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Advancing diagnostic performance and clinical
usability of neural networks via adversarial training
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Unmasking the decision making process of machine learning models is essential for imple-

menting diagnostic support systems in clinical practice. Here, we demonstrate that adver-

sarially trained models can significantly enhance the usability of pathology detection as

compared to their standard counterparts. We let six experienced radiologists rate the

interpretability of saliency maps in datasets of X-rays, computed tomography, and magnetic

resonance imaging scans. Significant improvements are found for our adversarial models,

which are further improved by the application of dual-batch normalization. Contrary to

previous research on adversarially trained models, we find that accuracy of such models is

equal to standard models, when sufficiently large datasets and dual batch norm training are

used. To ensure transferability, we additionally validate our results on an external test set of

22,433 X-rays. These findings elucidate that different paths for adversarial and real images

are needed during training to achieve state of the art results with superior clinical

interpretability.
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Computer vision (CV) in medical imaging has been a focus
of radiological research in recent years. It is likely that CV
methods will soon be used as adjunct tools by radiologists:

Computer-aided diagnosis can help to speed up the diagnostic
process by guiding radiologists to findings worth looking at and
maximize diagnostic accuracy by reducing subjectivity1–5. Pro-
minent examples are deep convolutional neural networks (CNN),
which had their breakthrough when more conventional computer
vision algorithms were far surpassed by residual neural networks
in 20156. Similar developments have taken place in medicine,
where CNNs performed comparable to experts in lung cancer
diagnosis7–9, retinal disease detection10–12, and skin lesion
classification13–15. However, certain problems in CV still exist:
deep learning models trained in a standard fashion are vulnerable
when facing attacks from adversaries. An attacker might intro-
duce a subtle change into the image - such as changing a single
pixel16 - and manipulate the output of the model towards a
desired direction.

To date, adversarial attacks have been of interest primarily to
computer science researchers. With the landscape of competing
interests within healthcare and with the continuing integration of
machine learning in clinical practice, it is likely, that adversaries
will arise that exploit such vulnerabilities. To illustrate possible
scenarios: insurances could employ deep learning for approval of
insurance claims, thus incentivizing adversaries which aim to
commit insurance fraud. Another scenario might be a company
seeking FDA approval for its newly developed drug in which the
efficacy of said drug is measured with a radiological response
(e.g., the shrinkage of tumor volume). The company might be
tempted to manipulate the follow-up radiological images in an
adversarial manner in order to promote its drug’s approval17. For
the clinician, it is thus important to understand, why a model
arrives at a certain conclusion and if that reasoning aligns with
human reasoning: A reliable and robust mechanism to explain
the model’s reasoning could support the acceptance of deep
learning models in clinical routine18. Great effort has been
devoted to techniques such as feature and attribution visualiza-
tion to solve the concern described above. Techniques such as
class activation maps, i.e., CAM19 and GradCAM20 visualize
where the network focusses its attention to. Gradient based
methods study, which pixels of the input image are responsible
for the neural network firing in a particular way21. These methods
can be applied irrespective of the way in which the neural net-
work is trained.

Adversarial training offers an efficient way to both counteract
adversarial influence and clarify the connection between input
and output22. Nevertheless, in CV, researchers found that it is
generally hard to obtain a both accurate and robust model
though adversarial training23. In this paper, we address the
mentioned degradation of accuracy via investigating loss land-
scapes of robust and non-robust models. More importantly, we
find that training the model in this fashion allows for the model’s
reasoning to be more closely aligned with clinical expectations
than when the model is trained in a conventional fashion. We
test these hypotheses in dedicated experiments on X-rays,
computer tomography images and magnetic resonance images
and involve six radiologists who rate the clinical validity of our
results.

Results
Adversarial training smoothes the loss surface. Supervised
models are vulnerable to adversarial attacks in which an adver-
sary subtly changes the input to the model and thereby manip-
ulates the prediction of that model. Instead of optimizing the
parameters θ, e.g., the weights of the neurons, of a model towards

the minimum of the loss function L,

min
θ

E
ðx;yÞ�D

Lðx; y; θÞ� �
; ð1Þ

one is able to generate adversarial examples (x+ δ) by solving the
optimization problem

