Computer Vision and Deep Learning

Transformers

Matthias Fulde

WS 2023/24

Transformer

- ▶ Network architecture originally developed for natural language processing tasks
	- \blacktriangleright But now also widely adapted to other domains like computer vision
	- \triangleright State of the art in many tasks
- ▶ Designed to process sequential data in parallel unlike recurrent neural networks
- Computation is based on attention mechanism
	- ▶ Provides context for each element in a sequence
	- ▶ Easier to learn global relationships
- ▶ Architecture behind large language models like BERT or GPT

Attention Is All You Need, Vaswani et al., 2017

▶ Machine translation on WMT2014 English-German

Figure from <https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german>

▶ Question answering on SQuAD1.1

Figure from <https://paperswithcode.com/sota/question-answering-on-squad11>

▶ Speech recognition on LibriSpeech test-clean

Figure from <https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean>

▶ Image classification on ImageNet

Figure from <https://paperswithcode.com/sota/image-classification-on-imagenet>

▶ Object detection on COCO

Figure from <https://paperswithcode.com/sota/object-detection-on-coco>

Encoder-Decoder Architecture

▶ Original transformer is composed of encoder and decoder networks

Network Components

▶ Encoder and decoder networks are constructed as stacks of identical blocks

Sublayers

- ▶ Each block consists of a self-attention sublayer and a small feed-forward network
- ▶ Decoder blocks also have an additional cross-attention sublayer in between

Self-Attention

- \blacktriangleright Mechanism analogous to cognitive attention of humans
- ▶ Put more focus on important parts of the input and less on unimportant parts

Figure from <https://commons.wikimedia.org>

Queries, Keys, and Values

- ▶ Transformers use attention based on feature vectors^{*}
- \blacktriangleright Each element of the input sequence is represented as a vector \mathbf{x}_i
- \blacktriangleright Parameter matrices $\mathbf{W}^Q, \mathbf{W}^K$, and \mathbf{W}^V are used to project each input vector
- ▶ Result is a query vector, a key vector, and a value vector

$$
\mathbf{q}_i = \mathbf{W}^Q \mathbf{x}_i \qquad \mathbf{k}_i = \mathbf{W}^K \mathbf{x}_i \qquad \mathbf{v}_i = \mathbf{W}^V \mathbf{x}_i
$$

which are typically of lower dimension than the input

[∗] For different implementations see [https://en.wikipedia.org/wiki/Attention_\(machine_learning\)](https://en.wikipedia.org/wiki/Attention_(machine_learning))

Queries, Keys, and Values

- \blacktriangleright For each sequence element, its query vector is multiplied with all key vectors in the sequence to compute a score
- \blacktriangleright Idea is to find out which elements of the sequence are most important for the current element

▶ For more stable gradients, the raw dot product scores are **scaled** with

where d_k is the dimension of the key vectors

 \blacktriangleright The softmax function

$$
\text{Softmax}(\mathbf{s})_i = \frac{e^{\mathbf{s}_i}}{\sum_j e^{\mathbf{s}_j}}
$$

 $\frac{1}{\sqrt{2}}$ d_k

is used to normalize the scores into a probability distribution

Normalization

- \blacktriangleright Each normalized score is in the range $(0, 1)$ and the scores sum up to one
- ▶ Note that attention is computed also with respect to the element itself

Output

- ▶ For each sequence element, all value vectors are weighted with the normalized scores
- \blacktriangleright The weighted values are then summed up to generate the output for the respective sequence element

Parallel Computation

- \triangleright Other than in recurrent networks, sequence elements can be processed in parallel
	- \blacktriangleright Input embeddings are represented as design matrix X
	- \blacktriangleright The inputs are multiplied with the parameters to generate query, key, and value matrices Q, K , and V
	- \blacktriangleright The outputs are then computed as

$$
\text{Attention}(Q, K, V) = \text{Softmax}\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V
$$

Multi-head Attention

- \triangleright So far we discussed only attention with a single attention head
- ▶ Problematic because we can expect that for each sequence element, the element itself has the most importance and less attention is paid to other elements
- ▶ Solution is to compute multiple attention maps using different parameter matrices, such that inputs are projected into different representational spaces
- \blacktriangleright Result is that each element can attend to multiple parts of the sequence

Different Parameters

Different Outputs

 \blacktriangleright Each attention head generates a different output matrix Z_h

Concatenation and Projection

Another matrix W^O is used to project the concatenated outputs

2) Multiply with a weight matrix W^o that was trained jointly with the model

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Summary

Encoder Blocks

- ▶ Each encoder block is composed of a multi-head self-attention sublayer and a small two-layer feed-forward network
- ▶ There are residual connections passing both sublayers and layer normalization is applied after merging the branches

