
Computer Vision and Deep Learning

Transformers

Matthias Fulde

WS 2023/24



Transformer

▶ Network architecture originally developed for natural language processing tasks

▶ But now also widely adapted to other domains like computer vision

▶ State of the art in many tasks

▶ Designed to process sequential data in parallel unlike recurrent neural networks

▶ Computation is based on attention mechanism

▶ Provides context for each element in a sequence

▶ Easier to learn global relationships

▶ Architecture behind large language models like BERT or GPT

Attention Is All You Need, Vaswani et al., 2017



Benchmarks

▶ Machine translation on WMT2014 English-German

Figure from https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german

https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german


Benchmarks

▶ Question answering on SQuAD1.1

Figure from https://paperswithcode.com/sota/question-answering-on-squad11

https://paperswithcode.com/sota/question-answering-on-squad11


Benchmarks

▶ Speech recognition on LibriSpeech test-clean

Figure from https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean

https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean


Benchmarks

▶ Image classification on ImageNet

Figure from https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet


Benchmarks

▶ Object detection on COCO

Figure from https://paperswithcode.com/sota/object-detection-on-coco

https://paperswithcode.com/sota/object-detection-on-coco


Encoder-Decoder Architecture

▶ Original transformer is composed of encoder and decoder networks

Figure from The Illustrated Transformer, Jay Alammar



Network Components

▶ Encoder and decoder networks are constructed as stacks of identical blocks

Figure from The Illustrated Transformer, Jay Alammar



Sublayers

▶ Each block consists of a self-attention sublayer and a small feed-forward network

▶ Decoder blocks also have an additional cross-attention sublayer in between

Figure from The Illustrated Transformer, Jay Alammar



Self-Attention

▶ Mechanism analogous to cognitive attention of humans

▶ Put more focus on important parts of the input and less on unimportant parts

Figure from https://commons.wikimedia.org

https://commons.wikimedia.org


Queries, Keys, and Values

▶ Transformers use attention based on feature vectors∗

▶ Each element of the input sequence is represented as a vector xi

▶ Parameter matrices WQ,WK , and WV are used to project each input vector

▶ Result is a query vector, a key vector, and a value vector

qi = WQxi ki = WKxi vi = WV xi

which are typically of lower dimension than the input

∗ For different implementations see https://en.wikipedia.org/wiki/Attention_(machine_learning)

https://en.wikipedia.org/wiki/Attention_(machine_learning)


Queries, Keys, and Values

Figure from The Illustrated Transformer, Jay Alammar



Scores

▶ For each sequence element, its query vector is multiplied with all key vectors in
the sequence to compute a score

▶ Idea is to find out which elements of the sequence are most important for the
current element

Figure from The Illustrated Transformer, Jay Alammar



Normalization

▶ For more stable gradients, the raw dot product scores are scaled with

1√
dk

where dk is the dimension of the key vectors

▶ The softmax function

Softmax(s)i =
esi∑
j e

sj

is used to normalize the scores into a probability distribution



Normalization

▶ Each normalized score is in the range (0, 1) and the scores sum up to one

▶ Note that attention is computed also with respect to the element itself

Figure from The Illustrated Transformer, Jay Alammar



Output

▶ For each sequence element, all value
vectors are weighted with the
normalized scores

▶ The weighted values are then summed
up to generate the output for the
respective sequence element

Figure from The Illustrated Transformer, Jay Alammar



Parallel Computation

▶ Other than in recurrent networks, sequence elements can be processed in parallel

▶ Input embeddings are represented as design
matrix X

▶ The inputs are multiplied with the
parameters to generate query, key, and value
matrices Q,K, and V

▶ The outputs are then computed as

Attention(Q,K, V ) = Softmax

(
QK⊤
√
dk

)
V

Figure from The Illustrated Transformer, Jay Alammar



Multi-head Attention

▶ So far we discussed only attention with a single attention head

▶ Problematic because we can expect that for each sequence element, the element
itself has the most importance and less attention is paid to other elements

▶ Solution is to compute multiple attention maps using different parameter
matrices, such that inputs are projected into different representational spaces

▶ Result is that each element can attend to multiple parts of the sequence



Different Parameters

Figure from The Illustrated Transformer, Jay Alammar



Different Outputs

▶ Each attention head generates a different output matrix Zh

Figure from The Illustrated Transformer, Jay Alammar



Concatenation and Projection

▶ Another matrix WO is used to project the concatenated outputs

Figure from The Illustrated Transformer, Jay Alammar



Summary

Figure from The Illustrated Transformer, Jay Alammar



Encoder Blocks

▶ Each encoder block is composed of a multi-head self-attention sublayer and a
small two-layer feed-forward network

