Advanced Topics in Al Taxonomy

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europ Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) $a \in A$
 - A model T(s, a, s')
 - A reward function R(s, a, s')
- Still looking for a policy $\pi(s)$

I.e. we don't know which states are good or what the actions do

Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Reinforcement Learning Taxonomy

Reinforcement Learning Overview

- Passive Reinforcement Learning (how to learn from experiences)
 - Model-Based RL: Learn MDP model from experiences, then solve with value / policy iteration
 - Model-Free RL: Skip learning MDP model, directly learn V or Q
 - Value Learning: learn values of fixed policy (Direct Evaluation or TD value learning)
 - **Q-Learning**: learn Q-values of optimal policy (Q-based version of TD learning)
- Active Reinforcement Learning (also decide how to collect experiences)
 - Challenges: how to **explore and minimize regret**
- Approximate Reinforcement Learning (how to deal with large state spaces)
 - Approximate Q-Learning
 - Policy Search

Active Reinforcement Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy π(s)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - Goal: learn the state values

- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Analogy: Expected Age

Goal: Compute expected age of students

Without P(A), instead collect samples $[a_1, a_2, \dots, a_N]$

Advanced Topics in Al Next: Model-Based RL

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europ Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]