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Abstract

IMPORTANCE The efficient and accurate interpretation of radiologic images is paramount.

OBJECTIVE To evaluate whether a deep learning–based artificial intelligence (AI) engine used
concurrently can improve reader performance and efficiency in interpreting chest radiograph
abnormalities.

DESIGN, SETTING, AND PARTICIPANTS This multicenter cohort study was conducted from April
to November 2021 and involved radiologists, including attending radiologists, thoracic radiology
fellows, and residents, who independently participated in 2 observer performance test sessions. The
sessions included a reading session with AI and a session without AI, in a randomized crossover
manner with a 4-week washout period in between. The AI produced a heat map and the image-level
probability of the presence of the referrable lesion. The data used were collected at 2 quaternary
academic hospitals in Boston, Massachusetts: Beth Israel Deaconess Medical Center (The Medical
Information Mart for Intensive Care Chest X-Ray [MIMIC-CXR]) and Massachusetts General
Hospital (MGH).

MAIN OUTCOMES AND MEASURES The ground truths for the labels were created via consensual
reading by 2 thoracic radiologists. Each reader documented their findings in a customized report
template, in which the 4 target chest radiograph findings and the reader confidence of the presence
of each finding was recorded. The time taken for reporting each chest radiograph was also recorded.
Sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) were
calculated for each target finding.

RESULTS A total of 6 radiologists (2 attending radiologists, 2 thoracic radiology fellows, and 2
residents) participated in the study. The study involved a total of 497 frontal chest radiographs—247
from the MIMIC-CXR data set (demographic data for patients were not available) and 250 chest
radiographs from MGH (mean [SD] age, 63 [16] years; 133 men [53.2%])—from adult patients with
and without 4 target findings (pneumonia, nodule, pneumothorax, and pleural effusion). The target
findings were found in 351 of 497 chest radiographs. The AI was associated with higher sensitivity
for all findings compared with the readers (nodule, 0.816 [95% CI, 0.732-0.882] vs 0.567 [95% CI,
0.524-0.611]; pneumonia, 0.887 [95% CI, 0.834-0.928] vs 0.673 [95% CI, 0.632-0.714]; pleural
effusion, 0.872 [95% CI, 0.808-0.921] vs 0.889 [95% CI, 0.862-0.917]; pneumothorax, 0.988 [95%
CI, 0.932-1.000] vs 0.792 [95% CI, 0.756-0.827]). AI-aided interpretation was associated with
significantly improved reader sensitivities for all target findings, without negative impacts on the
specificity. Overall, the AUROCs of readers improved for all 4 target findings, with significant
improvements in detection of pneumothorax and nodule. The reporting time with AI was 10% lower
than without AI (40.8 vs 36.9 seconds; difference, 3.9 seconds; 95% CI, 2.9-5.2 seconds; P < .001).
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Abstract (continued)

CONCLUSIONS AND RELEVANCE These findings suggest that AI-aided interpretation was
associated with improved reader performance and efficiency for identifying major thoracic findings
on a chest radiograph.
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Introduction

Chest radiography is the most common imaging modality in the world for its portability, low cost, and
accessibility.1,2 It provides valuable information in detecting thoracic diseases and aiding with clinical
decisions in managing them. Despite the abundance of test numbers, chest radiograph
interpretation and reporting is an inherently difficult and subjective task, with previous research
showing low to moderate interreader agreement in the final radiology report.3-9 Furthermore, timely
reporting of chest radiographs has been an issue in both developing and developed countries
because of the shortage of qualified readers.10,11 Accurate and efficient reading of chest radiographs
is an important clinical target, especially in detecting clinically critical or urgent findings such as
pneumothorax.12

Thus, there has been an increasing interest, with the rise of deep learning and artificial
intelligence (AI) applications in medical imaging, to create chest radiograph AI algorithms that can
help clinicians to accurately and efficiently detect key radiographic findings.13,14 Research shows that
AI algorithms can improve the performance of readers when used in a concurrent manner.15-19

However, there are concerns about what the impact of AI would be in the real world, given that most
research was conducted in a simulated setting without an observer performance tool that mimics
the real-world workflow.

There is also a lack of evidence on the impact of AI in the reader efficiency, especially in terms of
time taken for readers to complete their reports.20 With previous computer-aided detection
technology, such as in mammography, prior studies21,22 reported workflow impediment due to the
low specificity, which resulted in a high number of false positives. The concerns about AI reducing the
reader efficiency are especially high for chest radiographs because of the sheer volume of chest
radiographs in hospital settings, low reimbursement, and short reporting times for the experienced
radiologists.23,24 Therefore, for the wide adoption of AI algorithms in chest radiograph interpretation
and reporting, it is crucial to show that there is no impedance in terms of accuracies and time taken
to complete reporting with AI-assisted interpretation.

In this study, we explored the impact of AI on reader performance, both in terms of accuracy
and efficiency. We have reflected the real-world environment by creating a custom version of the
observer performance test platform that incorporates report templates and measures the time taken
for readers to complete the interpretation and reporting task.