E
ðx;yÞ�D

max
δ2Δ

Lðx þ δ; y; θÞ
� �

; ð2Þ

where (x, y) is an input-label pair in the dataset D, δ is the applied
adversarial perturbation, and Δ is an allowable set of perturba-
tions. In practice, adversarial examples will always be designed to
be as unconscious as possible to the human eye. One commonly
define the allowed perturbations set Δ to be a hypersphere ball
around any data x with a constrained norm (e.g., l∞ ≤ ϵ)24. To
select the best model in the task of pathology detection, we
quantified the model’s performance via the area under the
receiver operating characteristic curve (ROC-AUC) and
precision-recall curve. In accordance with previous research, we
found that adversarial perturbations can easily influence con-
ventionally trained models when applied to disease detection in
thoracic X-rays, see Fig. 1.d: the standard classifier was sig-
nificantly biased even by a small amount of adversarial pertur-
bation (ϵ ≤ 0.01). In a second experiment, we made the models
robust to adversarial attacks by employing an approach proposed
by Madry et al.22. In this approach, we minimized the expected
adversarial loss via performing gradient descend on adversarial
samples—effectively presenting the model with adversarial
examples during training:

min
θ

E
ðx;yÞ�D

max
jjδjj≤ ϵ

Lðx þ δ; y; θÞ
� �

: ð3Þ

Figure 1 visualizes our result, that an adversarially trained
(robust) classifier (Fig. 1e) was less sensitive to adversarial
perturbations than its counterpart that was trained in a standard
fashion (Fig. 1d).

Nevertheless, other groups have previously shown, that robust
models appear to be less accurate than standard models23,25,26.
We tested these findings in the context of medical datasets by
performing adversarial training on the Luna1627, kneeMRI28, and
CheXpert29 datasets (shown in Fig. 2 and Supplementary Fig. 1).

We found that robust models were indeed less accurate when
trained on limited datasets, see blue and green curves in Fig. 2a, b.
However, we found that the performance gap between standard
and robust models was less pronounced when sufficient amounts
of data were available, see Fig. 2c.

To understand the performance loss, let us consider an ϵ
bounded perturbation. From Eq. (3), with weak perturbations δ,
one can expand the inner max function:

max
jjδjj≤ ϵ

Lðx þ δ; yÞ � Lðx; yÞ þ max
jjδjj≤ ϵ

δ∇xLðx; yÞ þ
1
2
δ⊺HðLÞδ þOðδ3Þ

� �

� Lðx; yÞ þ δ�∇xLðx; yÞ þ
1
2
δ�⊺HðLÞδ�;

ð4Þ
where δ*(x)= argmax∣∣δ∣∣≤ϵ L(x+ δ, y). According to Eq. (4), the
difference between a standard model and a model trained in an
adversarial sense are the two additional terms containing δ (up to
the third order in δ). The tension between accuracy and
robustness in adversarially trained models closely relates both
terms. This can be understood as follows: to achieve higher
robustness, i.e., f(x+ δ) ≈ f(x), adversarial training regularizes the
model through minimizing its Jacobian and Hessian matrices (Eq.
(4)). Such a regularization makes the model more invariant to all
directions of perturbations: the loss surface is smoothed with
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respect to its inputs, see Supplementary Fig. 2. In Supplementary
Table 6, the loss Lipschitz of the standard model is larger than
that of the robust model indicating a higher adversarial
vulnerability. Importantly, the model’s sensitivity to non-robust
but useful features30 is limited due to such over-smoothing effect
and therefore leads to accuracy degradation. In other words,
training with adversarial images and only a single batch norm
leads to over-smoothed loss surfaces that might miss important
details that help in differentiating separate classes. This is
different if we employ dual batch norms as demonstrated in the
following section.

Revisiting adversarially augmented training. To balance the
accuracy decrease in robust models, we treat adversarial examples
as a form of augmentation and train our models with auxiliary
batch norms31–33. Within this setting, we can formulate the
training objective as:

min
θ0;γ;γ0

E
ðx;yÞ�D

Lðθ0; γ; x; yÞ þ max
jjδjj≤ ϵ

Lðθ0; γ0; x þ δ; yÞ
� �

; ðθ0; γ; γ0Þ 2 θ;

ð5Þ
where γ and γ0 represent parameters in BNstd and BNadv, whereas,
θ0 represents remaining parameters in the model. Under weak
perturbations, we can expand and approximate the above objec-
tive as:

min
θ

E
ðx;yÞ�D

Lðθ; x; yÞ þ δ�∇xLðθ0; γ0; x; yÞ þ
1
2
δ�⊺HðLðθ0; γ0ÞÞδ�

� �
:

ð6Þ
Here, θ in the first term of Eq. (6) contains all parameters of the
network. As shown in Eq. (6), regularization terms only affect γ0

and θ0. In general, batch norm layers are essential parts deter-
mining the model’s performance and robustness. Making use of
dual batch norms allows us to separately study the role of batch
norm layers in adversarial training. In Supplementary Fig. 3, the
loss surface changes dramatically when we switch from BNadv (γ0)
to BNstd (γ) while keeping the same set of parameters for the
convolutional layers (θ0). By keeping separate batch norms for the
real and adversarial samples, we both avoid over-smoothing (as
demonstrated in Supplementary Fig. 3a) and keep the robustness
against adversarial samples (b in Supplementary Fig. 3). The loss
surface of BNstd is not over-smoothed by adversarial training and
therefore preserves its accuracy. The above observation suggests a
close link between batch norm layers and the loss landscape, i.e.,
smoothness and Lipschitzness, which is in agreement with the
observations by Madry et al.34.

