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Artificial Intelligence in diagnostic imaging: why?
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van Leeuwen KG, et al. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr Radiol 52, 2087-2093 (2022).
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Fujita, H. Al-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13, 6-19 (2020).
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Pesapane F et al. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2, 35 (2018).
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Potential applications of Artificial Intelligence in

diagnostic imaging

image acquisition Image reconstruction

m Instrumentation and Ll

Radiopharmaceuticals
and radiochemistry

Post-reconstruction
image enhancement

Image generation
Patient/provider
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Actionable information for patient ca'©

Clinical intelligence
and decision support

Image analysis
Enhanced reporting
and imaging

= . Al and radiomics as
informatics

discovery tools

Detection and
diagnosis

Bradshaw, T. J. et al. Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development. Journal of Nuclear Medicine 63, 500-510 (2022).
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Al applications for image quality restoration
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Chaudhari, A. S. et al. Low-count whole-body PET with deep learning in a multicenter and externally validated study. npj Digital Medicine 2021 4:1 4, 1-11 (2021).
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Al applications for image quality restoration

PETS0 PET45 PET45Al

Weyts, K. et al. Artificial intelligence-based PET denoising could allow a two-fold reduction in [18F]FDG PET acquisition time in digital PET/CT. Eur ) Nucl Med Mol Imaging 49, 3750-3760 (2022).
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Artificial Intelligence in lesion detection and diagnosis

Detection Characterization Monitoring
Detecting potential abnormalities within Segmentation
images on the basis of changes in ‘/\ N N N N

Defining the bound
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Diagnosis o
/—\ 3 © Evaluating and classifying . - \/
abnormalities such as
kﬁ?@j @ benign vs malignant Time
Staging Change analysis

Tracking object characteristics across
multiple temporal scans for diagnosis as
well as evaluating treatment response

Classifying abnormalities
into multiple predefined
categories such as the
TNM classification of
malignant tumours

Hosny A, et al. Artificial intelligence in radiology. Nature Reviews Cancer 2018 18:8 18, 500-510 (2018)
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Computer-Aided Detection (CADe) and Diagnosis (CADx)

systems ,

by Al Algorithms

Results

Triage of positive
films to top of
radiology worklist

Chest Radiograph

Detection and
localization
of abnormalities

=

Chest CT Scan

Localization and
quantification of

Spiculated mass, 2
abnormalities

mid-right breast

Mammogram

A 4

Mass: 13 mm
Characteristics: Solid
Change: +20%

Mass: 4 cm’

Characteristics:
Spiculated solid mass
Microcalcifications present
Architectural distortion present

Likelihood of cancer: 7 in 10

Rajpurkar P. et al. The Current and Future State of Al Interpretation of Medical Images. The New England Journal of Medicine 388: 1981-1990 (2023)
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Decuyper, M., Maebe, J., van Holen, R. & Vandenberghe, S. Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Physics 2021 8:1 8, 1-46 (2021).




eXplainable Artificial Intelligence in healthcare Management -
2020-EU-1A-0098 XAIM

‘Cotinanced by the Connecting Europe
Facilty of the Evropesn Union

Al applications for segmentation

PET image Expert CNN (Dice score: 86.9%) PET image Expert CNN (Dice score: 95.1%)
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Girum K.B. et al. 8F-FDG PET Maximum-Intensity Projections and Artificial Intelligence: A Win-Win Combination to Easily Measure Prognostic Biomarkers in DLBCL. Journal of Nuclear Medicine 63: 1925-1932 (2022)
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a Predefined engineered features + traditional machine learning

Feature engineering

-l_llll' Selection Classification
Histogram
@ - I —_— / —_—
— R
Texture Shape
Expert knowledge

b Deep learning
Input Hidden layers Output

=

Increasingly higher-level features

—— Convolution layers for feature map extraction
—— Pooling layers for feature aggregation
—— Fully connected layers for classification

Hosny A, et al. Artificial intelligence in radiology. Nature Reviews Cancer 2018 18:8 18, 500-510 (2018)
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nosis: Al applied 6 iammdgLafhiy; for Breast cancer

Screening

Qualitative Assessment by
Radiologists

GRADE A: Almost entirely fat

GRADE B: Scattered
fibroglandular density

GRADE C: Heterogeneously
dense

Mass
Asymmetry

Distortion

Category 1: Negative
Category 2: Benign
Category 3: Probably benign

Category 4: Suspicious
malignant

= Follow-up
Calcifications Category 5: Highly suggestive
GRADE D: Extremely dense of malignancy Biopsy
Breast Parenchymal B Lesion Detection Final Y Recommendation
Density Assessment

Lesion Characterization

| Quantitative Assessment by CAD

Yoon, J. H. & Kim, E. K. Deep Learning-Based Artificial Intelligence for Mammography. Korean J Radiol 22, 1225-1239 (2021).
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True positives False negatives False positives

Ribli, D., Horvath, A., Unger, Z., Pollner, P. & Csabai, |. Detecting and classifying lesions in mammograms with Deep Learning. Scientific Reports 2018 8:1 8, 1-7 (2018).
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Diagnosis: Al applied to low-dose chest CT for lung cancer screening
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e Medicine 2019 25:6 25, 954-961 (2019).
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Staging: Al applied to [*F]FDG PET/CT in lymphoma

