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C O M P U T E R  S C I E N C E

Breaking medical data sharing boundaries by using 
synthesized radiographs
Tianyu Han1, Sven Nebelung2, Christoph Haarburger3, Nicolas Horst4, Sebastian Reinartz1,5, 
Dorit Merhof4,6,7, Fabian Kiessling6,7,8, Volkmar Schulz1,6,7*†, Daniel Truhn3,5*

Computer vision (CV) has the potential to change medicine fundamentally. Expert knowledge provided by CV can 
enhance diagnosis. Unfortunately, existing algorithms often remain below expectations, as databases used for 
training are usually too small, incomplete, and heterogeneous in quality. Moreover, data protection is a serious 
obstacle to the exchange of data. To overcome this limitation, we propose to use generative models (GMs) to 
produce high-resolution synthetic radiographs that do not contain any personal identification information. Blinded 
analyses by CV and radiology experts confirmed the high similarity of synthesized and real radiographs. The com-
bination of pooled GM improves the performance of CV algorithms trained on smaller datasets, and the inte-
gration of synthesized data into patient data repositories can compensate for underrepresented disease entities. 
By integrating federated learning strategies, even hospitals with few datasets can contribute to and benefit from 
GM training.

INTRODUCTION
The application of computer vision (CV) in medicine promises to 
personalize diagnosis, decision management, and therapy based on 
the combination of patient information with knowledge of thousands 
of experts and the outcomes of billions of patients. In recent years, 
scientific effort has focused on applications of CV in medicine, in 
particular in radiology (1). Where there has been progress toward 
this vision of an omniscient radiological CV, this has mostly been 
anticipated by corresponding technical advances in the field of CV 
on natural images. A prominent example is convolutional neural 
networks (CNNs), which had their breakthrough when the perform­
ance of AlexNet surpassed more conventional CV algorithms in 
2012 (2). Since then, CNNs have matched and even surpassed hu­
man performance on natural image recognition tasks (3). Similar 
developments took place in medicine, where CNNs performed com­
parably to the performance of experts in computed tomography 
(CT) screening for lung cancer (4) and retinal disease detection (5). 
However, human performance in CV on medical images has so far 
only been achieved but not surpassed. Whenever human perform­
ance in CV on medical images was achieved, large datasets were 
used, often pooled from many sites, containing thousands of images. 
Going a step further and surpassing human performance in CV on 
natural images, however, always required even larger databases con­
taining up to billions of natural images (6).

Unfortunately, collecting and sharing such large quantities of 
medical images seem inconceivable, caused, in part, by their insuf­
ficient public availability. Even if the combined data worldwide 
reach billions of images, like in the case of thoracic radiographs, 

patient privacy issues prohibit combining data from multiple sites. 
This is even more conspicuous given that the majority of patients 
are willing to share their data for research purposes if adequate 
measures have been taken to protect their privacy (7). Secure ways 
to share and merge medical images are essential for the develop­
ment of future CV algorithms (8).

Federated learning has gathered attention and is suitable where 
data sharing is hindered by privacy considerations. In this paradigm, 
a central model is updated by exchanging encrypted gradients or 
weights between global and selected models (9). To further improve 
privacy in medical applications, a fraction of weights or gradients 
within local models can be blurred by injecting random noise, i.e., 
differential privacy. Such a random module has been successfully 
integrated into a federated brain segmentor (10). However, in the 
conventional federated learning settings, the central instance cannot 
inspect the raw training data due to privacy concerns, and hence, 
modeling tasks become challenging.

Another promising solution to overcome data sharing limitations 
is the use of generative adversarial networks (GANs), which enable the 
generation of an anonymous and potentially infinite dataset of images 
based on a limited database of radiographs. GANs are a special class 
of neural networks that were first introduced by Goodfellow et al. 
(11) in 2014 and have since then been advanced to generate high-
resolution, photorealistic synthetic images (12). While the first imple­
mentations of GANs made it possible to synthesize unconditioned 
images, the development and usage of informative priors to drive 
generators that output conditional samples are desired in medical 
applications. A common choice for such a conditional prior is an 
existing image as used in pix2pix (13) and Cycle-GAN (14). Recently, 
Cycle-GAN–based networks have gained attention in the medical 
imaging community due to their capabilities of achieving intermo­
dality image transitions. On the basis of Cycle-GAN frameworks, 
researchers such as Wolterink et al. (15) and Chartsias et al. (16) 
successfully demonstrated bidirectional CT–magnetic resonance 
imaging (MRI) transitions in both brain and heart imaging. Fur­
thermore, Zhang et al. (17) introduced a segmentor-based shape 
consistency term to the Cycle-GAN loss and achieved realistically 
looking volumetric CT-MRI data transitions. The performance of 
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segmentors and GANs was boosted by shape consistency and online 
augmentation, respectively. Nevertheless, image-based conditioning 
always carries the risk of leaking patient-sensitive data to the gener­
ator during the training process.

Here, we propose to use generative models (GMs) on the basis of 
convolutional GANs (18) to break the boundary of sharing medical 
images and to enable merging of disparate databases without the 
limitations that are now restricting the collection of radiographs in 
a public database (see Fig. 1). To demonstrate the performance of 
our concept, we show that fully synthetic and thus anonymous 
images can be generated, which look deceivingly real—even to the 
expert’s eye—and that these images can be used in the medical data 
sharing process. Our concept proposes how medical images or data 
can be shared in the future.