Methods

Data Sources and Approvals
The study used data from 2 sources. The first is the publicly available Medical Information Mart for
Intensive Care–Chest X-Ray (MIMIC-CXR) database version 2.0.0, which is a large data set of chest
radiographs from Beth Israel Deaconess Medical Center, Boston, Massachusetts. The second source
of chest radiographs was another quaternary hospital (Massachusetts General Hospital [MGH],
Boston, Massachusetts). This retrospective cohort study was approved by the institutional review
board of MGH, which waived the need for informed consent because of the retrospective nature of
the data collection and the use of anonymized images. The study met the requirements of the Health
Insurance Portability and Accountability Act guidelines. This manuscript follows the Strengthening
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the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines for
observational studies.

Data Collection
The inclusion criteria for chest radiographs were adult patients regardless of gender, availability of
frontal chest radiograph, and the presence of 1 or more of the 4 radiographic findings: pneumonia,
lung nodule, pneumothorax, and pleural effusion. Because of high interobserver variation and
subjectivity in evaluation of pulmonary nodules from chest radiographs,25 only nodules larger than 6
mm in mean dimension on chest radiographs and with persistence on either follow-up or prior chest
radiographs or a recent chest computed tomography image (within 3 months) were included in the
study. We included only 1 chest radiograph per patient and excluded repeated or follow-up chest
radiographs from the same patient. Repeated or follow-up chest radiographs from the same patient
were excluded. Chest radiographs with incomplete inclusion of the entire chest or the presence of
artifacts were also excluded. To avoid bias per STROBE guidelines, we chose consecutive chest
radiographs with and without the 4 target findings. Both upright and portable chest radiographs
were included in the cohort to ensure generalizability across radiographic techniques.

To identify the eligible cases, we reviewed the radiology reports of MIMIC-CXR data sets. For the
MGH data sets, we used a proprietary radiology reports search engine, Render, with the keywords
of nodule, pneumothorax, pleural effusion, and pneumonia. We also included 105 chest radiographs
without any findings (normal radiographs) over the same time frame as those chest radiographs with
the target findings.

AI Algorithm
A commercially available AI algorithm (Lunit INSIGHT CXR, version 3.1.2.0; Lunit Inc) was used to
process the chest radiograph images. See the eAppendix in the Supplement for more details.

Ground Truth Creation
Two fellowship-trained thoracic radiologists (S.R.D. with 16 years of experience and M.K.K. with 14
years of experience) reviewed all chest radiographs and independently documented the presence of
the radiographic findings. The target findings included pulmonary nodule, pneumothorax, pleural
effusion, and pneumonia (including both the classic pattern of focal or multifocal consolidation and
atypical pneumonia). In addition, because the presence of distracting or nontarget findings can
influence the performance of both human readers and AI algorithms, we included nontarget findings
such as enlarged cardiac silhouette, bone fractures, pleural thickening, atelectasis, and pericardial
calcifications. The ground truths were created for both groups of findings to reflect the clinical
reporting as much as possible. The reporting template used in the reading session has been created
to match this (eFigure 1 in the Supplement).

The 2 radiologists specified the locations of each finding in different lung zones (upper, middle,
and lower zones) in each lung. Any differences between the 2 ground-truthers were resolved in a
joint review session to arrive at consensus.

Observer Performance Test Tool
We used a customized version of an online observer performance test tool (BestImage, version 6.0.0;
IRM) for the reader study. The tool mimics the real-world picture archiving and communication
system (PACS) and has several basic PACS viewer functionalities, such as window width and level
adjustments, rotation, zooming, panning, and measurement features. In addition, the tool enables
recording of radiographic findings and reporting time.

The tool enables users to report each chest radiograph using a multiple-choice question report
template (eFigure 1 in the Supplement). When pneumothorax and pleural effusions were present,
each reader selected the laterality of these findings (right, left, or bilateral). For lung nodules and
pneumonia, each reader selected 1 or more lung zones for location of these findings: right upper,
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right mid, right lower, left upper, left mid, and left lower zone. For each of the 4 target radiographic
findings (pleural effusion, pneumonia, pneumothorax, and nodule), each reader also recorded a
confidence score ranging from 0% to 100%, on a 6-point Likert scale (0%, 1%-20%, 21%-40%,
41%-60%, 61%-80%, or 81%-100%). This represented the confidence of readers regarding the
presence or the absence of lesions. In addition, the readers were also asked to comment on the other
(nontarget findings) commonly found chest radiograph findings. This was done to ensure that the
reading session reflected the real-life reporting as much as possible, such that performance and
efficiency could be measured in a clinically relevant manner. Once a report was submitted, the
readers could not make any further changes, thus reflecting the real-life reporting.

The tool also enabled worklist prioritization based on the AI score, at the user’s discretion, which
was designed to mimic the real-world PACS and worklist management. The physical server to run the
tool was situated in the US to minimize the delay on the web interface. The screenshots of the reader
study tool are presented in eFigure 2 in the Supplement. The reporting time was defined as the time
from loading the chest radiographs to clicking the submit button on the report form.

