

Co-financed by the Connecting Europe Facility of the European Union

Transforming Healthcare

Impact Area of Al

Bonfitto Giuseppe@hsr.it

Impact Areas of Al

×

Leiner T et al. Journal of Cardiovascular Magnetic Resonance 2019;21:61.

(Limited) Clinical AI Implementation

Hurdles for AI Implementation	1,024 Radiologists		
Costs of software	363 (35%)		
Lack of			
Knowledge	584 (56%)		
High-quality image data	159 (15%)		
Generalizability of AI software	410 (39%)		
Ethical / legal issues	630 (61%)		
Limitation in digital infrastructure	356 (35%)		

(Limited) Clinical AI Implementation

Hurdles for Al Implementation	1,024 Radiologists		
Costs of software	363 (35%)		
Lack of			
Knowledge	584 (56%)		
High-quality image data	159 (15%)		
Generalizability of AI software	410 (39%)		
Ethical / legal issues	630 (61%)		
Limitation in digital infrastructure	356 (35%)		

(Limited) Clinical AI Implementation

Public Data

Public Data

		Nach		Single or Multiple
Data Set Description	Image Types	Patients	Ground Truth	Institutions
American College of Radiology Imaging Network National CT Colonography Trial (ACRIN 6664) (102)	ст	825	Pathology (biopsies)	Multiple
Alzheimer's Disease Neuroimogong Initiative (103)	MRI, PET	>1700	Clinical (follow-up)	Multiple
Curited Breast Imaging Salvet of the Digital Database for Scatening Mammography (36)	Manmography	6671	Puthology (hispates)	Mažtiple
ChercX-ray0, National Institutes of Health chert x-ray doubase (41)	Radiography	30.805	Imaging reports	Single
CheXpert, dust radiographe (79)	Radiography	65.240	Imaging reports	Single
Collaborative Informatics and Neuroimaging State (104)	MRI		Clinical (fellow-up)	Multiple
DeepLesion, body CT (60)	CT	4427	Imaging	Single
Head and neck PET/CT (105)	PET/CT. CT	298	Pathology (biopsies), clinical (follow-up)	Multiple
Long Image Database Consortium image collection (106)	CE radiography	1010	Imaging, dinical for a subset	Multiple
MRNet, knet MRI (80)	MBI	1370	Imaging reports	Single
Muscidaskeleral horie sidiographs, or MURA (107)	Radiography	14863	Imaging reports	Single
National Long Screening Trial (108)	CT, pathology	26/254	Clinical (follow-up)	Multiple
PROSTATEs Challenge, SPIE-AAPM-NCI Prostate MR Classification Challenge (109)	MBI	346	Pathology (biopsies), imaging	Multiple
Rabological Society of North America Intracranial Hemierhage Detection (110)	CT	25.000	Imaging	Maltiple
Carcer Genome Adas Kitney Renal Clear Cell Carcinoma data colloction (111)	CT. MRI	267	Pathology (biopsies), clinical (follow-up)	Maltiple
Virtual Imaging Clinical Teal for Regularory Evaluation (112)	Mannoography, digital becan noncorrectorio	2994	Imaging	Multiple

The Data Issue

Small sample size

Diversity Issue

Diversity Issue

Diversity Issue

The data problem

The data problem

True Label	COVID-19 (T	raining Data)	COVID-19 (Unseen Data)		Cat (Unrelated Data)		
		NAN IN	Nales				
Model	Prediction	Confidence	Prediction	Confidence	Prediction	Confidence	
DNN	COVID-19	99.7%	Non-COVID	75.1%	COVID-19	100%	
BNN	COVID-19	95.5%	COVID-19	67.1%	COVID-19	99.8%	

(More) Data Issues

Anonymized

(More) Data Issues

Data preparation overview

Data Storage and Transfer

Data in siloes

Data Storage and Transfer

Local storage

Single center study

External storage

Multicenter study

Commercial AI development

Data Storage and Transfer

	Pros
Local storage	Data safety
Single center study	Data availability
External storage	Data sharing
Multicenter study	Data backup
Commercial AI development	

Data Storage and Transfer

	Pros	Cons
Local storage	Data safety	Data sharing
Single center study	Data availability	
External storage	Data sharing	Costs
Multicenter study	Data backup	Fast connection
Commercial AI development		

