Advanced Topics in Al

Temporal Difference Value Learning

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europ Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

Reinforcement Learning Taxonomy

Temporal Difference Value Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): sample $= R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \cdot \text{sample}$

Same update:

 $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (\text{sample } - V^{\pi}(s))$

Example: TD Value Learning

TD Learning in the Brain

- Neurons transmit Dopamine to encode reward or value prediction error
 - $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha (\text{sample } V^{\pi}(s))$
- Example of Neuroscience & RL informing each other

For more examples, see
[AI and Neuroscience: A virtuous circle]

https://www.deepmind.com/blog/ai-andneuroscience-a-virtuous-circle

[A Neural Substrate of Prediction and Reward. Schultz, Dayan, Montague. 1997]

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg \max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V(s')]$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Advanced Topics in Al Next: Q-Learning

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

* * * * * * *

Co-financed by the Connecting Europe Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]