Chnnels: CT and PET images
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Weisman, A. J. et al. Convolutional neural networks for automated pet/ct detection of diseased lymph node burden in patients with lymphoma. Radiol Artif Intell 2, 1-2 (2020).
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Weisman, A. J. et al. Convolutional neural networks for automated pet/ct detection of diseased lymph node burden in patients with lymphoma. Radiol Artif Intell 2, 1-2 (2020).
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Sibille, L. et al. 18F-FDG PET/CT uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology 294, 445-452 (2020).
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Monitoring: Al applied to serial MRI studies in brain tumours
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Patriarche, J. W. & Erickson, B. J. Part 1. Automated change detection and characterization in serial MR studies of brain-tumor patients. J Digit Imaging 20, 203—-222 (2007).
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Clinical Risk Factors

Test-Retest
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Train / Tune
Cohort

Expert Readers

Clinical Performance
Compared the performance of the

Assessed the performance of the
deep learning system to predict
cardiovascular events in all
independent test cohorts

two scans within one hour

analysis on participants that received
cohorts

Zeleznik, R. et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nature Communications 2021 12:1 12, 1-9 (2021).
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Outcome prediction: Al applied to [*¥F]FDG PET/CT in lymphoma
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Girum K.B. et al. 8F-FDG PET Maximum-Intensity Projections and Artificial Intelligence: A Win-Win Combination to Easily Measure Prognostic Biomarkers in DLBCL. Journal of Nuclear Medicine 63: 1925-1932 (2022)
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Al applications in radiation oncology

Decision support tools that Automated tumour and organ Enhanced image guidance, motion
combine clinical, genomic and segmentation as well as optimal management and scheduling promise
imaging data promise to support dose prediction promise to to improve clinical efficiency and
precision oncology practices streamline the planning process patients’ outcomes and experiences

Plan approval
and QA

Treatment Imaging
decision (simulation)

Treatment

Radiotherapy Follow-up
planning

delivery care

Al promises to reduce radiation Al tools might help expedite Accurate prediction of response to treatment,
exposure of patients, enhance image the QA process and detect rare radiation-induced toxicities and other adverse
quality, suppress artefacts and enable erroneous events, especially for effects might provide real-time meaningful
more accurate image registration highly complex treatments clinical decision support

Huynh, E. et al. Artificial intelligence in radiation oncology. Nature Reviews Clinical Oncology 2020 17:12 17, 771-781(2020).
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Al applications in radiation oncology: outcome prediction

Prediction of tumor
Extraction Deep learning-based radiomics regression during
GTVp & GTVn prediction model radiotherapy
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Tanaka, S. et al. A deep learning-based radiomics approach to predict head and neck tumor regression for adaptive radiotherapy. Sci Rep 12, (2022).
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Application of Al in advanced image analysis

~

~

a

P N

S

eXplainable Artificial Intelligence in healthcare Management

2020-EU-1A-0098

First order
Second order

Third order

oy,
\ N

A N/

/' N\ /TN

. 9@
</ /

NN

/ /\X

%
T A
o/ ® X
/’ / /’/
W <5 ¢
/1)
7 ) — @
//
/o
o

Clinical data
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‘Radiomics Signature

Prediction model

Nomogram Calibration curve

Wu, Y.-J.; et al. Radiomics in Early Lung Cancer Diagnosis: From Diagnosis to Clinical Decision Support and Education. Diagnostics 2022, Vol. 12, Page 1064 12, 1064 (2022).
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Personalised medicine

Single treatment (one-fits-all) DIAGNOSTIC Personalised treatment
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https://www.genosalut.com/en/news/healthy-lifestyle/what-is-personalised-medicine/
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DATA INTEGRATION TO PRECISION MEDICINE

Martinez-Garcia, M. & Hernandez-Lemus, E. Data Integration Challenges for Machine Learning in Precision Medicine. Front Med (Lausanne) 8, 3082 (2022).
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Challenges for implementing Al in clinical routine: all that glitters is
not gold

Challenge Solution

e Recording and reporting race, gender
and demographic distributions.

* Active efforts to obtain representative,
heterogenous data sets.

DATA SECURITY e Federated learning.

e Advanced encryption.

e Transfer learning.

DATA SIZE ¢ Synthetic data.
LIMITATIONS « Self supervised learning.

e Peer-reviewed publication using Al
frameworks (e.g. SPIRIT-AI)
e External-validation.

VARIABLE
METHODOLOGY

STANDARDS « Prospective studies and RCTs.

Hunter, B., Hindocha, S. & Lee, R. W. The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers 2022, Vol. 14, Page 1524 14, 1524 (2022).
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Facing data size limitations: Transfer learning

Extreme version of Inception (Xception) model-based feature extraction

input
Chest x-ray images p - O Ou(t)put
—ry | O O
l - ¥ O -
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@~ \~ O Transfer
/ - learning
ot o O Output
O ~— COVID-19 (+)
- @ @ O @ > Pneumonia (+)
® © O ® ———» Other disease

Deep transfer learning based COVID-19 disease detection model

Narayan Das N. et al. Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays. IRBM 43: 114-119 (2022)
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Facing data size limitations: Synthetic images

Real images

Synthetic images

__’

3

Chest X-rays

Real

Real

Real and synthetic Real and synthetic
| | |

| | | |
0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
AUC AUC

Chen R.J. et al. Synthetic data in machine learning for medicine and healthcare. Nature Biomedical Engineering volume 5, pages493-497 (2021)
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Fécing data size limitations: Triplet networks

SNN

Anchor / \
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SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification
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Explainable Al: the GradCAM

IDH1 mutant glioblastoma
IDH1/2 wild type glioblastoma

Bi, W.L. et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA A Cancer J Clin, 69: 127-157.(2019)
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