In experiments with medical imaging, we observe, the
employment of separate normalization layers removed the
performance gap towards naively trained models: as demon-
strated by the red AUC in Fig. 2, no performance difference
towards naively trained models was found. A more detailed
summary of performance metrics and confidence intervals can be
found in Supplementary Tables 3–5. No significant differences in
ROC-AUC, sensitivity, and specificity were found when compar-
ing the naively trained non-robust model to the adversarially
trained model with dual batch norm training. To verify that larger
datasets and dual batch norms are necessary for accurate
adversarial training, we randomly subsampled the CheXpert
training set to 1% (1910 X-rays) and 10% (19,103 X-rays). Models
were trained on the above CheXpert subsets and their
performances on the test set are reported in Fig. 3. When
incorporating more training data, we observe an ROC-AUC

a b c

d e

Fig. 1 Adversarially trained models are robust against adversarial attacks. Adversarial perturbations with increasing strength (ϵ) were generated via an
projected gradient descend (PGD) attack. To demonstrate the impact of adversarial attacks on state-of-the-art classifiers, we trained a ResNet-50 models
with a large chest X-ray dataset (CheXpert) containing nearly 200,000 X-rays. a Original unmanipulated chest radiograph. b Adversarial noise with ϵ =
0.002. cManipulated chest radiograph (original radiograph + noise), i.e. adversarial example. d The standard model was easily misled by small adversarial
perturbations (b) that are not perceptible to the human eye (c) and accuracy in classifying the disease dropped drastically when allowing more pronounced
perturbations. e Only a limited amount of performance degradation was observed when applying adversarial attacks on the model trained adversarially (ϵ
during training was set to 0.005).
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increase in most pathology classifications in the setting of the
adversarially trained dual batch norms model in accordance with
our hypotheses. More particular, in the case of cardiomegaly,
edema, and pneumothorax, our results show that the AUC of the
conventionally trained (i.e., one batch norm) adversarial model
remains comparatively low (even at 100% of the training set,
performance is similar to the situation with 10% of the training
set) while the AUC of the adversarial model with dual batch
norms continues to increase when adding data. The adversarial
model with dual batch norms generalizes the best in the task of
cardiomegaly and effusion classification. However, in pneumonia
classification, we also observe that the performance of adversarial
models are both less accurate and less stable when comparing
with their standard counterpart. One possible explanation is the
limited number of pneumonia cases in the whole CheXpert
dataset: only 2.4% of CheXpert are pneumonia positive29, which
might restrict the classification performance of adversarial
training.

In practice, generalization across different domains of CV
algorithms can be challenging. To explore whether this was the
case with our robust training, we used the external ChestX-ray8

dataset as an additional test dataset. A comparison of the
distribution of ground-truth labels of both datasets is listed in
Supplementary Table 1. Figure 4 shows a comparison of the
standard and robust models solely trained on the CheXpert
dataset. Models were validated on the external ChestX-ray8
dataset that contained 22,433 radiographs and had never before
been presented to the models35. As before, the robust model
employing dual batch norms outperformed the conventional
adversarially trained model and performed comparably to the
standard model.

However, we also observe that a robust model even with dual
batch norms still generalizes slightly worse than its standard
counterpart when classifying pathologies such as cardiomegaly,
edema, and atelectasis. By comparing with Fig. 3, such a behavior
is different from the generalization on independent and
identically distributed (IID) test sets of the CheXpert data. One
contributing factor is the distribution shift between both datasets:
although both datasets share similar pathological labels and
regions of interests (ROI) on chests, a considerable shift in pixel
intensity distribution still exists36. Another important factor is the
sample complexity of robust learning, which is generally larger

Fig. 2 The usage of dual batch norm boosts the classification performance of neural networks. Three models were compared: blue: neural network
without adversarial training, green: neural network with adversarial training and red: neural network with adversarial training employing dual batch norms.
The models' performances were tested on three distinct datasets: a Rijeka knee magnetic resonance imaging (MRI) dataset. b Luna16 dataset containing
computed tomography (CT) slices of malignant tumors and (c) CheXPert thoracic X-ray dataset. We found that robustness and good performance appear
to be incompatible when data is limited. In both experiments (a and b), the AUC of naively adversarially trained models (green) dropped significantly as
compared to models trained in a standard fashion (blue). However that performance gap was reduced when the models were trained on a large dataset of
191,027 radiographs (c). Adversarially trained models performed best when employing dual batch norm (red), no significant difference in performance to
the naively trained models were found. As reflected by the red curves, the performance of robust models was boosted across different datasets when dual
batch norm training was employed (a–c).
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than the standard one37 and therefore always requires more data
to generalize (also reflected in Fig. 3).