RESULTS
Generation of synthesized radiographs
Generating synthesized two-dimensional images in high resolution 
is a nontrivial task and has just recently been made feasible by using 
progressive growing during training (12) or by using large-scale 
networks that demand massive amounts of computing power. As 
the computing power required for the latter approach is, in general, 
not accessible to most hospitals, we used progressive spatial resolu­
tion growing during training of our networks. Thus, the GAN was 
trained by starting with a spatial resolution of 4 × 4 and stepping up 
in powers of 2 (8 × 8, 16 × 16, 32 × 32, 64 × 64, 128 × 128, 256 × 256, 
512 × 512) to a spatial resolution of 1024 × 1024.

We measured the time needed to train a GAN on a dataset size 
of 112,120 radiographs with a hardware setup that is accessible to 
any small hospital: We used a desktop computer with an Intel 
Xeon(R) E5-2650 v4 processor (Intel, Santa Clara, CA) and an 
Nvidia Tesla P100 16 GB GPU (Nvidia, Santa Clara, CA). To com­
pletely train the GAN with this setup to generate synthesized x-rays 
with a spatial resolution of 256 × 256 took 60 hours. Continuing the 
training to generate synthesized x-rays of spatial resolutions 512 × 
512 and 1024 × 1024 took 114 and 272 hours of computational time, 
respectively. Once the training had finished, inference, i.e., gen­

eration of synthesized radiographs, was much faster with a rate of 
67,925, 41,379, and 4511 generated radiographs per hour at the 
three spatial resolution stages. Sample images are shown in fig. S4A 
for a spatial resolution of 256 × 256. Further images for spatial res­
olutions of 512 × 512 and 1024 × 1024 are given in the Supplemen­
tary Materials.

We have chosen the multiscale structural similarity (MS-SSIM) 
as a metric (19) to detect a possible mode collapse of our GAN (i.e., 
missing diversity in the images). The MS-SSIM has been successfully 
used in predicting perceptual similarity judgments of humans. A 
lower MS-SSIM reflects perceptually distinct samples and proves 
the high diversity of a dataset. In fig. S2, we depict the MS-SSIM of 
1000 randomly selected pairs of samples within a given pathology 
class. As can be seen, the overall MS-SSIM among synthesized pairs 
is comparable to that of real sample pairs.

Ability of human readers to distinguish synthesized 
radiographs from real x-ray images
To test the quality of the synthesized radiographs (i.e., radiographs 
synthesized by the generator), six readers were presented 50 synthe­
sized radiographs each and 50 radiographs of real patients in ran­
domized order, and the readers were separately tasked with deciding 
whether the presented radiograph was real or synthesized. The tests 
were repeated with spatial resolutions of 256 × 256, 512 × 512, and 
1024 × 1024, resulting in a total of 18 tests with 100 radiographs each.

To assess whether experience with machine learning or radio­
logical expertise was necessary to identify synthesized radiographs, 
the readers were grouped and chosen as follows: group 1 consisted 
of three readers that had a background in CV (readers 1, 2, and 3, 
who had 4, 2, and 5 years of experience in CV, respectively), while 
group 2 consisted of experienced radiologists (readers 4, 5, and 6, 
who had 4, 19, and 6 years of experience in general radiology, no 
dedicated specialization to thoracic radiology).

Accuracies in differentiating the synthesized images from the 
real images at spatial resolutions of 256 × 256 were 60 ± 5% for 
group 1 and 51 ± 5% for group 2. Generating convincing radio­
graphs at higher spatial resolutions proved more difficult, and ex­
perts were able to distinguish real from synthesized radiographs 

Fig. 1. Concept of constructing a public database without disclosing patient-sensitive data. The GAN in each hospital consists of a generator G and a discriminator 
D. During training, patient-sensitive data (shown in red) are never exhibited to the generators G directly. Patient-sensitive data is only exhibited to discriminator D while 
it is trying to differentiate between real and synthesized radiographs. After training is completed, only the generators G are transferred to a public database and can be 
used to generate synthesized radiographs.
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more easily at spatial resolutions of (512 × 512)/(1024 × 1024) with 
accuracies of 67 ± 17%/82 ± 4% for group 1 and 65 ± 5%/77 ± 13% 
for group 2. Thus, radiologists and CV experts performed similarly 
when identifying synthesized radiographs at high resolutions when 
judged by their accuracy. As shown in table S2, the sensitivity, i.e., 
the correct identification of a synthesized radiograph, was higher 
than the specificity, i.e., the correct identification of a real radiograph. 
This is probably attributable to the fact that some synthesized radio­
graphs show telltale signs of synthesization (see fig. S4E) and thus 
allow for a more reliable identification. While radiologists predom­
inantly detected errors in anatomical details such as bone shape or 
rib cage morphology, CV experts tended to focus more on tiny de­
tails such as wave-like patterns (see fig. S4E). There was no inter­
reader agreement between the readers for spatial resolutions of 256, 
underlining the fact that identification of synthesized radiographs 
at this spatial resolution stage is hardly possible (see Table 1). At 
higher spatial resolutions, the interreader agreement was consistently 
higher following the found higher accuracy in identifying synthe­
sized radiographs. These results were observed under restrictions: 
The radiographs were assessed on conventional 24-inch computer 
monitors without zooming into the images. The radiographs were 
presented in a given order: first, the low-resolution radiographs, 
followed by the mid- and then the high-resolution radiographs. The 
readers were not allowed to go back and change previous decisions. 
When these restrictions were lifted, accuracy in determining whether 
a radiograph is real or synthesized was significantly increased. A 
radiologist with 9 years of experience who was given unlimited 
amounts of time and who first examined the high-resolution radio­
graphs on specialized radiological monitors to identify typical GAN-
related artifacts before going back to the 256 × 256 radiographs was 
able to identify synthesized radiographs in 86% of cases.

