
Advanced Topics in AI
Solving MDPs

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

http://ai.berkeley.edu/

▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward

Recall: Racing MDP

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

Racing Search Tree

▪ We’re doing way too much work with
expectimax!

▪ Problem: States are repeated
▪ Idea: Only compute needed quantities

once

▪ Problem: Tree goes on forever
▪ Idea: Do a depth-limited computation,

but with increasing depths until change
is small

▪ Note: deep parts of the tree eventually
don’t matter if γ < 1

Racing Search Tree

Optimal Quantities

▪ The value (utility) of a state s:
▪ V*(s) = expected utility starting in s and acting

optimally

▪ The value (utility) of a q-state (s,a):
▪ Q*(s,a) = expected utility starting out having

taken action a from state s and (thereafter)
acting optimally

▪ The optimal policy:
▪ *(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Gridworld V* Values

Noise = 0.2
Discount = 0.9
Living reward = 0

Gridworld Q* Values

Noise = 0.2
Discount = 0.9
Living reward = 0

▪ Recursive definition of value:

Values of States

a

s

s, a

s,a,s’

s’

𝑉∗ 𝑠 =

𝑄∗ 𝑠, 𝑎 =

𝑉∗ 𝑠 = max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾 𝑉∗ 𝑠′]

𝑄∗(𝑠, 𝑎)max
𝑎

෍

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ [𝑅(𝑠, 𝑎, 𝑠′) 𝑉∗ 𝑠′𝛾+]

▪ Key idea: time-limited values

▪ Define 𝑉𝑘(𝑠) to be the optimal value of 𝑠 if the game ends
in k more time steps

▪ Equivalently, it’s what a depth-k expectimax would give from 𝑠

Time-Limited Values

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

Advanced Topics in AI
Next: Value Iteration

Instructor: Prof. Dr. techn. Wolfgang Nejdl

Leibniz University Hannover
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All materials are available at http://ai.berkeley.edu.]

http://ai.berkeley.edu/

	Folie 1: Advanced Topics in AI
	Folie 2: Recall: Racing MDP
	Folie 3: Racing Search Tree
	Folie 4: Racing Search Tree
	Folie 5: Racing Search Tree
	Folie 6: Optimal Quantities
	Folie 7: Gridworld V* Values
	Folie 8: Gridworld Q* Values
	Folie 9: Values of States
	Folie 10: Time-Limited Values
	Folie 11: k=0
	Folie 12: k=1
	Folie 13: k=2
	Folie 14: k=3
	Folie 15: k=4
	Folie 16: k=5
	Folie 17: k=6
	Folie 18: k=7
	Folie 19: k=8
	Folie 20: k=9
	Folie 21: k=10
	Folie 22: k=11
	Folie 23: k=12
	Folie 24: k=100
	Folie 25: Computing Time-Limited Values
	Folie 26: Advanced Topics in AI

