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Advanced Topics in AI
Exercise 4

Question 1: MDPs: Micro-Blackjack

In micro-blackjack, you repeatedly draw a card (with replacement) that is equally likely
to be a 2, 3, or 4. You can either Draw or Stop if the total score of the cards you have
drawn is less than 6. If your total score is 6 or higher, the game ends, and you receive
a utility of 0. When you Stop, your utility is equal to your total score (up to 5), and the
game ends. When you Draw, you receive no utility. There is no discount (γ = 1). Let’s
formulate this problem as an MDP with the following states: 0, 2, 3, 4, 5 and a Done
state, for when the game ends.

a. What is the transition function and the reward function for this MDP?
Solution:

The transition function is

T (s, Stop,Done) = 1

T (0,Draw, s ′) = 1/3 for s ′ ∈ {2, 3, 4}
T (2,Draw, s ′) = 1/3 for s ′ ∈ {4, 5,Done}

T (3,Draw, s ′) =
{
1/3 if s ′ = 5
2/3 if s ′ = Done

T (4,Draw,Done) = 1

T (5,Draw,Done) = 1

T (s, a, s ′) = 0 otherwise

The reward function is

R (s, Stop,Done) = s, s ≤ 5

R (s, a, s ′) = 0 otherwise

b. Fill in the following table of value iteration values for the first 4 iterations.
States 0 2 3 4 5
V0 0 0 0 0 0
V1 0 2 3 4 5
V2 3 3 3 4 5
V3 10/3 3 3 4 5
V4 10/3 3 3 4 5
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c. You should have noticed that value iteration converged above. What is the
optimal policy for the MDP?

States 0 2 3 4 5
π∗ Draw Draw Stop Stop Stop

d. Perform one iteration of policy iteration for one step of this MDP, starting from
the fixed policy below:

States 0 2 3 4 5
πi Draw Stop Draw Stop Draw
V πi 2 2 0 4 0
πi+1 Draw Stop Stop Stop Stop

e. Is the policy πi+1 optimal?

Solution:

No it isn’t. Compare the policy with the policy in task c.
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Question 2: Golf as an MDP

In this exercise we will formulate golf as an MDP as follows:

• State Space : {Tee, Fairway, Sand, Green}

• Actions : {Conservative shot, Power shot}

• Initial State : Tee

• Terminal State : Green

• Transition model : (note that any successor state not on this list has a transition
probability 0, and “Conservative” stands for “Conservative shot”)

s a s ′ T (s, a, s ′)
Tee Conservative Fairway 0.9
Tee Conservative Sand 0.1
Tee Power shot Green 0.5
Tee Power shot Sand 0.5

Fairway Conservative Green 0.8
Fairway Conservative Sand 0.2

Sand Conservative Green 1.0

• Rewards: (note: R (·, ·, s) means that the reward is received for transitioning to
state s , regardless of the action taken or previous state)

s ′ R (·, ·, s ′)
Fairway -1

Sand -2
Green 3

Draw a state graph defining this MDP problem. A state graph shows the states as nodes
and has the actions as arcs labeled with T and R values. Remember, in a state graph
no states repeat.

Solution:

In the graph, “Cons.” stands for “Conservative Shot” and “Power” for “Power Shot”.
Absent edges represent a transition of 0 probability.
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Question 3: Robot Balancing

+1

S1

S

S2 S3 S4 S5 S6 S7

+10

S8

−1

S9 (ground)

Consider the above MDP, representing a robot on a balance beam. Each grid square
is a state and the available actions are right and left. The agent starts in state s2 ,
and all states have reward 0 aside from the ends of the grid s1 and s8 and the ground
state, which have the rewards shown. Moving left or right results in a move left or
right (respectively) with probability p . With probability 1 − p , the robot falls off the
beam (transitions to ground, and receives a reward of -1). Falling off, or reaching either
endpoint, result in the end of the episode (i.e., they are terminal states). Note that
terminal states receive no future reward.

a. For what values of p is the optimal action from s2 to move right if the discount γ
is 1?

Solution:

U[left] = (+1) (p) + (−1) (1 − p) = 2p − 1
U[always go right] = 10p6–1 · (1 − p6) > 2p − 1
⇔ (11/2)p5 > 1 ⇔ p > 0.71 (approximately)

b. For what values of γ is the optimal action from s2 to move right if p = 1?

Solution:

10 ∗ γ6 > γ ⇔ γ > 0.63 (approximately)

c. Given initial value estimates of zero, show the results of one, then two rounds of
value iteration (assume γ = 1).

Solution:

States S1 S2 S3 S4 S5 S6 S7 S8 S9

V0 0 0 0 0 0 0 0 0 0
V1 0 2p − 1 p − 1 p − 1 p − 1 p − 1 11p − 1 0 0
V2 0 2p − 1 2p2 − 1 p2 − 1 p2 − 1 11p2 − 1 11p − 1 0 0

Question 4: Dice Bonanza
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A casino is considering adding a new game to their collection, but need to analyze it
before releasing it on their floor. They have hired you to execute the analysis. On each
round of the game, the player has the option of rolling a fair 6-sided die. That is, the
die lands on values 1 through 6 with equal probability. Each roll costs 1 dollar, and the
player must roll the very first round. Each time the player rolls the die, the player has
two possible actions:

1. Stop : Stop playing by collecting the dollar value that the die lands on, or

2. Rol l : Roll again, paying another 1 dollar.

Having taken "Introduction to Artificial Intelligence", you decide to model this problem
using an infinite horizon Markov Decision Process (MDP). The player initially starts
in state St ar t , where the player only has one possible action: Rol l . State s i denotes
the state where the die lands on i . Once a player decides to Stop , the game is over,
transitioning the player to the End state.