Adversarial training selects features that are close to what
experts consider meaningful. As previously reported by Tsipras
et al.23 loss gradients of robust models were found to be both
sparse and well aligned with human expertize. In Fig. 5, it was
found that the saliency maps of the adversarially trained neural
network with dual batch norm (SDBN) agreed significantly better
with human expertize than both the adversarially trained models
with a single batch norm (SSBN) and those of the standard model
(SSM): Six radiologists were given the task to rate the mean-
ingfulness of the saliency maps in guiding the radiologist to the
correct pathology on a scale from 0 (no correlation between
pathology/ies and hot spot(s) on saliency map) to 5 (clear and
unambiguous correlation between pathology/ies and hot spot(s)
on saliency map), see Table 1 and Supplementary Table 2. More
precisely, a robust model, as shown in red in Fig. 6a, was able to
detect common thoracic diseases such as cardiomegaly, atelec-
tasis, and pneumonia based on the organ shape and the lung
opacity. While the SDBN pointed more clearly to the areas of
interest that were decisive for diagnosis, the SSN had less focus on
these areas and the SSM was almost completely uncorrelated to
these areas and useless in guiding the radiologist to the correct
conclusions. Similarly, for knee magnetic resonance images
(Fig. 6b), the SDBN showed a more direct correlation with the
pathology than the SSBN, which more often pointed to accom-
panying, but more unspecific phenomena such as joint effusion.
Again, the SSM was almost completely uncorrelated to the ima-
ging pattern of the disease. Finally, for the intrapulmonary
malignancies in CT slices shown in Fig. 6c, the finding that
SDBN, SSBN, and SSM were useful in descending order was again
confirmed with the borders of the malignancy being emphasized
more pronounced in the SDBN.

Interpretability of gradients is closely related to adversarial
training itself and not attributable to a greater number of training
images via augmentation. To demonstrate this, additional models

were trained by augmenting the input training images with
random pixel noise. Supplementary Figure 4, visualizes the loss
gradient of models trained with medium and strong Gaussian
noise augmentation, i.e., σ= 0.01 (1st row) and σ= 0.1 (2nd
row), and another model with adversarial training (last row).
Based on the rating standard in Table 2 of the manuscript, a
radiologist assessed the diagnostic relevance of 100 randomly
selected chest X-rays and their gradient saliencies. The evaluation
scores were 1.14 ± 1.23, 1.35 ± 1.37, and 2.14 ± 1.43 for random
noise augmentation (σ= 0.01 and σ= 0.1) and adversarial
augmentation. Thus we confirmed that the gradients of the loss
with respect to the input pixels were semantically meaningful and
sparse in the adversarial model, whereas the saliency maps from
pixel-noise augmented models were noisy and only loosely
connected to occurring pathologies. The sparsity of the gradients
can be in parts explained if we consider the case of generating δ*

via l∞ bounded fast gradient sign attacks:

δ�∇xLðx; yÞ ¼ ϵ sign ð∇xLðx; yÞÞ∇xLðx; yÞ
¼ ϵjj∇xLðx; yÞjj1:

ð7Þ

Sparser Jacobians in Fig. 6 are obtained via minimizing the loss
term above. Several studies have also demonstrated that the high
interpretability of gradients is due to adversarial training, because
adversarial training leads to confinement of gradients to an image
manifold30,38.

Batch normalization influences learned representations. In the
setting of adversarial training with dual batch norms, original and
perturbed batches are decoupled via passing them through
separate batch norm layers. To understand how the use of these
two batch norms influenced the features learned by the robust
models, we quantified the similarity between the layers within the
respective deep neural network by using the linear centered
kernel alignment (Linear CKA) method39. In Fig. 7a, we visua-
lized the typical representation learned by a model in a standard
training setting, with only one batch norm. We found that a