The difficulties to generate convincing radiographs at high reso­
lutions were understandable, as the task becomes more difficult 
with the growing number of pixels: even for low-resolution gray­
scale images of 100 × 100 pixels and 8-bit grayscale depth, the num­
ber of possible different images amounts to 256(100 × 100). The GAN 
was tasked with identifying the subset of real-looking images out of 
this set that grows exponentially in size with increasing spatial reso­
lution. Not unexpectedly, this process was not perfect, and although 
the GAN managed to capture the general appearance of a real ra­
diograph at high resolutions, small details revealed the synthesized 
origin. After having performed the tests and with the knowledge of 
the ground truth, the readers conferred to identify these typical pat­
terns that allowed for the differentiation of real from synthesized 
images at high resolution. Among these were unphysiological con­
figurations of the pulmonary vessels, aberrant bone structures, and 
subtle periodic, wave-like patterns superimposed on the lung pa­

renchyma, which reflect the network’s difficulty to generate fine 
details (see fig. S4E).

Ensuring non-transference of private information
To exclude the possibility that the GAN memorizes and subse­
quently merely reproduces the given training examples, 1000 ran­
domly synthesized radiographs were generated, and their nearest 
neighbors in the database of real radiographs were sought accord­
ing to the structured similarity index. All 1000 radiographs along 
with their respective three nearest neighbors were then plotted, and 
a board-certified radiologist assessed whether an entity from the 
database of real radiographs had been duplicated.

In this set of 1000 randomly drawn GAN images, we did not find 
a single instance in which the synthesized radiograph looked iden­
tical to its closest neighbor in the real dataset (fig. S4B). When as­
sessing similarity in terms of the SSIM, we did not find a single case 
in a set of 105 randomly drawn synthesized radiographs, in which a 
digital twin was found in any of the real radiographs. In addition, 
the reader was asked to examine the synthesized radiograph for lo­
cal information that might lead to the identification of a specific 
patient, e.g., an anatomic variant unique to a patient or a necklace 
with a name on it. No such information was found in this set of 
1000 images.

We reason that the duplication of images from the database of 
real radiographs is unlikely. The GAN consists of a generator and a 
discriminator network. Only the discriminator network will be in 
direct contact with patient images. The generator is never directly 
presented a patient image in the training process. Thus, only the part 
of the architecture (the generator) that has never been presented 
with real patient images is transferred to the central database.

Performance of classifiers trained on  
synthesized radiographs
To demonstrate the feasibility of our approach in a clinical setting, 
as shown in Fig. 1, we have decided to apply our concept to the de­
tection of pneumonia. In the United States alone, pneumonia ac­
counted for over 500,000 visits to emergency departments and over 
50,000 deaths in 2015 (20). The Radiological Society of North 
America (RSNA) has recently hosted a challenge to automatically 
detect pneumonia in x-rays using machine learning algorithms. Often, 
local hospitals can only gather medical datasets with limited diver­
sity due to a specific patient population with associated pathologies. 
However, diversity of the datasets is crucial to the performance of 
deep learning algorithms due to the complex features of a specific 
pathology. By using our approach of pooled GANs, different patients 
from different locations can be jointly considered and thus boost the 
diversity of the local dataset without violating any privacy protection 

Table 1. Real/synthesized radiographs test. Accuracy and interreader agreement for the group of three CV experts, three radiologists, and all readers when 
differentiating whether the presented radiograph is real or synthesized. 

256 × 256 512 × 512 1024 × 1024

Accuracy, % Fleiss’ kappa Accuracy, % Fleiss’ kappa Accuracy, % Fleiss’ kappa

CV experts 60 ± 5 −0.03 67 ± 17 0.07 82 ± 4 0.46

Radiologists 51 ± 5 0.10 65 ± 5 0.18 77 ± 13 0.39

All readers 55 ± 7 0.00 67 ± 14 0.07 80 ± 10 0.37
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laws. We simulated a local dataset with a limited diversity by using 
a subset of the RSNA dataset with 1000 real x-rays for training, of which 
only 5% exhibited signs of pneumonia. The resulting classifier achieved 
an area under the curve (AUC) of 0.74 on a test set of 6000 previously 
unseen x-rays from the RSNA dataset (see Fig. 2B). To alleviate the lim­
iting scarcity of pathological images and improve the classifier perform­
ance, we used our public database of generated images [trained on 
the National Institutes of Health (NIH) and the Stanford dataset]. 
From this database, we randomly sampled a total of 500 synthesized 
x-rays: 100 that exhibited signs of pneumonia and 400 that exhibited 
no signs of pneumonia. These were then joined with 500 real x-rays 
from the RSNA subset (450 healthy and 50 pneumonia), which re­
sulted in a set of 1000 x-rays for training of the classifier (healthy: 
450 real and 400 synthesized; pneumonia: 50 real and 100 synthe­
sized). When trained on this artificially enriched set of x-rays, the 
performance of the classifier increased with an overall AUC of 0.81. 
We hypothesize that the reason for the improvement in performance 
was probably due to the greater diversity of pathological cases as 
produced by the generator: As reflected by the lower MS-SSIM in 
Fig. 2A, the GAN-augmented dataset (MS-SSIM, 0.18 ± 0.09) achieved 
a higher level of diversity in comparison with the local RSNA subset 
(MS-SSIM, 0.24 ± 0.12). Note that for both cases, we have chosen to 
train the classifiers on the same number of x-rays to exclude any 

potential influence that the size of the training set might have had 
on the performance of the classifiers. Similarly, improved perform­
ance measures were found for sensitivity, specificity, accuracy, 
positive predictive value (PPV), negative predictive value (NPV), 
and F1 score (see Fig. 2C). This experiment thus demonstrated that 
our pooled dataset approach is capable of improving deep learning 
classifiers by enriching scarce datasets.

