Computer Vision and Deep Learning

Transformers

Matthias Fulde

WS 2023/24

Transformer

» Network architecture originally developed for natural language processing tasks

» But now also widely adapted to other domains like computer vision
» State of the art in many tasks

» Designed to process sequential data in parallel unlike recurrent neural networks

» Computation is based on attention mechanism

» Provides context for each element in a sequence

» Easier to learn global relationships

» Architecture behind large language models like BERT or GPT

Attention Is All You Need, Vaswani et al., 2017

Benchmarks

» Machine translation on WMT2014 English-German

40
Noisy back-translation Transformer Cycle (Rev)
30 Transformer Big
GNMT+RL
w
o
8 RNN.Efc-Dec Att
v 20
=
-
o0
10
0
2016 2017 2018 2019 2020 2021 2022

Other models Models with highest BLEU score

Figure from https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german

https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german

Benchmarks

» Question answering on SQuAD1.1

100
ANNA! | del
BERT (ensemble) LUKE (single model) {; } (single model)
Reinforced Mnemonic Reader (ensemble model)
ReasoNet(ensemble)
Match-LSTM with Ans-Ptr (Boundary) (ensemble)
2 s0
25
0

2017 2018 2019 2020 2021 2022

Other models Models with highest EM

Figure from https://paperswithcode.com/sota/question-answering-on-squadil

https://paperswithcode.com/sota/question-answering-on-squad11

Benchmarks

» Speech recognition on LibriSpeech test-clean

10
8
o
]
=
w
= 6
§ Deep Speech 2
« Gated ConvNets
]
~4
g 4
(=) tdnn + chain\+ rnnlm rescoring
% FAS—+-SpecAugment
= oy ContextNet(L)
Conformer + Wav2vec 2.0 + SpecAugment-based Noisy Student Training with Libri
0

2016 2017 2018 2019 2020 2021 2022 2023

Other models Models with lowest Word Error Rate (WER)

Figure from https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean

Benchmarks

» Image classification on ImageNet

100
ViT-G/14
FixResNeXt-101,32x48d
NASNET-A(6),
Inception V3
75 MSRA
's] AlexNet
<
o
S so
Q5
-
o
)
=
25
0
2014 2016 2018 2020 2022
Other models State-of-the-art models

Figure from https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet

Benchmarks

» Object detection on COCO

BOX AP

80

60

40

20

Group DETR,v2
DyHead (Swin-L, multi.scalefself=traininc

DetectoRS (ResNeXt-101-64x4d, multi-scale)
NAS-FPN (AmoebaNet=D; learned aug)
D-RFCN + SNIP (DPN-98 with flip,-mulfi-scale)

Mask R-CNN (ResNeXt101-FPN)
Faster R-CNN (box refinement, context, multi-scale testing)

SSD512

Fast=RCNN

2016 2017 2018 2019 2020 2021 2022

Other models Models with highest box AP

Figure from https://paperswithcode.com/sota/object-detection-on-coco

2023

https://paperswithcode.com/sota/object-detection-on-coco

Encoder-Decoder Architecture

» Original transformer is composed of encoder and decoder networks

| am a studen

t
n_»u
|

Figure from The lllustrated Transformer, Jay Alammar

Network Components

» Encoder and decoder networks are constructed as stacks of identical blocks

am a studen

e

N

Figure from The lllustrated Transformer, Jay Alammar

Sublayers

» Each block consists of a self-attention sublayer and a small feed-forward network

» Decoder blocks also have an additional cross-attention sublayer in between

t
[Feed Forward J
1 3
(Feed Forward J [Encoder-Decoder Attention J
L} — 3
(Self-Attention [Self-Attention
t t

Figure from The lllustrated Transformer, Jay Alammar

Self-Attention

» Mechanism analogous to cognitive attention of humans

» Put more focus on important parts of the input and less on unimportant parts

Margin Fringe

agefigt W
wer noch des

https://commons.wikimedia.org

https://commons.wikimedia.org

Queries, Keys, and Values

» Transformers use attention based on feature vectors*
» Each element of the input sequence is represented as a vector x;
» Parameter matrices W?, WX and WV are used to project each input vector