Observer Performance Test
Six radiologists, including 2 thoracic radiologists (V.M. with 25 years of experience and S.M. with 15
years of experience), 2 thoracic imaging fellows (E.W.Z. and M.Y.W. with 6-8 months training as
thoracic imaging fellows), and 2 second-year radiology residents (L.N. and J.F.D.), from MGH
participated in the study as independent and blinded test readers. No radiologists involved in the
ground truth creation participated as readers. The radiologists were blinded to the information
pertaining to ground truthing, case selection, AI vendor, and specifics of study hypothesis. Before
each review session, all radiologists reviewed 10 separate chest radiographs, which were not part of
the analyzed data, as the training set, to enable user familiarization with the multiple-choice question
report form and the observer performance tool.

The reader study was conducted between April and November 2021, with half of the readers
interpreting chest radiographs with AI outputs and the other half reporting the chest radiographs
without AI aid. Figure 1 illustrates the different display modes of AI output. To avoid complications
associated with mixed interpretation of alternate chest radiographs with and without AI outputs, we
did not randomize the chest radiographs with and without AI outputs to any of the 6 readers. Each
interpretation session, however, had a consecutive set of chest radiographs without AI output and a
separate set of chest radiographs with AI output. Once the first session was complete, there was at
least a 4-week washout before starting the second session. For the AI-aided session, each reader was
able to review the original, unannotated chest radiograph and toggle the chest radiograph to view
the AI output overlay.

Statistical Analysis
All statistical analyses were performed with R statistical software version 3.6.2 (R Project for
Statistical Computing). We estimated the area under the receiver operating characteristic curve
(AUROC) of AI stand-alone performance and the reader performance with and without AI outputs.
The AUROCs were compared using the DeLong test. Since the purpose of our study was to note the
finding level performance with AI, all analyses were performed on individual findings (ie, data
measures included >1 data point for some chest radiographs with multiple findings of similar or
different types). Sensitivity and specificity comparison between AI-aided and unaided interpretation
was performed with generalized estimated equations. For the observer performance test, the
sensitivity and the specificity of readers between 2 sessions were compared using McNemar test. To
estimate sensitivity and specificity, we considered any finding with greater than 0% score as a
predicted finding. The Kolmogorov-Smirnov test was used to test the normal distribution of data on
the reporting times. For nonnormal distribution, we estimated median and IQR of values.

Reporting times for each chest radiograph were compared between 2 sessions using the paired
t test. We excluded interpretation times for cases requiring more than 3 minutes (2-fold higher than
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the median times). These resulted from errors related to failure on part of the readers to click the
submit button or failure to log off from the interpretation tool at the end of an interpretation session.
These errors were realized upon statistical analysis of the data. For all tests, 2-sided P < .05 was
considered as significant.

Results

The study included a total of 497 frontal chest radiographs (both portable anteroposterior and erect
posteroanterior projections). The first 247 chest radiographs were randomly selected from the
MIMIC-CXR data set26 (patients’ demographic data were unavailable), and the other 250 chest
radiographs were from MGH (mean [SD] age, 63 [16] years; 133 men [53.2%] and 117 women
[46.8%]). To simulate reporting volume in our hospital, we chose the number of chest radiographs
to represent the approximate number of chest radiographs that individual radiologists report over 2
full days.

The final distribution of each of the target finding in 351 abnormal chest radiographs was as
follows: 114 lung nodules, 195 pneumonia, 149 pleural effusion, and 80 pneumothorax. A total of 146

Figure 1. Different Display Modes Available for the Artificial Intelligence Output

Full-color heat mapA Gray-scale contour mapB

Combined mapC Single-color mapD

Shown are the color heat map (A), grayscale contour
map (B), combined map (C), and single-color map (D).
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chest radiographs had no abnormal target radiographic findings. The full distribution of the findings
can be found in Table 1.

AI Stand-alone Performance
From the stand-alone performance perspective, AI identified the 4 target chest radiograph findings
with sensitivities of 0.816 to 0.988 and specificities of 0.728 to 0.986. The highest sensitivity and
specificity were calculated for pneumothorax detection (sensitivity, 0.988; specificity, 0.986;
AUROC, 0.999 [95% CI, 0.997-1.00]). Figure 2 summarizes the AUROC of a deep-learning algorithm
for each target findings and comparison against the reader performance. The lowest diagnostic
accuracy was calculated for lung nodule detection (sensitivity, 0.816; specificity, 0.731; AUROC,
0.858 [95% CI, 0.819-0.897]). AI stand-alone performance for detecting the 4 target findings is
summarized in Table 2.

Compared with the ground-truth, on a stand-alone basis, AI was associated with detection rates
of 82.5% for lung nodules (94 of 114 findings), 88.7% for pneumonia (173 of 195 findings), 87.2% for
pleural effusions (130 of 149 findings), and 100.0% for pneumothoraces (80 of 80 findings). There
was no significant overall AUROC difference in the AI stand-alone performance in chest radiographs
with and without nontarget findings (0.955 [95% CI, 0.933-0.976] vs 0.898 [95% CI, 0.838-0.958];
P = .08) (Table 3).