To simulate the data merging scenario as outlined in Fig. 1, we 
compared the results of a comprehensive pathology classification, 
i.e., cardiomegaly, effusion, pneumothorax, atelectasis, edema, con­
solidation, and pneumonia, with a classifier solely trained on the 
NIH-GAN versus a classifier that was trained on merged synthesized 
images from different sources. Generated samples of our Stanford-
GAN can be found in fig. S5. The average values of the AUC, accuracy, 
sensitivity, and specificity all increased significantly after integra­
tion of the synthesized external dataset (see Fig. 3). This demonstrated 
that the merging of multiple databases of generated radiographs can 
boost the performance of classifier networks and can alleviate the 
performance bottleneck due to insufficient amounts of training data.

The performance improvements have been achieved without 
any techniques of domain adaption, i.e., without any efforts to ho­
mogenize the appearance of the radiographs from different data­
bases. Adopting these techniques not only offers an opportunity for 

B

A

C

Fig. 2. Pooled GAN training can improve pneumonia detection by enriching the diversity of the dataset. (A) Distributions of MS-SSIM of randomly selected 
2450 pneumonia-positive pairs. Higher diversity of pneumonia cases in the GAN-augmented dataset is confirmed by a lower MS-SSIM (GAN-augmented MS-SSIM: 0.18 ± 
0.09 versus RSNA subset MS-SSIM: 0.24 ± 0.12). (B)The performance of the classifier when trained on 1000 x-rays from the GAN-enriched dataset (healthy: 450 real and 
400 synthesized; pneumonia: 50 real and 100 synthesized) reaches an AUC of 0.81 in pneumonia detection, outperforming that of a classifier trained on 1000 real x-rays 
(healthy, 950; pneumonia, 50) that reaches an AUC of 0.74. (C) Similarly, improved performance measures were found for sensitivity (Sens), specificity (Spec), accuracy 
(Accu), PPV, NPV, and F1 score. We used a test set of 6000 x-rays randomly sampled from the RSNA dataset to calculate those scores. The GANs used to generate the 
synthesized x-rays were trained based on the NIH and Stanford datasets.
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further performance improvements through domain adaption—
now, an active area of research (21)—but would also most likely 
make the classifier network more robust to deployments in differ­
ent environments. This is an important aspect in the translation of 
CV algorithms from the workbench to clinics.

Federated averaging facilitates the training of local GANs
Large amounts of data are required to obtain robust results from 
GANs that are trained locally. This potentially limits the sites at 
which a GAN can be trained to large hospitals. Federated learning 
algorithms (22) offer a remedy to this limitation as the GAN can be 
trained without the original images, leaving the protected space of 
the hospital. One possible reservation is that, because of the uncon­

trollable gradient/model updates, it is difficult to detect adversarial 
attacks and protect against them (23). However, the security of 
GAN-based federated learning has the advantage of offering an ad­
ditional degree of freedom for screening of databases by using con­
fidence calibrated checking (24) or manual inspection (25). We 
therefore investigated the use of federated learning in training one 
central GAN as an alternative to the pooled GAN approach.

To simulate hospitals with limited amount of training data, we 
randomly sampled 20,000 patient radiographs from the Stanford 
CheXpert dataset and then partitioned them into 20 local clients 
each receiving 1000 patient radiographs. We trained and compared 
the following models: a centralized “20k model,” which was trained 
on 20,000 patient radiographs, a centralized “1k model,” which was 

A

B

Fig. 3. Using pooled synthesized data from different sites, classification performance can be increased. To simulate the scenario in Fig. 1, two classifiers were 
trained and compared: a classifier solely trained on anonymous radiographs generated with the NIH-GAN (blue) and a classifier trained on the pooled anonymized data-
set generated with the NIH-GAN and the Stanford-GAN (red). The schematic of the data selection process is shown in (A). AUC, sensitivity, and specificity for the seven 
diseases are given in (B). In particular, the classification performances of formerly problematic cases such as edema, consolidation, and pneumonia were boosted by 
merging data from multiple sites (red arrows).
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solely trained on 1000 local radiographs, and a federated “20 × 1k 
model,” which was trained federally (22) on 20 distributed datasets 
consisting of 1000 radiographs each (see Fig. 4A).

An important property of Wasserstein GANs is that their dis­
criminator loss directly reflects the quality of generated samples 
(26). We therefore visualized the negative discriminator loss in 
Fig. 4B. As can be seen in Fig. 4B, because of insufficient training 
images, the centralized 1k GAN overfitted quickly and led to an un­
stable training. However, as indicated by a lower loss and Fréchet 
inception distance (FID) in Fig. 4 (B and C), the federated trained 
GAN (federated 20 × 1k) overcame this local overfitting issue and 
significantly outperformed the locally trained GAN. The loss curve 
of the federated GAN was smoother because it represented an aver­
age over local iteration losses.

Generated images as a visualization of  
what neural networks see
The images generated by the generator could be specifically con­
trolled: By changing the part of the input vector signifying the dis­
ease, radiographs with specific pathologies could be generated. We 
used two techniques of visualizing the disease-specific hallmark 
changes. First, the disease-specific entry in the input vector was 
gradually changed from 0 to 1, while all other entries were kept at 0. 
The generated images then showed the transition from healthy to 
diseased states and were stitched together to form an animation. 

Exemplary frames visualizing the transition are given in fig. S4C for 
cardiomegaly and effusion. With cardiomegaly, we observed an 
enlargement of the projected heart shape, reflecting the expected 
radiological change. Similarly, effusion showed the typical opacifi­
cation of the lower lung field mirroring the collection of fluid there. 
Animations for all of the 14 disease states are given in the Supple­
mentary Materials.

