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▪ A robot car wants to travel far, quickly

▪ Three states: Cool, Warm, Overheated

▪ Two actions: Slow, Fast

▪ Going faster gets double reward

Recall: Racing MDP

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Racing Search Tree



Racing Search Tree



▪ We’re doing way too much work with 
expectimax!

▪ Problem: States are repeated 
▪ Idea: Only compute needed quantities 

once

▪ Problem: Tree goes on forever
▪ Idea: Do a depth-limited computation, 

but with increasing depths until change 
is small

▪ Note: deep parts of the tree eventually 
don’t matter if γ < 1

Racing Search Tree



Optimal Quantities

▪ The value (utility) of a state s:
▪ V*(s) = expected utility starting in s and acting 

optimally

▪ The value (utility) of a q-state (s,a):
▪ Q*(s,a) = expected utility starting out having 

taken action a from state s and (thereafter) 
acting optimally

▪ The optimal policy:
▪ *(s) = optimal action from state s
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Gridworld V* Values

Noise = 0.2
Discount = 0.9
Living reward = 0



Gridworld Q* Values

Noise = 0.2
Discount = 0.9
Living reward = 0



▪ Recursive definition of value:

Values of States
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▪ Key idea: time-limited values

▪ Define 𝑉𝑘(𝑠) to be the optimal value of 𝑠 if the game ends 
in k more time steps

▪ Equivalently, it’s what a depth-k expectimax would give from 𝑠

Time-Limited Values



k=0

Noise = 0.2
Discount = 0.9
Living reward = 0



k=1

Noise = 0.2
Discount = 0.9
Living reward = 0



k=2

Noise = 0.2
Discount = 0.9
Living reward = 0



k=3

Noise = 0.2
Discount = 0.9
Living reward = 0



k=4

Noise = 0.2
Discount = 0.9
Living reward = 0



k=5

Noise = 0.2
Discount = 0.9
Living reward = 0



k=6

Noise = 0.2
Discount = 0.9
Living reward = 0



k=7

Noise = 0.2
Discount = 0.9
Living reward = 0



k=8

Noise = 0.2
Discount = 0.9
Living reward = 0



k=9

Noise = 0.2
Discount = 0.9
Living reward = 0



k=10

Noise = 0.2
Discount = 0.9
Living reward = 0



k=11

Noise = 0.2
Discount = 0.9
Living reward = 0



k=12

Noise = 0.2
Discount = 0.9
Living reward = 0



k=100

Noise = 0.2
Discount = 0.9
Living reward = 0



Computing Time-Limited Values
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