Fig. 3 More training data and dual batch norms are essential to accurate adversarial training. The classification performance of a standard, an adversarial
(blue column), and an adversarially augmented model (red column)) with respect to different amounts of training data. In accordance with our hypotheses,
the performance of adversarially trained models were boosted both by employing the dual batch norm and by enlarging the training set. In the case of
pneumonia classification, the performance of adversarially trained models was limited and less stable due to an insufficient amount of pneumonia positive
cases in the dataset. Data are presented as mean values +/− SD (standard deviation). Note, n = 10,000 redraws are calculated in the bootstrapping
analysis to get the mean and SD.
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certain degree of correlation between succeeding layers was pre-
sent. However, long-range correlations—i.e., correlations between
layers that were far apart—tended to be relatively weak, indicat-
ing, that the information that was passed on in the network gets
continuously processed. The situation was different however for
the same network architecture when adversarial training with
only one batch norm was used, see Fig. 7b: Long ranging corre-
lations resulted in a block like structure and the first 35 layers
(about 65% of the network) seemed to carry approximately the
same information. Such a high similarity of learned representa-
tions may be part of the reason for the performance degradation
of robust models trained via vanilla adversarial training23,39: it
seems that the networks may not be able to encompass the full
complexity of the dataset after adversarial training. The network
seems to effectively reduce to a simpler—less deep network since

neighboring layers contained similar activations. Using a dual set
of batch norms for the original image samples and the adversarial
image samples seemed to preserve the complexity of the network
when fed with the original samples (Fig. 7c), while at the same
time providing the same transition as in Fig. 7b for the adversarial
samples as indicated by the similarity between the linear CKA
maps of Fig. 7b, d.

Discussion
The purpose of this study was to investigate the applicability and
potential advantages of adversarially robust models in the field of
medical imaging. A limitation of deploying such models in clinics
is a potential performance degradation as compared to con-
ventionally trained models that has been found by other research
groups23. In our experiments shown in Fig. 2, however, we found

Training set
186,027 radiographs
29,276 Cardiomegaly
59,832 Edema
12,670 Consolidation
20,316 Pneumonia
58,012 Atelectasis
19,879 Pneumothorax
84,204 Pleural Effusion

CheXpertdataset
65,240 patients

224,316 frontal view X-ray images

Eligible frontal view X-rays
64,740 patients

191,027 radiographs

Development set
5,000 radiographs
816 Cardiomegaly
1,661 Edema
313 Consolidation
520 Pneumonia
1,571 Atelectasis
522 Pneumothorax
2,273 Pleural Effusion

Internal test set
202 radiographs
66 Cardiomegaly
42 Edema
32 Consolidation
8 Pneumonia
75 Atelectasis
7 Pneumothorax
64 Pleural Effusion

ChestX-ray8 dataset
30,805 patients

112,120 frontal view X-ray images

External test set
22,433 radiographs
582 Cardiomegaly
413 Edema
957 Consolidation
242 Pneumonia
2,420 Atelectasis
1,089 Pneumothorax
2,754 Pleural Effusion

b

a

Fig. 4 Validation of models on an external dataset (ChestX-ray8). a Schematic of the data selection process. b AUC of the standard model (blue) and the
adversarially trained models with (red) and without (green) dual batch norms on an independent test set of 22,433 radiographs from the ChestX-ray8
dataset. Dual batch norm training resulted in better AUC, closely matching the performance of the standard model.
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that this effect appears almost negligible when training the
models on large image data sets and when applying dual-batch
norms, i.e., no significant difference in the AUC was found
between the standard model and the adversarially trained model
with dual batch norms. Furthermore, we have validated that
robust models can generalize well on external datasets by
employing 22,433 X-rays from the ChestX-ray8 dataset, that had
not been part of the training process and originated from a dif-
ferent institution. Most likely, the reason that other groups had
found significant differences between the performance of stan-
dard models and adversarially trained models is the use of a single
batch norm in adversarial training: we consistently found in all
our experiments, that to achieve the best results in adversarial
training, it was necessary to employ separate batch norms for real
and adversarial examples. In agreement with the results of Xie
et al.32 on RGB-images, we found that the use of dual batch
norms can improve training and it allows our adversarially
trained model to achieve state-of-the-art results on pathology
detection.

Not only are adversarially trained models less vulnerable to
adversarial attacks (see Fig. 1), but saliency maps generated by
adversarially trained models provide significantly more infor-
mation to the clinicians than those generated by standard models
and may help to guide them to the right diagnosis. This can also
boost the acceptance of deep learning models in clinical routine.
Deep learning models are often regarded as a black box and not
much trust is put into their opaque decision-making process by
clinicians. By providing the clinician with a meaningful saliency
map as generated by adversarially trained deep neural networks
with dual batch norms, the decision of the neural network can be
made more transparent resulting in a better acceptance by

experts. It should be noted however, that the question of whether
these saliency maps indeed help to increase the endpoints of the
diagnostic process, e.g. clinical reliability and accuracy, is yet an
open research topic and an important subject for future work.

We further investigated a potential reason for the better per-
formance of adversarially trained models with dual batch norms:
while conventional adversarial training seems to reduce the
complexity of the neural network as indicated by the increased
long-range correlations of the linear CKA between layers of the
network (see Fig. 7), the use of dual batch norms preserves
complexity levels of the networks when feeding in real examples,
while simultaneously accommodating for the increased robust-
ness to adversarial examples.

