Advanced Topics in Al Direct Evaluation

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europ Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

Reinforcement Learning Taxonomy

Model-Free Learning

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Quiz: Direct Evaluation

What is value of state C via Direct Evaluation?

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Need to have all episodes ahead of time (cannot "stream" in transitions)

Output Values

Problems with Direct Evaluation

Observed Transitions (s, a, s', R)

Episode 1

E (home),	study,	C (know material),	0
C (know material),	go to exam,	D (pass exam),	0
D (pass exam),	exit,	X,	+10

Episode 2

B (library),	study,	C (know material),	0
C (know material),	go to exam,	A (miss bus & fail exam),	0
A (fail exam),	exit,	X,	-10

Is studying in the library a bad idea?

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be: $sample_i(s) = \sum \gamma^t R^t$
 - Average those samples:

$$V(s) \approx \frac{1}{N} \sum_{i} \text{sample}_{i}(s)$$

This is called direct evaluation

Exponential Moving Average

Traditional Average:

$$AVG(x) = \frac{1}{N}\sum_n x_n$$

- Need to have all N samples at once (cannot "stream" in samples)
- Exponential moving average
 - The running interpolation update:
 - Makes recent samples more important:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$
$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha)^2 + \dots}$$

- Forgets about the past samples (how quickly depends on α)
- Decreasing learning rate (alpha) can give converging averages

Advanced Topics in Al

Next: Temporal Difference Value Learning

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europ Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]