Gemma Roig Computer Vision Goethe University

Today's class objectives

- What are Recurrent Neural Networks
- When to use RNN
- Training RNN
- Long-Short Term Memory Networks (LSTM)

ar...

nave seen neural networks to model one to one endencies

one to one

Input: No sequence - example: image

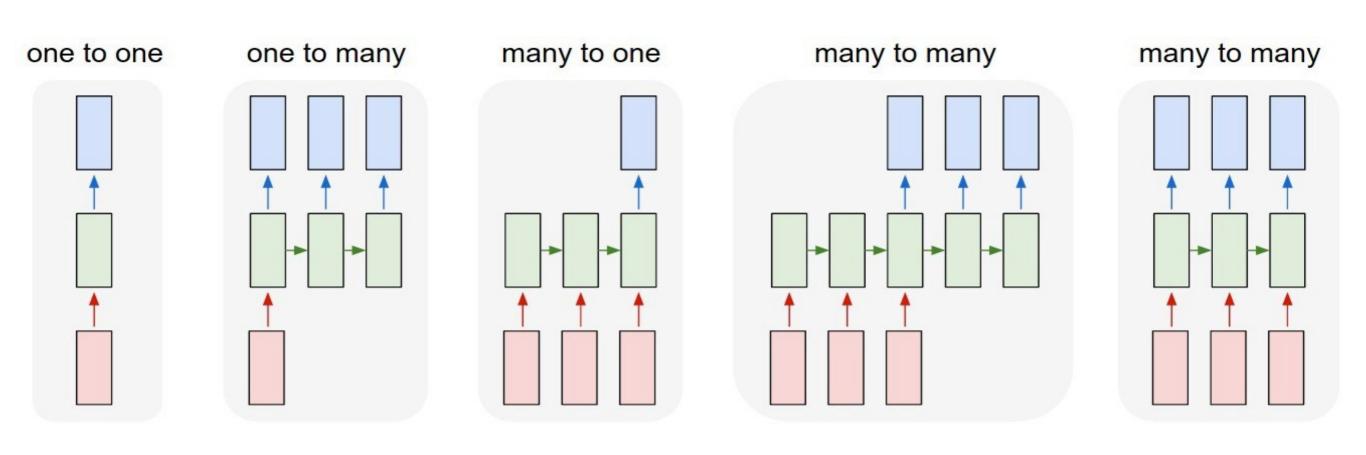
Output: No sequence - examples: label of object class

Example:

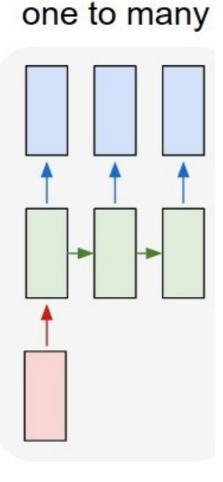
- "standard" classification
- regression problems

How do we model sequences?

Input -> Output



How do we model sequences?

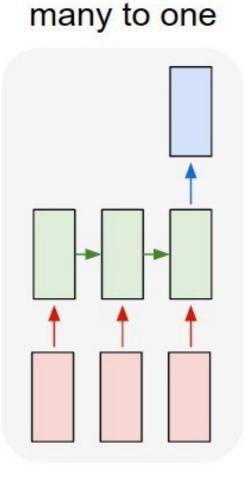


Input: No sequence Output: Sequence

Example:

 Image captioning (image -> words)

How do we model sequences?

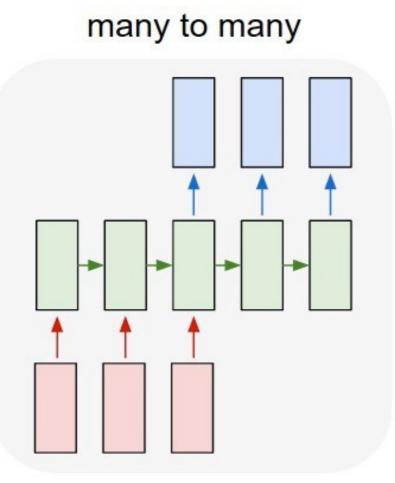


Input: Sequence Output: No sequence

Example:

- sentence classification
- sentiment classification (words seq.->sentiment)

How do we model sequences?