» Result is a query vector, a key vector, and a value vector
q; = WQXZ' ki = WKXi vV, = WVXZ'

which are typically of lower dimension than the input

For different implementations see https://en.wikipedia.org/wiki/Attention_(machine_learning)

https://en.wikipedia.org/wiki/Attention_(machine_learning)

Queries, Keys, and Values

Input

Embedding (. CTTT]

Queries a1 a7
Keys (111 LT

Values D:\:‘ E\:‘]

Figure from The lllustrated Transformer, Jay Alammar

Scores

» For each sequence element, its query vector is multiplied with all key vectors in
the sequence to compute a score

» lIdea is to find out which elements of the sequence are most important for the
current element

Input

Embedding LT LTI
Queries a [a: [T
Keys [T [T
Values D:\:‘ Dj]
Score g1 e ki = qre ko =

Figure from The lllustrated Transformer, Jay Alammar

Normalization

» For more stable gradients, the raw dot product scores are scaled with

1

vy,
where dj, is the dimension of the key vectors
» The softmax function

eSi

= Z] eSj

is used to normalize the scores into a probability distribution

Softmax(s);

Normalization

» Each normalized score is in the range (0,1) and the scores sum up to one

» Note that attention is computed also with respect to the element itself

Input

Embedding ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Queries G e [
Keys 11 17
Values [Dj D:‘
Score qie ki= qi e k2=
Divide by 8 (Vdy)

Softmax

Figure from The lllustrated Transformer, Jay Alammar

Output

» For each sequence element, all value ot
vectors are weighted with the
. beddi
normalized scores Fmbedding — e
Queries q1 D:\:‘ qz D:\:‘
» The weighted values are then summed Keys T T
up to generate the output for the e L L
respective sequence element
Score qre ki= qi e =
Divide by 8 (Vd;)
Softmax
Softmax
X 1]
sum [(1T1] (1]

Figure from The lllustrated Transformer, Jay Alammar

Parallel Computation

» Other than in recurrent networks, sequence elements can be processed in parallel

P Input embeddings are represented as design wa Q

matrix X | N _ H:‘:

» The inputs are multiplied with the
parameters to generate query, key, and value
matrices @, K, and V

- | B

» The outputs are then computed as

.
Attention(Q, K, V') = Softmax (C?/[C(Tk) 1% ’:H: .

B

Figure from The lllustrated Transformer, Jay Alammar

Multi-head Attention

» So far we discussed only attention with a single attention head

» Problematic because we can expect that for each sequence element, the element
itself has the most importance and less attention is paid to other elements

» Solution is to compute multiple attention maps using different parameter
matrices, such that inputs are projected into different representational spaces

» Result is that each element can attend to multiple parts of the sequence

Different Parameters

EEEE

ATTENTION HEAD #0 ATTENTION HEAD #1

Different Outputs

» Each attention head generates a different output matrix Zj

mamm

Calculating attention separately in
eight different attention heads

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

mum N o mmm

Figure from The lllustrated Transformer, Jay Alammar

Concatenation and Projection

» Another matrix WO is used to project the concatenated outputs

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the 7 matrix that captures information
from all the attention heads. We can send this forward to the FFNN

- HH

Figure from The lllustrated Transformer, Jay Alammar

Summary

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
Wo@

i

* |In all encoders other than #0,

we don’t need embedding.