Readers’ Performance
The Cohen κ statistic for the 2 ground truth radiologists before the consensus reading was 0.794 for
the target findings. For all 4 target radiographic findings, AI-assisted interpretation was associated
with a significant improvement in the sensitivities compared with unassisted reporting (without vs
with AI: nodule, 0.567 [95% CI, 0.524-0.611] vs 0.629 [95% CI, 0.586-0.671]; pneumonia, 0.673
[95% CI, 0.632-0.714] vs 0.719 [95% CI, 0.679-0.758]; pleural effusion, 0.889 [95% CI, 0.862-0.917]

Table 1. Distribution of the Findings

Findings Total, No. (%)
Origin of chest radiographs (n = 497)

Massachusetts General Hospital 250 (50.3)

The Medical Information Mart for Intensive Care 247 (49.7)

Target findings (n = 538)

Nodule 114 (21.2)

Pleural effusion 149 (27.7)

Pneumonia 195 (36.2)

Pneumothorax 80 (14.9)

Nontarget findings (n = 193)

Extra pleural 7 (3.6)

Extra thoracic 181 (93.8)

Bone fractures 5 (2.6)

Target findings on chest radiographs (n = 497)

0 146 (29.4)

1 198 (39.8)

2 120 (24.2)

3 32 (6.4)

4 1 (0.2)

Chest radiographs with findings (target and nontarget)
(n = 497)

0 105 (21.1)

1 174 (35.1)

2 108 (21.7)

≥3 110 (22.1)
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vs 0.895 [95% CI, 0.868-0.922]; pneumothorax, 0.792 [95% CI, 0.756-0.827] vs 0.965 [95% CI,
0.949-0.981]; P < .001). However, there was no change in specificities of individual test radiologists
between AI-assisted and unassisted interpretation (without vs with AI: nodule, 0.885 [95% CI,
0.858-0.913] vs 0.881 [95% CI, 0.852-0.929]; pneumonia, 0.862 [95% CI, 0.832-0.892] vs 0.832
[95% CI, 0.799-0.865]; pleural effusion, 0.928 [95% CI, 0.906-0.951] vs 0.937 [95% CI,
0.916-0.959]; pneumothorax, 0.988 [95% CI, 0.978-0.997] vs 0.986 [95% CI, 0.976-0.996];
P = .07). Compared with the AI stand-alone performance, human readers had lower sensitivity both
with and without AI assistance (AI stand-alone vs human without AI vs human with AI: nodule, 0.816
[95% CI, 0.732-0.882] vs 0.567 [95% CI, 0.524-0.611] vs 0.629 [95% CI, 0.586-0.671]; pneumonia,
0.887 [95% CI, 0.834-0.928] vs 0.673 [95% CI, 0.632-0.714] vs 0.719 [95% CI, 0.679-0.758]; pleural
effusion, 0.872 [95% CI, 0.808-0.921] vs 0.889 [95% CI, 0.862-0.917] vs 0.895 [95% CI,
0.868-0.922]; pneumothorax, 0.988 [95% CI, 0.932-1.000] vs 0.792 [95% CI, 0.756-0.827] vs
0.965 [95% CI, 0.949-0.981]). Table 2 summarizes the mean performance changes for all readers.

Figure 2. Receiver Operating Characteristic Curves of a Deep-Learning Artificial Intelligence (AI) Algorithm for the Target Findings and Comparison Against
the Reader Performance
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The individual reader performance in the cohort study is summarized in Table 2. The sensitivity
was higher for all readers with different levels of experience for detection of pneumothorax with
AI-assisted interpretation compared with unaided readout (without vs with AI: attending radiologist
1, 0.975 [95% CI, 0.913-0.997] vs 1.000 [95% CI, 0.955-1.000]; attending radiologist 2, 0.812 [95%
CI, 0.71-0.891] vs 0.975 [95% CI, 0.913-0.997]; fellow 1, 0.713 [95% CI, 0.600-0.808] vs 0.950
[95% CI, 0.877-0.986]; fellow 2, 0.775 [95% CI, 0.668-0.861] vs 0.983 [95% CI, 0.860-0.979];

Table 2. Sensitivity, Specificity, and AUROC of Individual Readers

Findings and
readers

Sensitivity (95% CI) Specificity (95% CI) AUROC (95% CI)

Without AI With AI Without AI With AI Without AI With AI
Nodules

AI NA 0.816 (0.732-0.882) NA 0.731 (0.684-0.775) NA 0.858 (0.819-0.897)

Attending
radiologist 1

0.746 (0.656-0.823) 0.765 (0.674-0.838) 0.859 (0.820-0.892) 0.846 (0.806-0.881) 0.799 (0.748-0.850) 0.801 (0.751-0.851)

Attending
radiologist 2

0.518 (0.422-0.612) 0.486 (0.396-0.587) 0.898 (0.863-0.927) 0.958 (0.933-0.976)a 0.706 (0.645-0.766) 0.723 (0.662-0.784)

Fellow 1 0.456 (0.363-0.552) 0.640 (0.545-0.728)a 0.945 (0.917-0.966) 0.851 (0.812-0.885)a 0.699 (0.637-0.760) 0.773 (0.687-0.799)a

Fellow 2 0.482 (0.388-0.578) 0.632 (0.536-0.72)a 0.909 (0.875-0.936) 0.919 (0.887-0.944) 0.639 (0.632-0.755) 0.773 (0.716-0.829)

