5 38 % % accountability, explainability
< >® ) . . . .
%, S § % 2 % <8 * Ethics: fairness, privacy, equity, do not harm
) o ® 2
/"769@ = S - \‘566\
Q U O“dg\)
e BeY

https://doi.org/10.1038/s41591-021-01614-0
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