Federated learning

A Centralized AI model development

and the first states of

Federated learning

- A Centralized AI model development
- B Federated AI model development

Medical Image File Formats

Meta data

Describes image

- Image matrix dimensions
- Spatial resolution
- Reconstruction settings

Medical Image File Formats

Generated by imaging device

DICOM (.dcm)

Facilitate post-processing

Analyze (.img and .hdr) NIfTI (.nii) Minc (.mnc)

Image Labeling

Image Labeling

Lung nodule: Present

Image Labeling

Lung nodule: Present Lung nodule: 4 mm

Image Labeling

Lung nodule: **Present** Lung nodule: **4 mm** Lung nodule: **Benign**

Coordinates

Image Labeling

Image Labeling

How to Label Images

How to Label Images

Challenges in Data Labeling

Challenges in Data Labeling

Label data

2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Oct 31 - Nov 4, 2021. Virtual Conference

Deep Learning-Based 3D Segmentation of True Lumen, False Lumen, and False Lumen Thrombosis in Type-B Aortic Dissection

Liana D. Wobben^{1,2}, Marina Codari¹, Gabriel Mistelbauer³, Antonio Pepe⁴, Kai Higashigaito¹, Lewis D. Hahn⁵, Domenico Mastrodicasa¹, Valery L. Turner¹, Virginia Hinostroza¹, Kathrin Bäumler¹, Michael P. Fischbein⁶, Dominik Fleischmann¹, and Martin J. Willemink¹

Abstract-Patients with initially uncomplicated type-B aortic dissection (uTBAD) remain at high risk for developing late complications. Identification of morphologic features for improving risk stratification of these patients requires automated segmentation of computed tomography angiography (CTA) images. We developed three segmentation models utilizing a 3D residual U-Net for segmentation of the true lumen (TL), false lumen (FL), and false lumen thrombosis (FLT). Model 1 segments all labels at once, whereas model 2 segments them sequentially. Best results for TL and FL segmentation were achieved by model 2, with median (interguartiles) Dice similarity coefficients (DSC) of 0.85 (0.77-0.88) and 0.84 (0.82-0.87), respectively. For FLT segmentation, model 1 was superior to model 2, with median (interquartiles) DSCs of 0.63 (0.40-0.78). To purely test the

I. INTRODUCTION

Medical management of initially uncomplicated type-B aortic dissection (uTBAD) is associated with a poor longterm survival of only 60% at five years, due to a high rate of late adverse events (LAEs) [1]. Early identification of patients who may potentially benefit from preventative thoracic endovascular aortic repair (TEVAR) is thus highly desirable. Several studies suggest that morphological features extracted from computed tomography angiography (CTA) might predict LAEs in patients with uTBAD [2], [3]. False

DL-based 3D segmentation of TL, FL, and FLT in TBAD

DL-based 3D segmentation of TL, FL, and FLT in TBAD

DL-based 3D segmentation of TL, FL, and FLT in TBAD

Dice similarity coefficients

Model	Phase	Aorta	TL	FL	PFL	FLT
1	Training	0.94 (0.92 - 0.94)	0.84 (0.77 - 0.87)	0.85 (0.78 - 0.90)	0.84 (0.73 - 0.90)	0.75 (0.66 - 0.79)
	Validation	0.93 (0.90 - 0.94)	0.81 (0.69 - 0.85)	0.82 (0.69 - 0.87)	0.80 (0.68 - 0.87)	0.72 (0.66 - 0.77)
	Testing	0.93 (0.91 - 0.94)	0.74 (0.71 - 0.77)	0.83 (0.79 - 0.84)	0.82 (0.79 - 0.86)	0.63 (0.40 - 0.78)
2	Training	0.96 (0.96 - 0.97)	0.93 (0.93 - 0.94)	0.94 (0.91 - 0.95)	0.93 (0.88 - 0.94)	0.77 (0.66 - 0.83)
	Validation	0.95 (0.94 - 0.96)	0.92 (0.86 - 0.93)	0.91 (0.85 - 0.92)	0.90 (0.85 - 0.93)	0.76 (0.68 - 0.79)
	Testing	0.96 (0.95 - 0.96)	0.86 (0.77 - 0.88)	0.86 (0.84 - 0.88)	0.85 (0.83 - 0.86)	0.50 (0.19 - 0.65)