(a) In solving this problem, you consider using policy iteration. Your initial policy π
is in the table below. Evaluate the policy at each state, with γ = 1. Build a system
of linear equations and solve directly for v π (s i ), i ∈ {1, . . . , 6}.

State s1 s2 s3 s4 s5 s6
π (s) Rol l Rol l S t op St op St op St op

v π (s) 3 3 3 4 5 6

Solution:

We have that v π (s i ) = i for i ∈ {3, 4, 5, 6}, since the player will be awarded
no further rewards according to the policy. From the Bellman equations,
we have thatV (s1) = −1 + 1/6(V (s1) +V (s2) + 3 + 4 + 5 + 6) and thatV (s2) =
−1 + 1/6(V (s1) + V (s2) + 3 + 4 + 5 + 6). Solving this linear system yields
V (s1) =V (s2) = 3.

(b) Having determined the values, perform a policy update to find the new policy π′.
The table below shows the old policy π and has filled in parts of the updated
policy π′ for you. If both Roll and Stop are viable new actions for a state, write
down both Rol l /Stop . In this part as well, we have γ = 1.

State s1 s2 s3 s4 s5 s6
π (s) Rol l Rol l S t op St op St op St op

π′(s) Rol l Roll Roll/Stop Stop Stop Stop

Solution:

For each s i in part (a), we compare the values obtained via Rolling and
Stopping. The value of Rolling for each state s i is −1+1/6(3+3+3+4+5+6) = 3.
The value of Stopping for each state s i is i . At each state s i , we take the
action that yields the largest value; so, for s1 and s2 , we Roll, and for s4 and
s5 , we stop. For s3 , we Roll/Stop, since the values from Rolling and Stopping
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are equal.

(c) Is π (s) from part (a) optimal? Explain why or why not.

Solution:

Yes, the old policy is optimal. Looking at part (b), there is a tie between 2
equally good policies that policy iteration considers employing. One of these
policies is the same as the old policy. This means that both new policies are
as equally good as the old policy, and policy iteration has converged. Since
policy iteration converges to the optimal policy, we can be sure that π (s)
from part (a) is optimal.

(d) Suppose that we were now working with some γ ∈ [0, 1] and wanted to run value
iteration. Select the one statement that would hold true at convergence, or write
the correct answer next to Other if none of the options are correct.

◦ V ∗(s i ) = max
{
−1 + i

6 ,
∑

j γV
∗(s j )

}
◦ V ∗(s i ) = max

{
i , 16

[
−1 +∑

j γV
∗(s j )

]}
◦ V ∗(s i ) = max

{
−1

6 + i ,
∑

j γV
∗(s j )

}
◦ V ∗(s i ) = max

{
i , −1

6 +
∑

j γV
∗(s j )

}
◦ V ∗(s i ) = 1

6 ·
∑

j max
{
i , −1 + γV ∗(s j )

}
◦ V ∗(s i ) = 1

6 ·
∑

j max
{
−1 + i ,

∑
k V

∗(s j )
}

◦ V ∗(s i ) =
∑

j max
{
−1 + i , 16γV

∗(s j )
}

◦ V ∗(s i ) =
∑

j max
{
i
6 , −1 + γV ∗(s j )

}
�A◦ V ∗(s i ) = max

{
i , −1 + γ

6

∑
j V

∗(s j )
}

◦ V ∗(s i ) =
∑

j max
{
i , −1

6 + γV ∗(s j )
}

◦ V ∗(s i ) =
∑

j max
{
− i

6 , −1 + γV ∗(s j )
}

Solution:
At convergence,

V ∗(s i ) = maxQ ∗(s i , a)
= max {Q ∗(s i , st op) , Q ∗(s i , r ol l )}

= max

R (s i , st op) , R (s i , r ol l ) + γ
∑
j

T (s i , r ol l , s j )V ∗(s j )


= max

i , −1 +
γ

6

∑
j

V ∗(s j )

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Question 5: Policy Evaluation with Q-Values

In this question, you will be working in an MDP with states S , actions A, discount factor
γ, transition function T , and reward function R .

We have some fixed policy π : S → A, which returns an action a = π (s) for each state
s ∈ S . We want to learn the Q function Q π (s, a) for this policy: the expected reward
from taking action a in state s and then continuing to act according to π : Q π (s, a) =
Σs ′T (s, a, s ′) [R (s, a, s ′) + γQ π (s ′, π (s ′))]. The policy π will not change.
Can we guarantee anything about how the values Q π compared to the values Q ∗ for
an optimal policy π∗ ?

�A◦ Q π (s, a) ≤ Q ∗(s, a) for all s, a

◦ Q π (s, a) = Q ∗(s, a) for all s, a

◦ Q π (s, a) ≥ Q ∗(s, a) for all s, a

◦ None of the above guaranteed

Solution:

We know that the optimal policy maximizes the sum of discounted rewards. If we
take any action and then act according to a suboptimal policy the future Q-values
will be smaller or equal to the optimal ones. So in total Q π (s, a) will be smaller or
equal to Q ∗(s, a).
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