This study is limited by the use of neural networks using two-
dimensional inputs. Medical data in CT, MRI, and positron
emission tomography (PET) is inherently volumetric (3D) or
even volumetric plus time (4D) and it might be expected that
models encompassing such higher dimensional inputs (instead of
a series of two-dimensional slices) can improve upon their per-
formance. More research is needed to train a model with high
dimensional inputs as adversarial training commonly becomes
more difficult in a high-dimensional feature space. If higher-
dimensional models become more widespread and applicable,
future studies should try to reproduce our results in such models.
When applied to ImageNet classification tasks, the authors of32

achieved a top-1 accuracy increase when performing adversarially
augmented training. This finding is not reflected by our study,
which matched, but not increased accuracy of the non-
adversarially trained models. A potential reason for this might
be the difference in dataset size and problem complexity: medical
images are both rarer as a whole and greater in terms of pixel

Fig. 5 Adversarially trained neural network with dual batch norm yields clinically interpretable saliency maps. Figure shows the assessment of
diagnostic relevance in percentage for SSM, SSBN, and SDBN models as evaluated independently by six radiologists. Each color bar reveals percentage of
gradient saliencies with same rating score.

Table 1 Mean ratings of radiologists in guiding the radiologist to the correct pathology.

Dataset Score for SSM Score for SSBN Score for SDBN Friedman test

X-ray 0.57 ± 0.94 2.20 ± 1.33 2.69 ± 1.56 p < 0.001
MRI 0.49 ± 0.74 0.74 ± 1.09 2.17 ± 1.57 p < 0.001
CT 0.47 ± 0.73 2.32 ± 1.72 2.50 ± 1.74 p < 0.001

The scale ranges from 0 (useless) to 5 (saliency map points clearly and unambiguously to the correct pathology). In total 100 images were rated by 6 radiologists for each dataset. One-sided Friedman
tests were used to the p-value. Exact p-values are 1.0 × 10−160, 1.7 × 10−118, and 7.0 × 10−150 for X-ray, MRI, and CT images.
SSM saliency maps of standard models, SSBN saliency maps of adversarially trained models with a single batch norm, SDBN saliency maps of adversarially trained models with dual batch norms.
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numbers individually, making the problem considerably harder.
However, the results of31–33 and our results in the experiments
with reduced data indicate, that accuracy of adversarially trained
models with separate batch norms might surpass the standard
networks if sufficient amount of data is available.

In conclusion, we demonstrated, that adversarially trained
models with a dual batch norm are not only equivalent to stan-
dard models in terms of diagnostic performance but offer addi-
tional advantages in conveying their reasoning through the use of
clinically useful saliency maps and being more robust to adver-
sarial attacks. We encourage fellow research groups to employ
adversarially trained neural networks in their applications and
hope that this will not only lead to more robust and better results

in terms of diagnostic performance, but also increased acceptance
of such algorithms in clinical practice.

Methods
Study datasets. A total number of four medical imaging datasets are used in this
study: the CheXpert dataset, which has been released by Irvin et al. in January 2019
and contains 224,316 chest radiographs of 65,240 patients29. Only 191,027 frontal
radiographs are downloadable for model training. To clean up CheXpert labels, we
assigned pathology labels not mentioned to 0.0. According to the labeling per-
formance comparison29, the uncertainty labels (U) were assigned to 1.0, except for
the consolidation class (to 0.0). For testing, we compare the performance of the
trained models on the official validation set of 202 scans on which the concurrence
of diagnosis from three radiologists serves as ground truth29. Another X-ray dataset
used in this study is the ChestX-ray8 dataset released by the National Institutes of
Health (NIH) in 2017, containing 112,120 frontal radiographs of 30,805 unique

Fig. 6 Saliency maps can help in guiding specialists to the correct diagnosis. Loss gradients were plotted with respect to their input pixels for the X-ray
(a), MRI (b), and CT (c) datasets. No extra preprocessing steps were applied to the loss gradients. Here, blue and red colored pixels denote negative and
positive gradients individually. For comparison, saliency maps of standard and robust models are presented next to the radiological input. In all three
datasets, the SDBN pointed more accurately and more distinctively to the pathology than the SSBN, while the SSM was almost completely uncorrelated
and almost noise-like. It can also be observed that the saliency maps created based on neural networks that have been trained on a very large dataset of
hundreds of thousands of images (a) were more precise in pointing to the pathology, than those trained on datasets containing fewer examples (b and c).
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patients35. We randomly select 20% out of 112,120 radiographs, i.e., 6187 patients
and 22.433 radiographs, to form an external test set. The seven overlapping labels
between the CheXpert and ChestX-ray8 datasets are listed in Supplemtary Table 1.