Resident 1 0.640 (0.545-0.728) 0.553 (0.457-0.646) 0.880 (0.843-0.911) 0.898 (0.863-0.927) 0.757 (0.701-0.814) 0.723 (0.664-0.782)

Resident 2 0.561 (0.465-0.654) 0.693 (0.600-0.776)a 0.822 (0.780-0.859) 0.812 (0.769-0.85) 0.689 (0.630-0.749) 0.749 (0.695-0.804)a

Meanb 0.567 (0.524-0.611) 0.629 (0.586-0.671)a 0.885 (0.858-0.913) 0.881 (0.852-0.909)a 0.724 (0.700-0.748) 0.752 (0.729-0.775)

Pneumonia

AI NA 0.887 (0.834-0.928) NA 0.728 (0.675-0.778) NA 0.880 (0.849-0.911)

Attending
radiologist 1

0.785 (0.720-0.84) 0.662 (0.590-0.728)a 0.864 (0.820-0.901) 0.904 (0.865-0.935) 0.825 (0.784-0.765) 0.783 (0.738-0.828)a

Attending
radiologist 2

0.646 (0.575-0.713) 0.662 (0.590-0.728) 0.838 (0.791-0.877) 0.877 (0.835-0.912) 0.742 (0.696-0.789) 0.770 (0.724-0.815)

Fellow 1 0.728 (0.660-0.789) 0.856 (0.799-0.902)a 0.861 (0.817-0.898) 0.705 (0.650-0.756)a 0.795 (0.752-0.938) 0.783 (0.741-0.825)

Fellow 2 0.467 (0.395-0.539) 0.641 (0.569-0.708)a 0.947 (0.915-0.969) 0.877 (0.835-0.912)a 0.707 (0.657-0.757) 0.759 (0.713-0.805)a

Resident 1 0.703 (0.633-0.766) 0.713 (0.644-0.775) 0.825 (0.777-0.866) 0.838 (0.791-0.877) 0.764 (0.719-0.809) 0.776 (0.731-0.820)

Resident 2 0.708 (0.638-0.770) 0.779 (0.715-0.836) 0.838 (0.791-0.877) 0.791 (0.741-0.836) 0.773 (0.728-0.817) 0.786 (0.743-0.829)

Meanb 0.673 (0.632-0.714) 0.719 (0.679-0.758)a 0.862 (0.832-0.892) 0.832 (0.799-0.865)a 0.768 (0.749-0.786) 0.776 (0.758-0.794)

Pleural effusion

AI NA 0.872 (0.808-0.921) NA 0.960 (0.933-0.978) NA 0.983 (0.974-0.992)

Attending
radiologist 1

0.906 (0.847-0.948) 0.953 (0.906-0.981) 0.954 (0.926-0.973) 0.931 (0.899-0.955) 0.930 (0.900-0.960) 0.942 (0.917-0.967)

Attending
radiologist 2

0.933 (0.880-0.967) 0.913 (0.855-0.953) 0.899 (0.863-0.929) 0.928 (0.896-0.953) 0.916 (0.887-0.946) 0.921 (0.890-0.951)

Fellow 1 0.906 (0.847-0.948) 0.953 (0.906-0.981) 0.885 (0.847-0.917) 0.885 (0.847-0.917) 0.896 (0.862-0.929) 0.916 (0.887-0.945)

Fellow 2 0.872 (0.808-0.921) 0.893 (0.831-0.937) 0.948 (0.919-0.969) 0.943 (0.913-0.965) 0.910 (0.876-0.944) 0.918 (0.886-0.950)

Resident 1 0.846 (0.777-0.900) 0.799 (0.725-0.860) 0.954 (0.926-0.973) 0.977 (0.955-0.990) 0.900 (0.864-0.936) 0.888 (0.848-0.927)

Resident 2 0.872 (0.808-0.921) 0.859 (0.793-0.911) 0.931 (0.899-0.955) 0.960 (0.933-0.978) 0.903 (0.869-0.938) 0.909 (0.875-0.944)

Meanb 0.889 (0.862-0.917) 0.895 (0.868-0.922)a 0.928 (0.906-0.951) 0.937 (0.916-0.959)a 0.909 (0.896-0.923) 0.916 (0.902-0.929)

Pneumothorax

AI NA 0.988 (0.932-1.000) NA 0.986 (0.969-0.995) NA 0.999 (0.997-1.000)

Attending
radiologist 1

0.975 (0.913-0.997) 1.000 (0.955-1.000)a 0.990 (0.976-0.997) 0.981 (0.963-0.992) 0.977 (0.952-1.000) 0.984 (0.968-1.000)

Attending
radiologist 2

0.812 (0.710-0.891) 0.975 (0.913-0.997)a 0.983 (0.966-0.993) 0.990 (0.976-0.997) 0.893 (0.841-0.945) 0.977 (0.952-1.000)a

Fellow 1 0.713 (0.600-0.808) 0.950 (0.877-0.986)a 0.995 (0.983-0.999) 0.990 (0.976-0.997) 0.849 (0.788-0.910) 0.958 (0.924-0.992)a