Second, the pixel-wise difference image between the fully dis­
eased and the healthy radiograph was calculated and superimposed 
on the healthy radiograph as a colormap (see Fig. 5A for a schematic 
of the process). Examples of such found visualizations are given in 
Fig. 5B for all 14 pathologies.

One advantage of having full control over the disease state of the 
GAN radiographs is that any combination of diseases in a single 
radiograph can be generated by changing the corresponding entries 
in the input vector simultaneously. We found that the disease state 
as represented by the GAN transition reflected the underlying dis­
ease and was in good agreement with radiological expertise if many 
marked examples of this disease were present in the original dataset 
and if the disease-related changes occurred on a large scale of the 
radiographs (e.g., cardiomegaly or effusion) rather than on small 
patches at different sites (nodules).

To uncover correlations between disparate pathologies, we let 
the classifier rate the score of a specific pathology when the GAN was 
tasked with generating a synthesized radiograph of another disease 

A

B

C

Fig. 4. Federated learning facilitates GAN training when facing insufficient amounts of local data. Hospitals can use federated learning algorithms to train a global 
GAN, and the central GAN deposit can serve as a hub. (A) Illustration of the GAN-related federated learning system. After local model initialization, local hospitals B and C 
(in red frames) were selected to update their local models. The global generator and discriminator were updated by the weights (w) transferred to the aggregation server 
(red arrows). All local models were subsequently redefined by the updated global GAN (blue arrows). The exchange of local and global weights continued until the glob-
al GAN converged. (B) Discriminator loss curves for three trained Wasserstein GANs. The Wasserstein GAN trained by federated averaging algorithm (federated 20 × 1k) 
outperformed the centralized GAN trained on only 1000 x-rays (centralized 1k) and performed comparably to the centralized 20k GAN. (C) FID evaluations of the GAN 
training process.
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and calculated the Pearson’s correlation coefficient (Fig. 5C). We 
found that the clustering of related pathologies based on the cor­
relation coefficient agreed well with clinical intuition: Infiltration, 
pneumonia, consolidation, effusion, and edema—all pathologies 
where lung opacity increases—were related to each other while be­
ing distant from, e.g., emphysema or pneumothorax—diseases that 
are associated with increased radiolucency. The magnitude of diag­
onal elements in the 14 × 14 matrix in Fig. 5D directly reflects the 
quality of the generation of pathological images with our method. 
Diseases, such as cardiomegaly (corr = 0.8) and effusion (corr = 0.7) 
could be reliably generated due to their localized and predictable 
pathological features. However, the GAN trained on these par­
ticular datasets performed less reliable in generating infiltration 
(corr = 0.5), emphysema (corr = 0.5), and pneumonia (corr = 0.5). 

This might be due to the limited number of those cases in the data­
sets. For example, for pneumonia-labeled cases in the NIH dataset, 
only 1431 cases are positive and 110,689 are negative. As can be seen 
in Fig. 5D, the NIH generator cannot reliably generate pneumonia-
related features. The nature of pneumonia was better captured by 
the Stanford-GAN in Fig. 5D, which shows the challenging cases 
from this particular dataset. This GAN was trained with a much 
higher number of 20,656 pneumonia cases in the Stanford CheXpert 
dataset.

DISCUSSION
In this study, we demonstrated that GANs can be used to gener­
ate deceivingly real-looking radiographs and to merge databases of 

Subtraction

Generator

Concatenation

Overlay

Random patient
(512-dimensional vector 
with random entries)

Concatenation

Healthy
(null vector)

Cardiomegaly
(one hot encoding)

...