We start directly with the output
of the encoder right below this one

it Qs

Figure from The lllustrated Transformer, Jay Alammar

Encoder Blocks

» Each encoder block is composed of a multi-head self-attention sublayer and a
small two-layer feed-forward network

» There are residual connections passing both sublayers and layer normalization is
applied after merging the branches

4 4
‘ &(Add & Normalize)
IE (Feed Forward) (Feed Forward)
S)
: [} [}
E (Self-Attention)

.
POSITIONAL
ENCODING

[]

Figure from The lllustrated Transformer, Jay Alammar

Layer Normalization

» Using layer normalization in transformers means that mean and variance are
computed across all features of a single input sequence

A

Merged Spatial
Dimensions (H,W)

Channels C

>

Mini-Batch Samples N

Figure from https://theaisummer.com/normalization/

https://theaisummer.com/normalization/

Placement

» The previously described architecture
is also known as Post-LN transformer

T
architecture

X141 X141

addition

addition

» A more stable training with easier
hyperparameter tuning can be T
achieved using a Pre-LN transformer " -
architecture Layer Norm [sddition

» Here the normalization is applied Mult Head
before the self-attention and Mult-Head i

Attention r Nori
fully-connected sublayers
X X|

Figure from On Layer Normalization in the Transformer Architecture, Xiong et al., 2020

Decoder Blocks

» Decoder blocks work pretty much the same as encoder blocks except that they
have an additional cross-attention sublayer between the self-attention and
fully-connected sublayers

» In the cross-attention sublayer, only query matrices ()5, are computed from the
current input sequence

» The key and value matrices K} and V}, are computed from the output of the last
encoder block

» Idea is that when generating a new output element, each decoder block should
have access to the feature representation of the input sequence created by the
encoder network

(Softmax)

',(Add & Normalize) L

' (Linear)
E (Feed Fol rward) (Feed Forward) 4
.

i3 %
:»(. Add & Normalize £) :>(Add & Normalize)

:\ _(_ ______ T _____ S_e_lfft_tfr:t_iilj — 'T) E (Feed Forward) (Feed Forward)

,»(Add & Normalize) ,*(Add & Normalize)

: e |))

E (Feed Forward) (Feed Forward) :’(Encoder-Decoder Attention)
____________________________ Ay T STTTTT LT LT LTI TTETY |

"y(Add & Normalize) ,»(Add & Normalize)

: L} L} : [} L}

E (Self-Attention) H (Self-Attention)

. ..
POSITIONAL
ENCODING

[T

Figure from The lllustrated Transformer, Jay Alammar

Masking

» The decoder generates output elements step by step

» The first and last elements of the output sequence are special symbols denoting
the start and end of the sequence

» In order to allow self-attention in the decoder blocks, the elements corresponding
to not yet generated outputs are masked

KEYS KEYS
MASK MASK T T2 T3 T4 T5 T T2 T3 T4_T5
ol 1 |1 (1] 0 [-1e9|-1e9 [-1e9|-1e9 T [427(0.29| 7.9 [10.0] 54 | , T1 [4.27|-1e9|-1e9 | -1e9|-1e9 | ,
@ @
DRMON 1 | 1 | 1 0 | 0 |-1e9|-1e9|-1e9 T2(029| 9.0 |68 |35|.80 | 3 T2(0.29(9.0 |19 |-1e9|-1e9| B
& 5 2 S
u 2 w 2
010 (0| 1)1 |x(-1e9)=[0]0 |0 |1e9|-te9] 4 K T3|79|314(007(26|81(& = [T3[79]31 097 -1e9|-1e0| R
=) B =] B
<] 2 <] 2
oo fofo|1 0| 0| 0| 0 |-1e9 T4|10.0| 2.0 [1.0 (0.92(48 § T4|10.0(2.0 | 1.0 (0.92(-1e9| &
ES E
ofofofofo o0 |0|0]o0 5| 51|13|841 .56 09a| ¥ 5| 51|13 81| .56 00a|
<-- SEQUENCE LENGTH --> <-- SEQUENCE LENGTH -->

Create the look-ahead mask Multiply mask by -1e9 Add mask to attention matrix Masked attention matrix

Which word in our vocabulary

-

vocab_size

)

o

vocab_size

)

is associated with this index? am
Get the index of the cell
with the highest value ’
(argmax)
log_probs I O Y I I
12345 .
+
(Softmax
+
logits I v I I
812345
4
(Linear
+
Decoder stack output

