Advanced Topics in Al Policy Iteration

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europ Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy Improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is Policy Iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Evaluation

Fixed Policies

- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state

... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Define the utility of a state s, under a fixed policy π :
 - $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π
- What is the recursive relation (one-step look-ahead / Bellman equation)?
 - Hint: recall Bellman equation for optimal policy:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

 $\pi(s)$ $S_{i}\pi(s), s'$ $S_{i}\pi(s), s'$

Utilities for a Fixed Policy

- Define the utility of a state s, under a fixed policy π :
 - $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π
- What is the recursive relation (one-step look-ahead / Bellman equation)?
 - Hint: recall Bellman equation for optimal policy:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

Answer:

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

 $s_i (\pi(s), s)$

 $\pi(s)$

s, π(s)

Policy Evaluation

- How do we calculate the V's for a fixed policy π?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

 $s_i \pi(s)$,s

π(s)

s, π(s)

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 🕨	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

Policy Iteration

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') [R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s')]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$

Repeat steps until policy converges

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Advanced Topics in Al Next: Summary and Outlook

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover

Co-financed by the Connecting Europ Facility of the European Union

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]