A B

DC

Healthy Atelectasis Cardiomegaly Consolidation Edema

Effusion Empyhsema Fibrosis Hernia Infiltration

Mass Nodule Pleural thickening Pneumonia Pneumothorax

Fig. 5. Learned pathological features. (A) Generation of the disease-specific pixel map. A randomly chosen vector with 512 Gaussian distributed entries characterizes 
one specific patient. The GAN was tasked with generating a healthy and a diseased radiograph of that patient (cardiomegaly in this example). A subtraction map was 
generated to denote the changes brought about by the disease and was superimposed as a colormap over the generated healthy radiograph. (B) Disease-specific pat-
terns generated by the generator for an exemplary randomly drawn pseudopatient. Red denotes higher signal intensity in the pathological radiograph, while blue de-
notes lower signal intensity. Note that for some diseases such as cardiomegaly and edema, the pattern looks realistic, while the GAN struggled with diseases that have a 
variable appearance and where ground truth data are limited, e.g., pneumonia. (C) Revealing correlations within generated pathological radiographs by the classifier 
trained on the real dataset. For each pathology, 5000 random synthesized radiographs with a pathology label drawn from a uniform distribution between 0.0 and 1.0 
were generated. The images were then rated by the classifier network, and Pearson’s correlation coefficient was calculated for each pairing of pathologies [shown in (C) 
with the GAN cardiomegaly label on the x axis and the cardiomegaly and fibrosis classifier output on the y axis in red and blue, respectively]. (D) Resulting correlation 
coefficients for all 14 × 14 pairings are displayed and color coded in (B). Clustering on the x axis (i.e., the GAN label axis) was performed to group related diseases. The 
obtained clustered blocks are marked with white-bordered boxes.
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radiological images without disclosing patient-sensitive information. 
This helps to build large radiological image databases for the training 
of CV algorithms. While radiographs may, in principle, be abundantly 
available, universal access is, in general, severely restricted due to 
data protection laws: privacy concerns restrict the export of sensitive 
patient information to extramural institutions, and often, only a small 
fraction of the available data can be used (e.g., a patient consent form 
may not be universally available). In these cases, GANs that have 
been trained in-house may serve as a mean to distribute the infor­
mation contained within the database without actually providing a 
real snapshot of patient-sensitive data: only the weight distribution 
of the GAN needs to be transferred, and a representative synthesized 
dataset of millions of radiographs may be generated in reasonable 
computational time at a peripheral site. This is in contrast to previous 
works of Shin and co-workers, in which lower–spatial resolution 
synthesized images could be produced but always required recourse 
to the original patient images as inputs to an image to image trans­
lational network (13). Another group has previously demonstrated 
that synthesized chest radiographs can be used to augment training, 
see, e.g., Salehinejad et al. (27). However, they used a less advanced 
GM and were only capable of synthesizing radiographs with limited 
quality, which are of less clinical value. We demonstrated the feasi­
bility of using GANs as a tool of effective oversampling when the 
pathology distribution within a medical dataset was highly im­
balanced. In particular, we demonstrated how a deep learning classifier 
can benefit from using synthesized x-rays from a publicly accessible 
database in cases where only few instances of a particular disease are 
present. Moreover, our developed GANs could be used to visualize 
what the generator neural network sees and to reveal correlations 
between diseases. The synthesis of pathological radiographs and the 
subsequent analysis by classification networks reveal correlations 
between diseases. For example, there seemed to be a block of diseases 
(lower right corner of Fig. 5D) that was characterized by lung opaci­
fication, namely, effusion, consolidation, pneumonia, infiltration, 
and edema. This makes sense from a clinical viewpoint as these dis­
eases are clinically correlated, and similar observations hold for the 
remaining clusters in this figure. Cardiomegaly was an outlier in the 
sense that it was associated with seemingly only one disease from 
that block (effusion), but not the others. This again makes sense, 
considering that effusion can be a direct consequence of congestive 
heart failure. The correlation to edema was quite low for this case, 
which may indicate that the edema was not described consistently 
in the radiological reports and was therefore difficult for the neural 
network to synthesize and classify.

A potential problem in training a GAN on-site exists when the 
set of training images is limited—as is the case in small community 
hospitals. In those cases, the GAN might not converge, and realistically 
looking radiological images might not be produced. To overcome 
this problem, we proposed to use federated learning for training of 
the GAN: radiological images remained on-site and never left the 
premises, while only the weight updates got transferred to the 
central repository. We simulated this approach by splitting a set of 
20,000 patients from the CheXpert dataset into 20 smaller datasets, 
and we found that the federally trained model significantly outper­
formed the locally constrained model.

One caveat when dealing with many smaller distributed databases 
is the potential low quality of locally trained GANs. To prevent 
the central repository from being contaminated by inferior synthetic 
x-rays, we propose two possible remedies: One way of pursuing the 

approach of pooling locally trained GANs is to apply a quality crite­
rion such as the FID or the inception score (28) assessment. Locally 
trained generators can be rejected to be included in the central GAN 
repository. Second, federated learning allows for training of a single 
global GAN with several smaller distributed databases as demon­
strated by Fig. 4A. In this way, several smaller databases can be 
combined and act as one large database without actually sharing the 
underlying patient information.

Attention needs to be paid to adversarial attacks on distributed 
learning systems. Models might be affected by poisoning attacks (29). 
Local gradients can be easily manipulated and distorted before be­
ing transmitted to central servers, and adversarial attacks might not 
be detected in the federated learning approach. Our GAN-based 
distributed learning approach offers passive and active robustness 
against adversarial attacks. The posterior distribution could be esti­
mated (30), and the confidence threshold (24) of any given example in 
the local training set could be deduced. Such confidence thresholds 
could be used to detect and filter the suspicious training examples 
to secure GAN training from dataset poisoning (29). In addition, 
adversarial training (31) is an efficient method to increase model 
robustness against adversarial perturbations. We demonstrated (in 
fig. S3) that the robustness of our radiograph classifier was signifi­
cantly improved by adversarial training.

The concepts demonstrated in this work rely on two-dimensional 
images, but there is no principal restriction on the number of di­
mensions that the real and synthesized images are allowed to have 
or even that the data have to consist of images only. Thus, the same 
concept could be translated to volumetric CT or magnetic resonance 
images, to fluoroscopy, to time series of volumetric data (e.g., 
contrast-enhanced CT), or even to imaging data in conjunction with 
clinical data (e.g., an MRI with associated expression profiles of lab­
oratory tumor markers). However, because of the exponentially in­
creasing size of the data, we expect that the problem of generating 
synthesized data of very high dimensionality is much more difficult 
and that a far greater number of real cases would be needed for the 
GAN to converge.

Diagnosis in the clinical setting usually relies on more than just 
imaging and comprises the patients’ demographics, their medical 
history, and previous and ongoing treatments. Future work will inves­
tigate how to include these important parameters into our approach 
by letting the GANs generate not only radiographs but also accom­
panying clinical data such as laboratory values. However, to realize 
this, more training data are probably needed, as the data to be syn­
thesized will have higher dimensions/degrees of freedom. Federated 
learning as presented here can help overcome those difficulties by 
providing the means to combine several distinct databases.