Figure from The lllustrated Transformer, Jay Alammar

Word Embedding

» Assuming natural language input, we have to translate this into a numerical
representation before giving it to the transformer

» Some algorithms that can be used to perform this task are word2vec and GloVe

» lIdeally, vector representations should be low dimensional while preserving
contextual similarity

walked

O

walking

swimming

Efficient Estimation of Word Representations in Vector Space, Mikolov et al., 2013
GloVe: Global Vectors for Word Representation, Pennington et al., 2014
Figure from Glossary of Deep Learning: Word Embedding, Jaron Collis

Positional Encoding

» Transformer as described so far has no built-in mechanism to take into account
the order of the sequence

» To address this problem, a positional encoding can be added to the elements of
the sequence

» Position encodings can be computed using a fixed function or implemented as a
learnable position bias

» Absolute or relative positions can be encoded

Fixed Function Positional Encoding

» Original transformer uses a fixed function positional encoding based on sinusoids

» The created encoding vectors have the same length as the feature vectors for the
elements of the sequence, so that they can be added together

EMBEDDING
WITH TIME

SIGNAL _

POSITIONAL I ‘
ENCODING '

EMBEDDINGS LT TT] [T TT] [T 1T

INPUT

Figure from The lllustrated Transformer, Jay Alammar

Formula

» The encoding vectors contain sine and cosine functions with different frequencies
in each dimension

» With pos being the position within the sequence and ¢ being the dimension, the
vector components are computed with

PEpos,2i = sin (Pos/10000>”model)

and
PEpos,2i+1 = €08 (P05/10000*/Imodel)

where dmodel is the dimension of the feature vectors

Visualization

o

-

Token Position

o 10

Figure from The lllustrated Transformer, Jay Alammar

0 ki)
Embedding Dimension

40

100

075

050

025

0.00

-025

-0.50

-075

Vision Transformers

» Transformers have been successfully adapted to the vision domain

» Main challenges for the application are

» Grid structure of images instead of sequential structure of language

» Computational complexity, since computational cost is quadratic in the number of
sequence elements

» No inductive bias for locality as in convolutional neural networks

» Training typically requires large amount of data

» Main advantage is

» Transformers can take into account the whole image context and are therefore more
capable to learn relationships between distant parts of an image

Architecture

» First vision transformers developed to be close to original architecture, but only
the encoder network is used

» Images are partitioned into non-overlapping patches which are converted into
vectors

Transformer Encoder

(=

Vision Transformer (ViT)

MLP
Head

‘ Transformer Encoder ’

e)) Doe) |

Multi-Head
Attention

Linear Projection of Flattened Patches]

1T S S A B
i] B T]
]

Embedded
Patches

An image is worth 16 x 16 Words: Transformers for Image Recoginition at Scale, Dosovitskiy et al., 2021

Improvements

» Easier optimization and faster convergence can be achieved by using a
convolutional stem to extract low-level image features

(patchify (P) stem transformer block

convolutional (C) stem
ll Xn

stem flops = [transformer block,

UONUINY
eIl

91 apins
SAUOD QX9

transformer block

UOTIUINY
PEAH-NINIA

AUOD [X]

Tlo]

apins
AUOD EXE

Early Convolutions Help Transformers See Better, Xiao et al., 2021

Swin Transformer

» More advanced approach to adapt transformers to the vision domain

» Main idea is to attend only within local windows to reduce computational cost,
but to shift and merge these windows in subsequent layers in order to retain the
ability to learn global dependencies

segmentation])
classification detection ... Clﬂsmfﬁcatlon

’gx

W
Lo ey 1|
7 4

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021

Shifted Windows

» Image is partitioned into patches as in original vision transformer
P Attention is only computed between patches belonging to the same window

» Shifting windows allows to make connections across previous window boundaries

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021

Architecture

» Proposed network architecture and view on subsequent transformer layers

SN . U S

Stage 3

Swin
Transformer|] Transformer
Block Block

Swin
Transformer
Block

Images

Patch Merging
Patch Merging

Patch Partition

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021