Fellow 2 0.775 (0.668-0.861) 0.938 (0.860-0.979)a 0.993 (0.979-0.999) 0.990 (0.976-0.997) 0.879 (0.823-0.935) 0.958 (0.924-0.992)a

Resident 1 0.787 (0.682-0.871) 0.963 (0.894-0.992)a 0.988 (0.972-0.996) 0.978 (0.959-0.99) 0.883 (0.828-0.937) 0.965 (0.936-0.993)a

Resident 2 0.688 (0.574-0.787) 0.963 (0.894-0.992)a 0.978 (0.959-0.99) 0.988 (0.972-0.996) 0.829 (0.766-0.891) 0.969 (0.940-0.997)a

Meanb 0.792 (0.756-0.827) 0.965 (0.949-0.981)a 0.988 (0.978-0.997) 0.986 (0.976-0.996)a 0.885 (0.863-0.907) 0.969 (0.957-0.980)a

Abbreviations: AI, artificial intelligence; AUROC, area under the receiver operating
characteristic curve; NA, not applicable.
a Denotes metrics with statistically significant differences between the AUROCs,

sensitivities, and specificities with and without AI (P < .05).

b The mean values represent mean reader performance and do not include stand-alone
AI performance.
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resident 1, 0.787 [95% CI, 0.682-0.871] vs 0.963 [95% CI, 0.894-0.992]; resident 2, 0.688 [95% CI,
0.574-0.787] vs 0.963 [95% CI, 0.894-0.992]; P = .009). The 2 thoracic imaging fellows reported
pneumonia with significantly higher sensitivity with AI assistance (without vs with AI: fellow 1, 0.728
[95% CI, 0.660-0.789] vs 0.856 [95% CI, 0.799-0.902]; fellow 2, 0.467 [95% CI, 0.395-0.539] vs
0.641 [95% CI, 0.569-0.708]; P < .001). For lung nodule detection, 2 fellows and 1 resident
witnessed higher sensitivity with AI compared with interpretation without AI (without vs with AI:
fellow 1, 0.456 [95% CI, 0.363-0.552] vs 0.640 [95% CI, 0.545-0.728]; fellow 2, 0.482 [95% CI,
0.388-0.578] vs 0.632 [95% CI, 0.536-0.72]; resident 2, 0.561 [95% CI, 0.465-0.654] vs 0.693
[95% CI, 0.60-0.720]; P = .02) (Table 2).

The association of target and nontarget findings with reader performance was variable, as seen
in eTable 1 in the Supplement. The sensitivity was higher for pneumonia (without vs with nontarget
findings: without AI, 0.727 [95% CI, 0.676-0.778] vs 0.609 [95% CI, 0.542-0.677]; with AI, 0.775
[95% CI, 0.727-0.822] vs 0.654 [95% CI, 0.588-0.720]; P < .001), nodules (without vs with
nontarget findings: without AI, 0.598 [95% CI, 0.542-0.653] vs 0.519 [95% CI, 0.450-0.588]; with
AI, 0.674 [95% CI, 0.621-0.727] vs 0.557 [95% CI, 0.488-0.626]; P < .001), and pneumothorax
(without vs with nontarget findings: without AI, 0.820 [95% CI, 0.777-0.864] vs 0.766 [95% CI,
0.707-0.825]; with AI, 0.965 [95% CI, 0.944-0.986] vs 0.964 [95% CI, 0.938-0.990]; P < .001)
detection by the readers, when there were no nontarget findings present. Similarly, the specificity
was higher for pneumonia (without vs with nontarget findings: without AI, 0.922 [95% CI, 0.892-
0.952] vs 0.757 [95% CI, 0.698-0.817]; with AI, 0.893 [95% CI, 0.858-0.928] vs 0.726 [95% CI,
0.664-0.788]; P < .001), pleural effusion (without vs with nontarget findings: without AI, 0.953
[95% CI, 0.929-0.977] vs 0.870 [95% CI, 0.823-0.916]; with AI, 0.962 [95% CI, 0.940-0.984] vs
0.878 [95% CI, 0.832-0.923]; P < .001), and pneumothorax (without vs with nontarget findings:
without AI, 0.994 [95% CI, 0.984-1.000] vs 0.979 [95% CI, 0.959-0.999]; with AI, 0.994 [95% CI,
0.984-1.000] vs 0.974 [95% CI, 0.956-0.991]; P < .001), when there were nontarget findings
present. These findings can be found in eTable 1 in the Supplement.

Compared with the ground truth, without AI aid, radiologists detected 45.6% (52 of 114
findings) to 73.7% (84 of 114 findings) of lung nodules, 46.7% (91 of 195 findings) to 78.5% (153 of

Table 3. Summary of Artificial Intelligence Stand-alone Performance for Detection of the 4 Target Findings
in Chest Radiographs With and Without Nontarget Findings

Target findings
Detected
findings, No. AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI)

Nodule

Without extra findings 70 0.870 (0.823-0.918) 0.829 (0.720-0.908) 0.740 (0.678-0.796)

With extra findings 44 0.842 (0.778-0.906) 0.795 (0.647-0.902) 0.718 (0.640-0.787)

P value NA .49 .66 .63

Pneumonia

Without extra findings 105 0.931 (0.899-0.963) 0.895 (0.820-0.947) 0.854 (0.796-0.901)