MATERIALS AND METHODS
Dataset and preprocessing
Three datasets were used in this study: first, the ChestX-ray dataset 
released by the NIH in 2017, containing 112,120 frontal radiographs 
of 30,805 unique patients. At the time of its publication, this dataset 
comprised 8 disease entities and was later updated to contain 
14 pathologies (32). To ensure that no information leaked into the 
test set used for the evaluation of the algorithms, patient-wise strat­
ification into training (21,528 patients, 78,468 radiographs, 70%), 
validation (3,090 patients, 11,219 radiographs, 10%), and test set 
(6187 patients, 22,433 radiographs, 20%) was performed. The test 
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set was kept separately until the final testing of the algorithms. 
Detailed label statistics for the ChestX-ray 14 dataset can be found 
in the “Preprocessing steps in CheXpert dataset” section in the Sup­
plementary Materials and in table S3.

The second dataset used in this study is the CheXpert dataset, 
which has been released by Irvin et al. (33) in January 2019. It con­
tains 224,316 chest radiographs of 65,240 patients. This dataset was 
used to train a second GAN to demonstrate the feasibility of the 
proposed data sharing approach (see Fig. 1). A detailed explanation 
of the label preparation and statistics for the CheXpert dataset is 
given in table S3. Algorithms of classification were tested on the 
NIH test set. Therefore, no subdivision of the CheXpert dataset into 
test, training, and validation sets was needed, and all available frontal 
radiographs of the CheXpert dataset (n = 191,027) were used for 
training of the GAN.

The third dataset used in this study is a dataset of x-rays released 
by the RSNA to host a challenge about pneumonia detection. We 
used this dataset to train a classifier for pneumonia detection and to 
test whether the inclusion of synthesized x-rays could improve the 
performance of said classifier.

Before training, radiograph datasets such as NIH and CheXperts 
were downsampled to dedicated spatial resolutions, i.e., ranging from 
4 × 4, 8 × 8, …, 210 × 210, and converted into separate files. Thus, 
each of those files contained all training radiographs with a fixed 
spatial resolution. The radiographs’ intensity values were normalized 
to the range of [−1, 1] (12).

Model architecture and implementation
Two neural network architectures were used here. First, GANs as 
introduced by Goodfellow et al. (11) were adapted to incorporate an 
input condition (19) to selectively generate synthesized radiographs 
with a certain pathology. We used two different inputs to the 
networks: the conditional vector, which controls the type of disease 
present in the synthetic image, and the random noise vector, which 
determines which item from the set of possible x-rays is generated. 
Both vectors are concatenated and fed to the network as an input 
(19). As depicted in fig. S1C, such concatenation-based conditioning 
is equivalent to adding bias to the hidden activations based on the 
conditional input (34). In addition, we also added an auxiliary clas­
sifier at the end of the discriminator and additional classification 
loss terms in the objective

	​​
​L​G​ C ​ = ​  𝔼​ 

​   x ​~ℙg
​​ [ − logP(C = c∣​   x ​ )]

​            
​L​G​ C ​ = ​  𝔼​ 

x~ℙr
​​ [ − logP(C = c∣x )]

 ​​	 (1)

where c is the pathological class label.
To generate high–spatial resolution images, we used progressive 

growing, a technique in which the GAN is trained in progressively 
higher–spatial resolution stages (12). The network architecture re­
sulting in a final spatial resolution of 1024 × 1024 is shown in table S5. 
We picked leaky rectified linear unit (ReLU) ( = 0.2) and pixel norm 
(12) as the major activation function and normalization layer. Note 
that, instead of using a common tanh activation function, Karras et al. 
(12) suggested to use linear activation at the end of the generator. 
During training, we used a mini-batch size of 128 for spatial resolutions 
42 − 322 and then decreased the batch size by a factor of 2 when spatial 
resolution doubled to account for the limited memory size: 64 × 64 → 64, 
128 × 128 → 32, 256 × 256 → 16, 512 × 512 → 8, and 1024 × 1024 → 4. 

Dedicated explanations about techniques used in our GANs can 
be found at the “Network training details” section in the Supple­
mentary Materials.

Second, a densely connected CNN with 121 layers (DenseNet-121) 
was used as a classifier. It was pretrained on 14 million natural images 
[ImageNet database (2)] and subsequently trained on the radiographs 
in this study. The architecture has been shown to achieve state-of-
the-art performance on the ChestX-ray dataset (35) before. Imple­
mentations were done using TensorFlow 1.9.0 and PyTorch 1.1.0.

Training of the GANs
We trained two GANs on the basis of two separate datasets in a 
progressive growing strategy: on the NIH ChestX-ray14 dataset and 
the Stanford CheXpert dataset. Note that weights were initialized 
randomly. Training proceeded in repetitive stages: once training of 
one spatial resolution stage stabilized after being presented a total of 
600,000 real radiographs (with repetitions), the layers responsible 
for the next spatial resolution stage were gradually faded in and train­
ing continued with another 600,000 radiographs during this fade-in 
stage (again with repetitions). In total, discriminators of GANs were 
each presented 12 million radiographs. The training scheme was chosen 
so that the GANs learned to first explore the large-scale pattern and 
overall contrast before focusing their attention on finer details.

To measure whether the images generated by the generator con­
verged to real-looking images, we used the FID between a set of 
10,000 real x-rays and 10,000 generated x-rays at each training epoch 
(28). We ensured an equal contribution from each pathological class 
by using a uniform distribution among the 14 classes, i.e., roughly 
700 radiographs per class. To compute the FID, we extracted features 
of radiographs from the third pooling layer of the inception network 
(28). The FID score among real and synthesized radiographs was 
then computed according to

	​​ FID(x, g ) = ​​‖​​ ​μ​ x​​ − ​μ​ g​​​‖​​​
2
​ 2​ + Tr​(​​ ​Σ​ x​​ + ​Σ​ g​​ − 2 ​(​Σ​ x​​ ​Σ​ g​​)​​ ​

1 _ 2​​​)​​​​	 (2)

where  and  are mean and covariances of a multivariate Gaussian 
distribution that models the feature distributions. We found that the 
FID decreased nearly monotonically, indicating that the general ap­
pearance of the generated images approaches that of the real x-rays. 
The corresponding figures depicting the evolution of the FID are 
given in fig. S1D.

