Bizzo, B.C., Almeida, R.R., Michalski, M.H. and Alkasab, T.K., 2019. Artificial intelligence and clinical decision support for radiologists and referring providers. Journal of the American College of Radiology, 16(9), pp.1351-1356. Wintermark, M., Willis, M.H., Hom, J., Franceschi, A.M., Fotos, J.S., Mosher, T., Cruciata, G., Reuss, T., Horton, R., Fredericks, N. and Burleson, J., 2020. Everything every radiologist always wanted (and needs) to know about clinical decision support. Journal of the American College of Radiology, 17(5), pp.568-573. Sutton, R.T., Pincock, D., Baumgart, D.C., Sadowski, D.C., Fedorak, R.N. and Kroeker, K.I., 2020. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ digital medicine, 3(1), p.17. Grote, T. and Berens, P., 2020. On the ethics of algorithmic decision-making in healthcare. Journal of medical ethics, 46(3), pp.205-211. Zygmont, M.E., Ikuta, I., Nguyen, X.V., Frigini, L.A.R., Segovis, C. and Naeger, D.M., 2023. Clinical decision support: impact on appropriate imaging utilization. Academic Radiology, 30(7), pp.1433-1440. Brigham, T. J. Reality Check: Basics of Augmented, Virtual, and Mixed Reality. Med. Ref. Serv. Q. 36, 171–178 (2017). Izard, S. G. et al. Virtual Reality as an Educational and Training Tool for Medicine. Journal of Medical Systems vol. 42 Preprint at https://doi.org/10.1007/s10916-018-0900-2 (2018). Kaplan, A. D. et al. The Effects of Virtual Reality, Augmented Reality, and Mixed Reality as Training Enhancement Methods: A Meta-Analysis. Hum. Factors 63, 706–726 (2021). McCarthy, C. J., Yu, A. Y. C., Do, S., Dawson, S. L. & Uppot, R. N. Interventional Radiology Training Using a Dynamic Medical Immersive Training Environment (DynaMITE). J. Am. Coll. Radiol. 15, 789–793 (2018). Uppot, R. N. et al. Implementing Virtual and Augmented Reality Tools for Radiology Education and Training, Communication, and Clinical Care. Radiology 291, 570–580 (2019). Kim I et al. Deep learning-based image reconstruction for brain CT: improved image quality compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Neuroradiology. 2021 Jun;63(6):905-912 Hata A et al. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Clin Radiol. 2021 Feb;76(2):155.e15-155.e23 Kim JH et al. Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise. Korean J Radiol. 2021 Jan;22(1):131-138 Benz DC et al. Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy. J Cardiovasc Comput Tomogr. 2020 Sep-Oct;14(5):444-451 Lenfant M et al. Deep Learning Versus Iterative Reconstruction for CT Pulmonary Angiography in the Emergency Setting: Improved Image Quality and Reduced Radiation Dose. Diagnostics (Basel). 2020 Aug; 10(8): 558 Rainey C, O'Regan T, Matthew J, Skelton E, Woznitza N, Chu KY, Goodman S, McConnell J, Hughes C, Bond R, Malamateniou C, McFadden S. An insight into the current perceptions of UK radiographers on the future impact of AI on the profession: A cross-sectional survey. J Med Imaging Radiat Sci. 2022 Sep;53(3):347-361. doi: 10.1016/j.jmir.2022.05.010. Epub 2022 Jun 15. Bougias H, Georgiadou E, Malamateniou C, Stogiannos N. Identifying cardiomegaly in chest X-rays: a cross-sectional study of evaluation and comparison between different transfer learning methods. Acta Radiol. 2021 Dec;62(12):1601-1609. doi: 10.1177/0284185120973630. Epub 2020 Nov 17. Rainey C, O'Regan T, Matthew J, Skelton E, Woznitza N, Chu KY, Goodman S, McConnell J, Hughes C, Bond R, McFadden S, Malamateniou C. Beauty Is in the AI of the Beholder: Are We Ready for the Clinical Integration of Artificial Intelligence in Radiography? An Exploratory Analysis of Perceived AI Knowledge, Skills, Confidence, and Education Perspectives of UK Radiographers. .Front Digit Health. 2021 Nov 11;3:739327. doi: 10.3389/fdgth.2021.739327. eCollection 2021. Malamateniou C, McFadden S, McQuinlan Y, England A, Woznitza N, Goldsworthy S, Currie C, Skelton E, Chu KY, Alware N, Matthews P, Hawkesford R, Tucker R, Town W, Matthew J, Kalinka C, O'Regan T. Artificial Intelligence: Guidance for clinical imaging and therapeutic radiography professionals, a summary by the Society of Radiographers AI working group. Radiography (Lond). 2021 Nov;27(4):1192-1202. doi: 10.1016/j.radi.2021.07.028. Epub 2021 Aug 20. Malamateniou C, Knapp KM, Pergola M, Woznitza N, Hardy M. Artificial intelligence in radiography: Where are we now and what does the future hold? Radiography (Lond). 2021 Oct;27 Suppl 1:S58-S62. doi: 10.1016/j.radi.2021.07.015. Epub 2021 Aug 8.