With extra findings 90 0.777 (0.712-0.841) 0.878 (0.792-0.937) 0.509 (0.412-0.606)

P value NA <.001 .70 <.001

Pleural effusion

Without extra findings 50 0.985 (0.971-0.999) 0.860 (0.733-0.942) 0.980 (0.953-0.993)

With extra findings 99 0.975 (0.958-0.991) 0.879 (0.798-0.936) 0.911 (0.838-0.958)

P value NA .34 .75 .003

Pneumothorax

Without extra findings 38 0.999 (0.997-1.000) 0.974 (0.862-0.999) 0.996 (0.979-1.000)

With extra findings 42 0.999 (0.997-1.000) 1.000 (0.916-1.000) 0.968 (0.928-0.990)

P value NA .93 .29 .02

Total

Without extra findings 297 0.955 (0.933-0.976) 0.917 (0.868-0.952) 0.857 (0.775-0.918)

With extra findings 200 0.898 (0.838-0.958) 0.969 (0.928-0.99) 0.585 (0.421-0.737)

P value NA .08 .04 <.001
Abbreviations: AUROC, area under the receiver
operating characteristic curve; NA, not applicable.
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195 findings) of cases of pneumonia, 84.6% (126 of 149 findings) to 93.3% (139 of 149 findings) of
pleural effusions, and 68.8% (55 of 80 findings) to 98.8% (79 of 80 findings) of pneumothoraces.
With the AI aid, radiologists detected 49.1% (56 of 114 findings) to 77.2% (88 of 114 findings) of lung
nodules, 64.1% (125 of 195 findings) to 85.6% (167 of 195 findings) of cases of pneumonia, 79.9%
(119 of 149 findings) to 95.3% (142 of 149 findings) of pleural effusions, and 95.0% (76 of 80
findings) to 100.0% (80 of 80 findings) of pneumothoraces.

The range (minimum to maximum number of findings for individual readers) of additional or
distracting findings beyond the 4 target chest radiograph findings detected by the readers included
atelectasis (96-348 findings), pulmonary edema (42-116 findings), fibrosis (0-12 findings), pleural
calcification (0-23 findings), pleural thickening (2-63 findings), and pleural nodules (0-9 findings). As
noted from the wide ranges, there were considerable variations in the numbers of individual target
findings detected by different radiologists.

Interpretation Time of Radiograph
eTable 2 in the Supplement summarizes interpretation times for individual test readers with and
without AI-assisted interpretation. We excluded outlier data related to interpretation times (>3
minutes) for 81 unaided and 75 AI-aided interpretations. There was a small but significant reduction
in interpretation time associated with AI-assisted interpretation compared with unaided
interpretation (median [IQR], 36.9 [23.5-53.7] seconds vs 40.8 [27.5-58.2] seconds; difference, 3.9
seconds; 95% CI, 2.9-5.2 seconds; P < .001). There was a significant reduction in reporting times for
the trainees (resident 1, resident 2, and fellow 2). On the entire data set of interpretation times
including those with outliers (interpretation time >3 minutes), AI-assisted interpretation was
significantly faster than unaided interpretation (median [IQR], 37.9 [24.1-56.1] seconds vs 42.0 [28.2-
60.2] seconds; difference, 4.1 seconds; 95% CI, 3.0-5.4 seconds; P < .001).

Discussion

In this cohort study, the use of an AI algorithm was associated with sensitivity gains for all 4 target
chest radiograph findings across all readers regardless of their experience and training status. Such
improvement in detection of findings with AI has been reported in several prior studies.15,16,19,27,28

Prior studies27,29,30 with our AI as well as other research and commercial AI algorithms have reported
comparable or lower diagnostic performance for detection of pneumothorax, pleural effusion,
pneumonia, and pulmonary nodules. Although the stand-alone performance of our AI algorithm was
comparable to that of the radiologists and trainees in terms of sensitivity, it had substantially lower
specificity. One of the reasons for the lower specificity of the AI stand-alone performance in
pneumonia may be that the AI engine output is designed to label both airspace and interstitial
opacities as pneumonia. In contrast, the ground-truth and test radiologists used the classic airspace
pattern on the chest radiographs to label a finding as pneumonia. This difference in labeling likely
contributed to the lower specificity for the AI stand-alone performance and is further evident from
higher AI specificity on chest radiographs without any nontarget findings.

Despite the higher frequency of false-positive findings with AI, the improved sensitivity with
AI-aided interpretation did not come at the cost of a significant change in their specificities. In other
words, all readers were able to reject AI-detected false-positive findings while benefiting from
acceptance of true-positive findings detected and marked up by the AI algorithm. Examples of such
cases can be found in eFigure 3 in the Supplement.

Most studies27,31,32 either do not include distracting findings (nontarget AI findings) or do not
evaluate the impact on interpretation efficiency assessed in our study. Given the tremendous volume
of chest radiographs, the accuracy of detection is as important as the efficiency of reporting the chest
radiographs in a timely manner within 12 to 24 hours of their acquisition.

