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▪ Start with 𝑉0(𝑠) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of 𝑉𝑘(𝑠) values, do one ply of expectimax from each state:

▪ Repeat until convergence, which yields 𝑉∗

▪ Complexity of each iteration: 𝑂(𝑆2𝐴)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values

▪ Policy may converge long before values do

Value Iteration
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Example: Value Iteration
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Example: Value Iteration
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S: 0.5*1+0.5*1=1
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Example: Value Iteration
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Example: Value Iteration
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F: 0.5*(2+2)+0.5*(2+1)=3.5
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Example: Value Iteration
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▪ How do we know the 𝑉𝑘 vectors are going to converge? 
(assuming 0 < 𝛾 < 1)

▪ Proof Sketch: 

▪ For any state 𝑉𝑘 and 𝑉𝑘+1 can be viewed as depth 𝑘 + 1
expectimax results in nearly identical search trees

▪ The difference is that on the bottom layer, 𝑉𝑘+1 has actual 
rewards while 𝑉𝑘 has zeros

▪ That last layer is at best all 𝑅𝑀𝐴𝑋

▪ It is at worst 𝑅𝑀𝐼𝑁

▪ But everything is discounted by 𝛾𝑘 that far out

▪ So 𝑉𝑘 and 𝑉𝑘+1 are at most 𝛾𝑘max |𝑅| different

▪ So as 𝑘 increases, the values converge

Convergence
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