The MRI dataset used in this study is the kneeMRI dataset, which has been
released by Štajduhar et al.28 in 2017 and contains 917 sagittal proton-density
weighted knee scans from Clinical Hospital Centre Rijeka, Croatia. Three
degrees of anterior cruciate ligament (ACL) injuries were recorded by
radiologists in the Rijeka dataset: namely non-injured (692 scans), partially
injured (172 scans), and completely ruptured (55 scans). Bounding box
annotations of the region of interest (ROI) slices responsible for ACL tear
diagnosis were also provided along with labels. According to ROI labels, we
extracted a total of 3081 diagnostic relevant MRI slices and randomly split them
into 80% training, 10% development, and 10% testing. Lastly, we investigated the
applicability of adversarial training on CT data with the Luna16 dataset
consisting of 888 CT scans with lung cancer ROI annotations27. In total, a
number of 6,691 lung cancer patches were extracted and randomly split into 80%
training, 10% development, and 10% testing.

PGD attack and adversarial training. Following Eq. (1), we let the model para-
meter be denoted as θ, model loss as L and training input&label as (x, y). The
projected gradient descent (PGD) method repeatedly adjusts the model’s inputs x
in the direction of maximizing the loss function, i.e., sign(∇xL(x, y; θ)). To safe-
guard models against adversarial threats, we trained our models against a PGD
adversary via both vanilla and dual batch norm adversarial training. The details of
the adversarial training procedure with separate batch norms are depicted in
algorithm 1. We plot the binary cross-entropy loss projected along two directions,
i.e., the adversarial (ϵ∇xL

) and a random (ϵRad) direction, for samples in CheXpert
test set. The grid size in Supplementary Figs. 2 and 3 is 50 × 50.

Table 2 Rating standard used for evaluating the diagnostic
value of generated saliency maps.

Score Diagnostic Rating

0 No correlation between pathology/ies and hot spot(s) on
saliency map.

1 Highly doubtful low-degree correlation between pathology/ies
and hot spot(s) on saliency map.

2 Doubtful moderate-degree correlation between pathology/ies
and hot spot(s) on saliency map.

3 Definite partial correlation between pathology/ies and hot spot(s)
on saliency map.

4 Definite substantial correlation between pathology/ies and hot
spot(s) on saliency map.

5 Clear and unambiguous correlation between pathology/ies and
hot spot(s) on saliency map.

a

c d

b

Fig. 7 Linear centered kernel alignment (CKA) reveals representations are influenced by batch norms. To explore the learned hidden representations,
the linear CKA between convolutional layers of the models was computed on the CheXpert test set: a model trained with a single batch norm in a
conventional setting with real examples (a), a model trained with a single batch norm with real and adversarial examples (b), and a model trained with a
dual batch norm with real and adversarial examples when the respective CKA was evaluated separately with the batch norm used for real (c) and
adversarial (d) examples. It should be noted that the observed grid pattern in a was due to the residual connections in the ResNet architecture39. When
employing adversarial training with a single batch norm, layers of the network seem to get more similar to each other, as visualized by the block-like
structure arising from the high degree of similar neural activations in (b). This indicates, that the neural network loses complexity due to adversarial
training which might contribute to a loss in performance. When employing a dual batch norm for original and adversarial examples respectively, the
complexity of the network seems to be preserved (note the similarity between a and c), when presented real examples using the first batch norm, while
simultaneously robustness to adversarial examples arises due to the same changes when employing the second batch norm (d) that the network from (b)
underwent (note the similarity between b and d).
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Algorithm 1
Adversarial Training with Separate BNstd and BNadv. We use default values of ϵ =
0.005, α = 0.0025, k = 10, and b = 64
1: Require: Dataset D; A model h with its current parameter θ and loss function L; batch
norm layers for standard inputs BNstd; batch norm layers for adversarial inputs BNadv;
the batch size b; learning rate η.

2: Require: l∞ boundary ϵ; step-size α; number of attack iterations k.
3: Sample a batch of inputs fxðjÞgbj¼1 � D and class labels fyðjÞgbj¼1 � D.
4: for j= 1, ..., b do
5: Sample input x ~ {x}b and label y ~ {x}b

6: x�0 ¼ x
7: for t= 1, ..., k do
8: Input x�t�1 to model
9: x�t  x�t�1 þ α sign ð∇xðx�t�1; y; θÞÞ
10: x�t  clipx;ϵðx�t Þ
11: end for
12: end for
13: fx�gb = fx�kgb
14: Lstd= L({x}b, {y}b; θ, BNstd); Ladv ¼ Lðfx�gb; fygb; θ;BNadvÞ
15: θ θ þ η∇θðLjstd þ LjadvÞ

Model architecture and training. We used ResNet-50 architecture for our
experiments in this study. For all classification tasks, an Adam optimizer with
default β1 = 0.9, β2 = 0.99, and ϵ = 1e−840 was used to optimize the loss. In a total
number of 300 training epochs, We decayed the initial learning rate 0.01 by a factor
of 10 once the number of epochs reached 100 epochs. All classifier models utilized
development-based early stopping with sigmoid binary cross-entropy loss as the
criterion.