▶ Using layer normalization in transformers means that mean and variance are computed across all features of a single input sequence

Figure from <https://theaisummer.com/normalization/>

Placement

- \blacktriangleright The previously described architecture is also known as Post-LN transformer architecture
- \blacktriangleright A more stable training with easier hyperparameter tuning can be achieved using a Pre-LN transformer architecture
- \blacktriangleright Here the normalization is applied before the self-attention and fully-connected sublayers

Figure from On Layer Normalization in the Transformer Architecture, Xiong et al., 2020

- ▶ Decoder blocks work pretty much the same as encoder blocks except that they have an additional **cross-attention** sublayer between the self-attention and fully-connected sublayers
- In the cross-attention sublayer, only query matrices Q_h are computed from the current input sequence
- \blacktriangleright The key and value matrices K_h and V_h are computed from the output of the last encoder block
- ▶ Idea is that when generating a new output element, each decoder block should have access to the feature representation of the input sequence created by the encoder network

Overview

- ▶ The decoder generates output elements step by step
- \blacktriangleright The first and last elements of the output sequence are special symbols denoting the start and end of the sequence
- \blacktriangleright In order to allow self-attention in the decoder blocks, the elements corresponding to not yet generated outputs are masked

Output

Word Embedding

- \triangleright Assuming natural language input, we have to translate this into a numerical representation before giving it to the transformer
- ▶ Some algorithms that can be used to perform this task are word2vec and GloVe
- Ideally, vector representations should be low dimensional while preserving contextual similarity

Efficient Estimation of Word Representations in Vector Space, Mikolov et al., 2013 GloVe: Global Vectors for Word Representation, Pennington et al., 2014 Figure from Glossary of Deep Learning: Word Embedding, Jaron Collis

Positional Encoding

- \triangleright Transformer as described so far has no built-in mechanism to take into account the order of the sequence
- \triangleright To address this problem, a **positional encoding** can be added to the elements of the sequence
- ▶ Position encodings can be computed using a fixed function or implemented as a learnable position bias
- ▶ Absolute or relative positions can be encoded

Fixed Function Positional Encoding

- \triangleright Original transformer uses a fixed function positional encoding based on sinusoids
- ▶ The created encoding vectors have the same length as the feature vectors for the elements of the sequence, so that they can be added together

Formula

- \blacktriangleright The encoding vectors contain sine and cosine functions with different frequencies in each dimension
- \triangleright With pos being the position within the sequence and i being the dimension, the vector components are computed with

$$
\text{PE}_{pos,2i} = \sin\left(\frac{pos}{10000}^{2i/d_{\text{model}}}\right)
$$

and

$$
\text{PE}_{pos,2i+1} = \cos\left(\text{pos}/10000^{2i/d_{\text{model}}}\right)
$$

where d_{model} is the dimension of the feature vectors

Visualization

Vision Transformers

- \blacktriangleright Transformers have been successfully adapted to the vision domain
- \blacktriangleright Main challenges for the application are
	- ▶ Grid structure of images instead of sequential structure of language
	- \triangleright Computational complexity, since computational cost is quadratic in the number of sequence elements
	- \blacktriangleright No inductive bias for locality as in convolutional neural networks
	- ▶ Training typically requires large amount of data
- ▶ Main advantage is
	- ▶ Transformers can take into account the whole image context and are therefore more capable to learn relationships between distant parts of an image

Architecture

- ▶ First vision transformers developed to be close to original architecture, but only the encoder network is used
- ▶ Images are partitioned into non-overlapping patches which are converted into vectors

An image is worth 16×16 Words: Transformers for Image Recoginition at Scale, Dosovitskiy et al., 2021

▶ Easier optimization and faster convergence can be achieved by using a convolutional stem to extract low-level image features

Early Convolutions Help Transformers See Better, Xiao et al., 2021

Swin Transformer

- \blacktriangleright More advanced approach to adapt transformers to the vision domain
- \blacktriangleright Main idea is to attend only within **local windows** to reduce computational cost, but to shift and merge these windows in subsequent layers in order to retain the ability to learn global dependencies

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021

Shifted Windows

- ▶ Image is partitioned into patches as in original vision transformer
- ▶ Attention is only computed between patches belonging to the same window
- ▶ Shifting windows allows to make connections across previous window boundaries

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021

▶ Proposed network architecture and view on subsequent transformer layers

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021