Training of the classifier with real and synthesized data
All classifier models used validation-based early stopping with sig­
moid binary cross-entropy loss as the criterion. No oversampling of 
underrepresented classes was used except for the experiment, in which 
we specifically tested for the effect of oversampling. Training of the 
classifier network was done for a variety of different settings.

In the experiment depicted in Fig. 2, we first trained a classifier 
on a set of 1000 real x-rays (950 healthy, 50 exhibited signs of pneu­
monia) provided by the RSNA. Subsequently, we trained a classifier 
on a set of 500 real and 500 synthesized x-rays (450 healthy real, 
50 pneumonia real, 400 healthy synthesized, and 100 pneumonia 
synthesized), whereby the synthesized radiographs were generated 
by generators that had previously been trained on the NIH and 
Stanford datasets. As a test set, we used a random subset of the dataset 
published by the RSNA, comprising 6000 real x-rays with the rela­
tion healthy:pneumonia as 2:3. In addition, we tested whether this 
concept could also be used in a more challenging task of differentiating 
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between a variety of diseases. As not all of the 14 pathologies labeled 
in the NIH dataset had been labeled in the Stanford dataset, we only 
classified those pathologies that were present in both datasets’ labels, 
namely, cardiomegaly, effusion, pneumothorax, atelectasis, edema, 
consolidation, and pneumonia. We trained a classifier to differentiate 
between these classes with three different training sets: (i) synthesized 
x-rays generated by the NIH-GAN, (ii) synthesized x-rays generated 
by both the NIH-GAN and the Stanford-GAN, and (iii) real x-rays 
from the NIH dataset.

In addition, an experiment was carried out, in which the generated 
images were evaluated by the trained DenseNet to discover correla­
tions between different pathologies. For each pairing of pathology 
as generated by the generator and pathology as classified by the 
classifier, we calculated Pearson’s correlation coefficient and performed 
clustering on the resulting correlation matrix.

Federated averaging GAN
The pseudocode of our federated averaging GAN is given in 
algorithm S1. Specifically, we controlled our federated learning ex­
periment by setting 10% of local clients that ran local GAN updates 
(C = 10%), 10 local generator iterations on each round (E = 10), and 
a local batch size of 32 (b = 32). Following Gulrajani et al. (26), pa­
rameters of local Wasserstein GAN training was set to  = 10 and 
ndiscriminator = 5. All local models were initialized identically. During 
one global update round, as shown in Fig. 4A, a subset of clients 
(10% here) was picked to run local GAN updates on isolated datasets. 
Local clients were asked to transmit updated weights (red arrows in 
Fig. 4A) to the aggregation server once local updates were finished. 
The global model was updated by the weighted average over collected 
weights (22). To finish the global round, all local models were updated 
by the weights from the global model (blue arrows in Fig. 4A).

Reader study
Six readers were tasked with identifying whether a radiograph was 
real or synthesized. The tests were performed as follows. Each reader 
was given 30 s within which she or he had to decide whether the 
presented radiograph was real or synthesized. To prevent readers 
from identifying GAN-related features on the high–spatial resolu­
tion radiographs first—which are harder to produce and thus pre­
sumably more prone to artifacts—and transferring that knowledge 
to the low–spatial resolution images, the radiographs were presented 
in the following order: 100 radiographs of 256 × 256, 100 radiographs 
of 512 × 512, and, lastly, 100 radiographs of 1024 × 1024. All pre­
sented radiographs were different, i.e., the 256 × 256 were different 
from the 512 × 512 and 1024×1024 radiographs. Reading tests were 
done on a 24-inch computer monitor. To exclude the possibility that 
readers investigated the metal markers or pixel-hardcoded letters 
(e.g., denoting patient side—L or R) as potential artifacts to differ­
entiate between real and synthesized images, these were covered by 
an independent investigator before handing out the x-ray to the testers.

Statistical analysis
For each of the experiments, we calculated the following parameters 
on the test set: AUC, accuracy, sensitivity, and specificity. To assess 
the errors due to sampling of the specific test set, we used bootstrapping 
with 10,000 redraws. The SE of the accuracy in the real versus 
synthesized tests for each human reader was calculated among the 
reader performances, and Fleiss’ kappa was used to assess interreader 
agreement between readers.

To determine the number of needed samples for the performed 
experiments, we used power analyses according to (36). In general, all 
of our performed experiments followed a binomial distribution, 
because each decision for a radiograph was binary: either yes (e.g., 
was real for the case of deciding between real and synthesized radio­
graph or disease was present for the case of the classifiers) or no 
(was not real or disease not present). We could thus use the binomial 
formula for the SD of absolute numbers: ​​SD​ absolute numbers​​  = ​ √ 

_
 n × p × q ​​, 

or equally well the SD of percentages: ​​SD​ percentages​​  = ​ √ 
_

 ​p × q _ n  ​ ​​.
The difference of metrics, such as AUC, sensitivity, and specificity, 

was defined as a metric (see table S4). For the total number of 
n = 1000 bootstrapping, models were built after randomly per­
muting predictions of two classifiers, and metric difference metrici 
were computed from their respective scores. We obtained the P value 
of individual metrics by counting all metrici above the threshold 
metric. Statistical significance was defined as P < 0.001.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/49/eabb7973/DC1

View/request a protocol for this paper from Bio-protocol.
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