Medical images from CheXpert, ChestX-ray8, and kneeMRI were scaled to a fixed
resolution of 256 × 256 pixels whereas tumor patches extracted from Luna16 ROI
slices were scaled to 64 × 64 pixels. During training, random color transformations
such as adjusting contrast, brightness, saturation, and hue factor were applied to each
training image. In addition, we also performed spatial affine and random cropping
augmentations before normalizing each input to the range of 0 to 1.

All computations were performed on a GPU cluster equipped with two Intel
Xeon(R) Silver 4208 processor (Intel, Santa Clara, Calif) and three Nvidia Titan
RTX 24 GB GPUs (Nvidia, Santa Clara, Calif). When not otherwise specified, code
implementations were in-house developments based on python 3.6.5 (https://www.
python.org) and on the software modules Numpy 1.16.0, Scipy 1.21.0, and
Pytorch 1.1.0.

Model interpretation. To reveal the connection between input features (pixels)
and the model’s final predictions, we back-propagate the loss gradients with respect
to their input pixels. For all generated gradients, we simply clipped their values to
the range of ±3 × standard deviation around their mean value and normalized
them to [−1, 1]23.

To investigate the interaction between learned representations in the deep
neural networks and their batch norm layers, we quantified representation
similarity via the linear centered kernel alignment (linear CKA). For a given input
and a model, a linear CKA is defined as:

CKAðX;YÞ ¼ jjYTXjj2F
ðjjXTXjjFjjYTYjjFÞ

; ð8Þ

where X and Y correspond to a centered Gram matrix of layer activations. In Fig. 7,
we computed the linear CKA matrix across all 202 radiographs from the internal
CheXpert test set.

Feature evaluation by radiologists. To evaluate the clinical utility of the gener-
ated saliency maps for the three models (standard model, adversarially trained
model with a single batch norm, and adversarially trained model with the dual
batch norm), we randomly chose 100 images from each of the three datasets used
in this study (in total 300 images) and let six radiologists assess how useful the map
was in guiding a radiologist to the correct diagnosis. We used a scale from zero,
signifying no correlation between the pathology and the saliency map, to five,
signifying a map that points clearly and unambiguously to the correct pathology—
or pathologies if multiple pathologies were present in the image, see Table 2. All
readers performed the task independently of each other.

Statistical analysis. For each of the experiments, we calculated the following
parameters on the test set: area under the curve (AUC) for the receiver operator
characteristic (ROC), sensitivity, and specificity. The cutoff value for deciding
between the presence or non-presence of a pathology was determined by mini-
mizing (1− sensitivity)2+ (1− specificity)2 41. To assess errors due to sampling of
the specific test set and estimate the confidence intervals we employed bootstrap
analysis with 10,000 redraws. The difference in metrics, such as AUC, sensitivity,
and specificity, was defined as a Δmetric. For the total number of N = 1000
bootstrapping, models were built after randomly permuting predictions of two
classifiers, and metric’s differences Δmetrici were computed from their respective

scores. We obtained the p value of individual metrics by counting all Δmetrici
above the threshold Δmetric. Statistical significance was defined as P < 0.001. To
determine if differences were significant in the reader studies we employed the
Friedman test to test for the presence of differences within the three groups. If the
Friedman test was significant we tested for pairwise differences (i.e. SSM vs. SSBN,
SSM vs. SDBN, and SSBN vs. SDBN) employing the Wilcoxon signed-rank test.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The two X-ray datasets used in this study are available in the NIH ChestX-ray8 database
and Stanford CheXpert database under accession code https://nihcc.app.box.com/v/
ChestXray-NIHCC and https://stanfordmlgroup.github.io/competitions/chexpert. The
MRI and CT datasets are available in Rijeka knee MRI database and LUNA16 database
under accession code http://www.riteh.uniri.hr/ĩstajduh/projects/kneeMRI/ and https://
luna16.grand-challenge.org/Data/. In addition, we use the publicly available MNIST
dataset http://yann.lecun.com/exdb/mnist/ for experiments in the Supplementary
section. All data needed to evaluate the findings in the paper are presented in the paper
and/or the supplementary material. Additional data related to this paper such as the
detailed reader test data maybe requested from the authors.

Code availability
Details of the implementation, as well as the full code producing the results of this paper,
are made publicly available under https://github.com/peterhan91/Medical-Robust-
Training and via Zenodo (https://doi.org/10.5281/zenodo.4926118).
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