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Computing Actions from Values

= Let'simagine we have the optimal values V*(s)

n o8 , = How should we act?
= |t's not obvious!
. = We need to do a mini-expectimax (one step)
n. n*(s) = arg maxz T(s,a,s)[R(s,a,s") +yV*(s)]
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= This is called policy extraction, since it gets the policy
implied by the values
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Computing Actions from Q-Values

= Let's imagine we have the optimal g-values:

]
7' (s) = argmax Q" (s, a) %.%

= Important lesson: actions are easier to b'dbidbidblq
select from g-values than values! AA




Policy Methods




Problems with Value Iteration

Value iteration repeats the Bellman updates:

Vier1(s) « mc?xz T(s,a,s")[R(s,a,s") +yV,(s')]

Problem 1: It's slow — O (5%A) per iteration
Problem 2: The "max” at each state rarely changes

Problem 3: The policy often converges long before the values
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Next: Policy Iteration
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