In this context, our study found a small but measurably significant improvement in time to
report chest radiographs with AI-aided interpretation compared with interpretation without AI.
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Because the AI was limited for aiding with detection of 4 findings only, this could be a meaningful
reduction in reporting time. We included 11 nontarget AI findings and incorporated them into our
reporting template. This was done to reflect the real clinical practice and the thoracic abnormalities
that can be detected, other than the 4 target findings. Our study highlights the method and need for
future research and clinical adoption of AI algorithms with simultaneous evaluation of diagnostic
accuracy and workflow efficiency.

The chief implication of our study is the improved accuracy in detecting 4 target chest
radiograph findings (pneumonia, lung nodule, pleural effusion, and pneumothorax) with AI-aided
interpretation while improving overall efficiency in reporting target and nontarget findings.
Specifically, improved interpretation both in terms of finding detection and interpretation time was
most notable for 3 of the 4 residents and thoracic imaging fellows. Although neither attending
radiologist improved their reading efficiency with AI, there was an improvement in detection of
target findings with use of AI for both radiologists. Demonstration of noninferiority of interpretation
time with AI vs non-AI interpretation will become more critical as AI algorithms expand their target
findings beyond a handful to a comprehensive, multifinding detection.33

Another implication of our study pertains to the use of a structured, form-based report format
instead of the conventional, free-text, dictation-based reporting system used in our department.
Although a similar structured, form-based reporting system is often used for screening
mammography,34 its use is limited in chest radiograph reporting. Yet, several studies35 have
highlighted the need to generate structured reporting templates and formats to improve
consistency, reduce errors, and enhance readability between radiologists. Apart from the AI
algorithm used in our study, other commercial AI vendors36,37 also provide a structured list of
AI-detected and annotated findings. In addition to providing measurable data for research, quality
control, and audits of chest radiograph findings, such checklist-based reporting can also help as a
gatekeeper of AI findings that get archived and transferred into PACS and/or electronic medical
records (true positive or true negative) vs those that get deleted (false-positive outputs of AI) before
the AI output becomes archived. Such information can be used for monitoring AI performance in a
continuous, clinical use, since converting free-text reporting format is tedious, error prone, and
inconsistent. Another implication of our study pertains to the likelihood that the reader improvement
with AI assistance was influenced by some factors such as the size, extent, and/or number of findings.
A true impact statement regarding AI performance would require separate assessment of these
factors, which were not assessed in our study.38-41

Limitations
There are limitations in our study. First, the ground truths were obtained from frontal chest
radiographs only, which could have resulted in some inaccuracies. However, most prior studies27,28

have used multireader ground truths from chest radiographs alone. Second, given the difficulty in
integrating research software into a clinical reporting interface, it was not possible to assess the real-
world, clinical chest radiograph interpretation workflow. The reader study tool used in our study
simulated the structured reporting format in our practice. Although the checklist type of reporting
format used in our study does not conform with the field-based, free-text, structured reporting
template in clinical workflow, it was not feasible to convert free-text reports into measurable data for
statistical analysis. This limitation can, however, restrict the application of our research for assessing
true reporting efficiency with and without AI. Third, we excluded data pertaining to interpretation
times greater than 3 minutes, which represented less than 10% of the overall chest radiograph
interpretations. As reported in the Results section, such exclusion did not change the data on
reporting efficiency either toward or against the AI-assisted interpretation of chest radiographs.
Fourth, we did not perform a power analysis to determine the adequacy of our sample size or the
number of test readers. Fifth, although the AI algorithm used can detect more than 4 target findings,
we focused on 4 findings and, therefore, cannot comment on reader performance or reporting
efficiency when other AI findings are also included. It is possible that with a larger number of AI
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findings and mark-up, a greater number of false-positive or additional true-positive annotations can
slow down the readers. The latter, however, will result in improved reader performance from
detection of additional findings. Sixth, because of the small number of diverse nontarget findings
(eg, lines and tubes, cardiac silhouette enlargement, mediastinal widening, and bony abnormalities),
we did not assess the effect of AI-aided or unaided interpretation on detection of the nontarget
findings. Although loss of performance in detection of nontarget findings from the use of any AI
algorithm will be detrimental, none of the AI algorithms cleared by the US Food and Drug
Administration can detect or triage all possible findings on chest radiographs.

Conclusions

In conclusion, the use of an AI algorithm was associated with an improved sensitivity for detection of
4 target chest radiograph findings (pneumonia, lung nodules, pleural effusion, and pneumothorax)
for radiologists, thoracic imaging fellows as well as radiology residents, while maintaining the
specificity. These findings suggest that an AI algorithm can improve the reader performance and
efficiency in interpreting chest radiograph abnormalities.
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SUPPLEMENT.
eAppendix. AI Algorithm
eFigure 1. Radiology Report Template
eFigure 2. Screenshots of Structured Radiology Report Tool With the AI-Aided (Top Image) and Unaided CXR
Display
eTable 1. Summary of Reader Performance for Detection of the Four Target Findings in CXRs With and Without
Nontarget Findings
eTable 2. Interpretation Times of Individual Readers Without and With AI-Aided Interpretation of CXRs
eFigure 3. Frontal Chest Radiographs Belonging to Four Separate Patients
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