▶ There are residual connections passing both sublayers and layer normalization is
applied after merging the branches

Figure from The Illustrated Transformer, Jay Alammar



Layer Normalization

▶ Using layer normalization in transformers means that mean and variance are
computed across all features of a single input sequence

Figure from https://theaisummer.com/normalization/

https://theaisummer.com/normalization/


Placement

▶ The previously described architecture
is also known as Post-LN transformer
architecture

▶ A more stable training with easier
hyperparameter tuning can be
achieved using a Pre-LN transformer
architecture

▶ Here the normalization is applied
before the self-attention and
fully-connected sublayers

Figure from On Layer Normalization in the Transformer Architecture, Xiong et al., 2020



Decoder Blocks

▶ Decoder blocks work pretty much the same as encoder blocks except that they
have an additional cross-attention sublayer between the self-attention and
fully-connected sublayers

▶ In the cross-attention sublayer, only query matrices Qh are computed from the
current input sequence

▶ The key and value matrices Kh and Vh are computed from the output of the last
encoder block

▶ Idea is that when generating a new output element, each decoder block should
have access to the feature representation of the input sequence created by the
encoder network



Overview

Figure from The Illustrated Transformer, Jay Alammar



Masking

▶ The decoder generates output elements step by step

▶ The first and last elements of the output sequence are special symbols denoting
the start and end of the sequence

▶ In order to allow self-attention in the decoder blocks, the elements corresponding
to not yet generated outputs are masked



Output

Figure from The Illustrated Transformer, Jay Alammar



Word Embedding

▶ Assuming natural language input, we have to translate this into a numerical
representation before giving it to the transformer

▶ Some algorithms that can be used to perform this task are word2vec and GloVe

▶ Ideally, vector representations should be low dimensional while preserving
contextual similarity

Efficient Estimation of Word Representations in Vector Space, Mikolov et al., 2013

GloVe: Global Vectors for Word Representation, Pennington et al., 2014

Figure from Glossary of Deep Learning: Word Embedding, Jaron Collis



Positional Encoding

▶ Transformer as described so far has no built-in mechanism to take into account
the order of the sequence

▶ To address this problem, a positional encoding can be added to the elements of
the sequence

▶ Position encodings can be computed using a fixed function or implemented as a
learnable position bias

▶ Absolute or relative positions can be encoded



Fixed Function Positional Encoding

▶ Original transformer uses a fixed function positional encoding based on sinusoids

▶ The created encoding vectors have the same length as the feature vectors for the
elements of the sequence, so that they can be added together

Figure from The Illustrated Transformer, Jay Alammar



Formula

▶ The encoding vectors contain sine and cosine functions with different frequencies
in each dimension

▶ With pos being the position within the sequence and i being the dimension, the
vector components are computed with

PEpos,2i = sin (pos/100002i/dmodel)

and
PEpos,2i+1 = cos (pos/100002i/dmodel)

where dmodel is the dimension of the feature vectors



Visualization

Figure from The Illustrated Transformer, Jay Alammar



Vision Transformers

▶ Transformers have been successfully adapted to the vision domain

▶ Main challenges for the application are

▶ Grid structure of images instead of sequential structure of language

▶ Computational complexity, since computational cost is quadratic in the number of
sequence elements

▶ No inductive bias for locality as in convolutional neural networks

▶ Training typically requires large amount of data

▶ Main advantage is

▶ Transformers can take into account the whole image context and are therefore more
capable to learn relationships between distant parts of an image



Architecture

▶ First vision transformers developed to be close to original architecture, but only
the encoder network is used

▶ Images are partitioned into non-overlapping patches which are converted into
vectors

An image is worth 16× 16 Words: Transformers for Image Recoginition at Scale, Dosovitskiy et al., 2021



Improvements

▶ Easier optimization and faster convergence can be achieved by using a
convolutional stem to extract low-level image features

Early Convolutions Help Transformers See Better, Xiao et al., 2021



Swin Transformer

▶ More advanced approach to adapt transformers to the vision domain

▶ Main idea is to attend only within local windows to reduce computational cost,
but to shift and merge these windows in subsequent layers in order to retain the
ability to learn global dependencies

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021



Shifted Windows

▶ Image is partitioned into patches as in original vision transformer

▶ Attention is only computed between patches belonging to the same window

▶ Shifting windows allows to make connections across previous window boundaries

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021



Architecture

▶ Proposed network architecture and view on subsequent transformer layers

Figure from Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, Liu et al., 2021