Example:

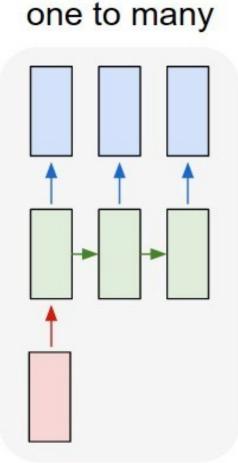
 machine translation, (words seq-> words seq) many to many

Input: Sequence Output: Sequence

Example:

video captioning

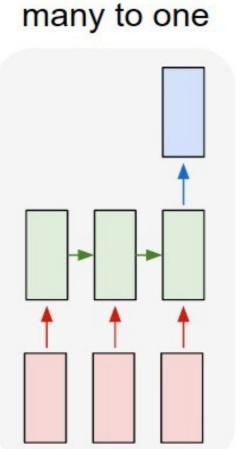
How do we model sequences?



Input: No sequence Output: Sequence

Example:

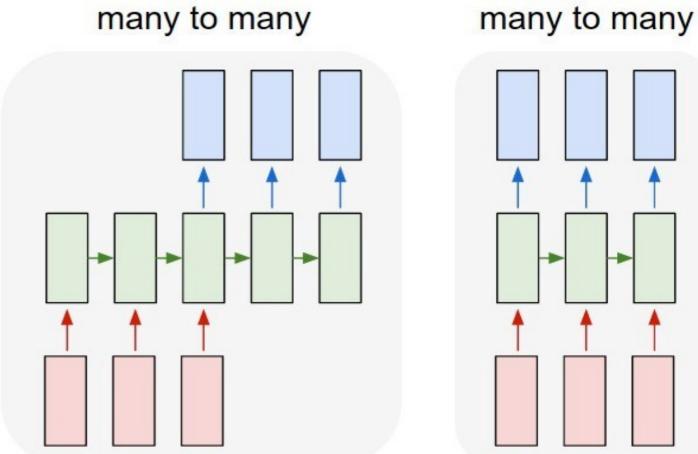
 Image captioning (image -> words)



Input: Sequence Output: No sequence

Example:

- sentence classification
- sentiment classification (words seq.->sentiment)



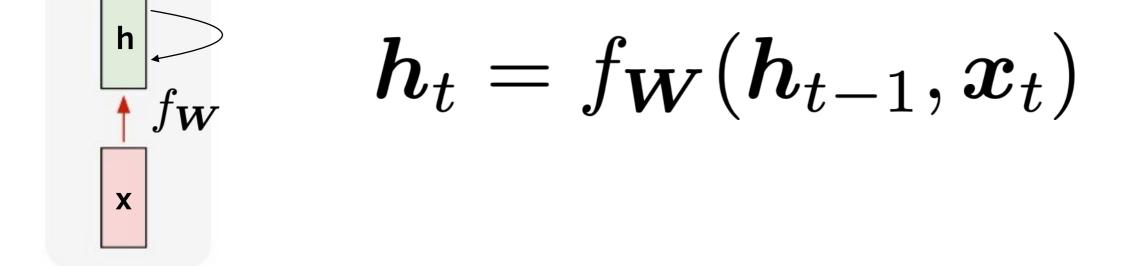
Input: Sequence Output: Sequence

Example:

 machine translation, (words seq-> words seq) Example:

video captioning

Recurrent formula at each time step:

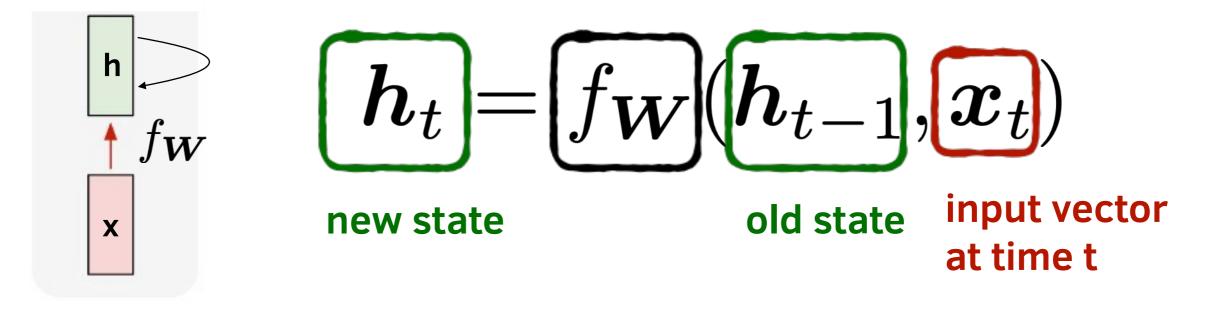


x: input sequence of vectors

h: hidden units, representing the state of the network

 f_{W} : function with parameters W

Recurrent formula at each time step:



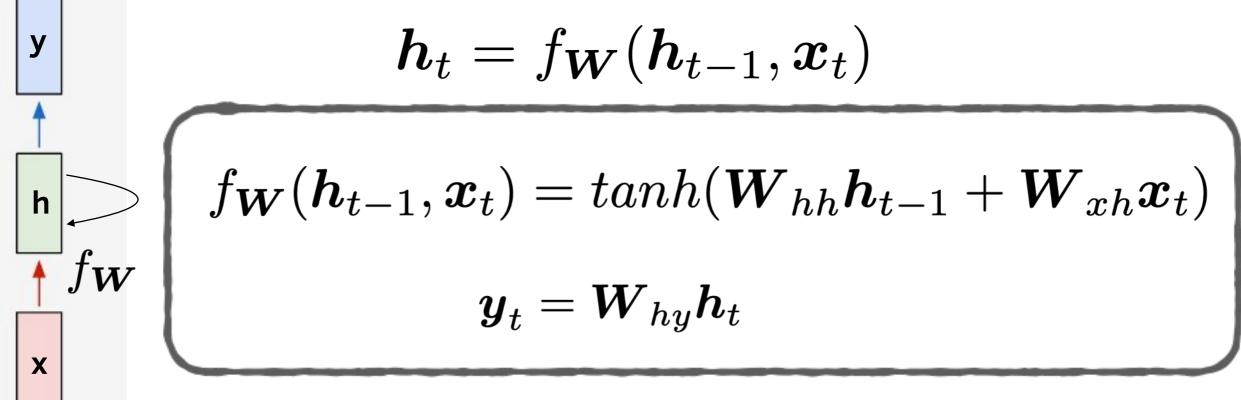
x: input sequence of vectors

h: hidden units, representing the state of the network

fw function with parameters W.

The same function and same W are used at every time step

Example - RNN with one hidden vector h:

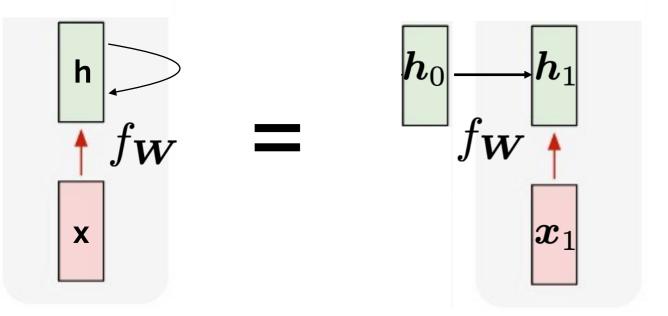


x: input sequence of vectors

h: hidden units, representing the state of the network

fw: function with parameters W y: output sequence

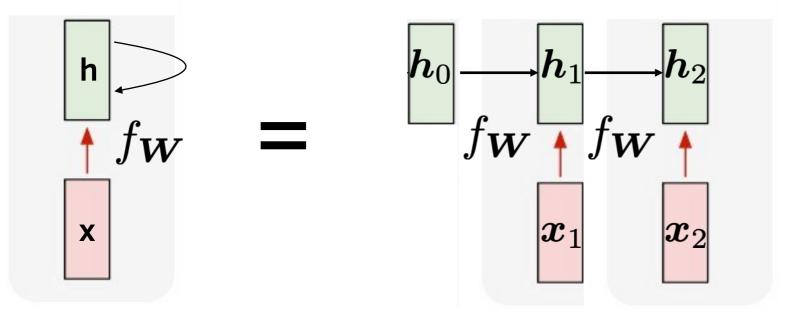
Computational Graph-Unrolled recurrent neural network:



$$\boldsymbol{h}_t = f_{\boldsymbol{W}}(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t)$$

A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor

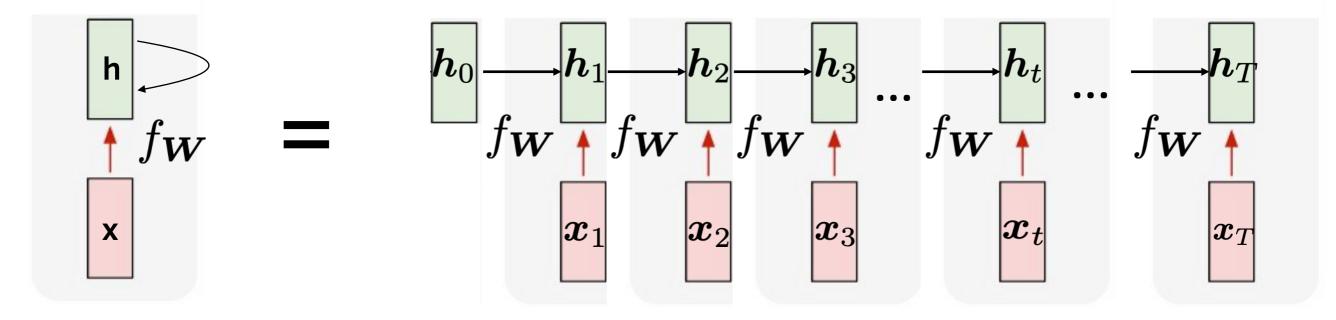
Computational Graph-Unrolled recurrent neural network:



$$\boldsymbol{h}_t = f_{\boldsymbol{W}}(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t)$$

Re-use the same weight matrix W at every time step

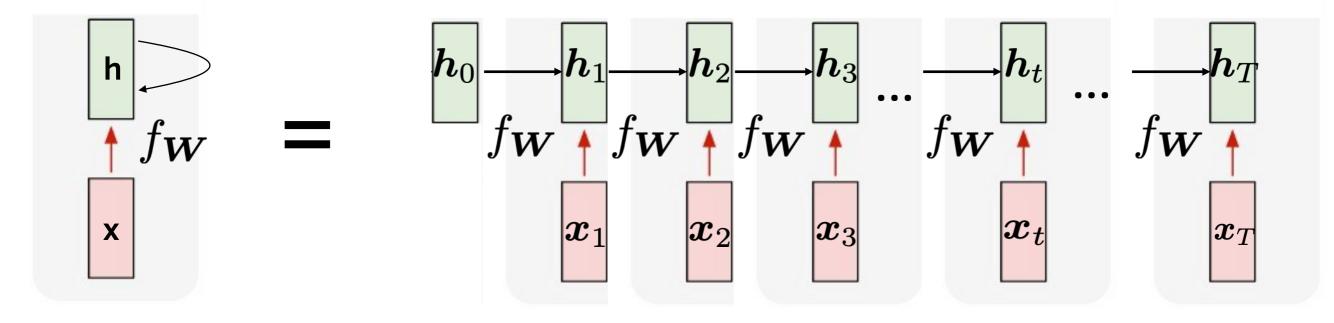
Computational Graph-Unrolled recurrent neural network:



$$\boldsymbol{h}_t = f_{\boldsymbol{W}}(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t)$$

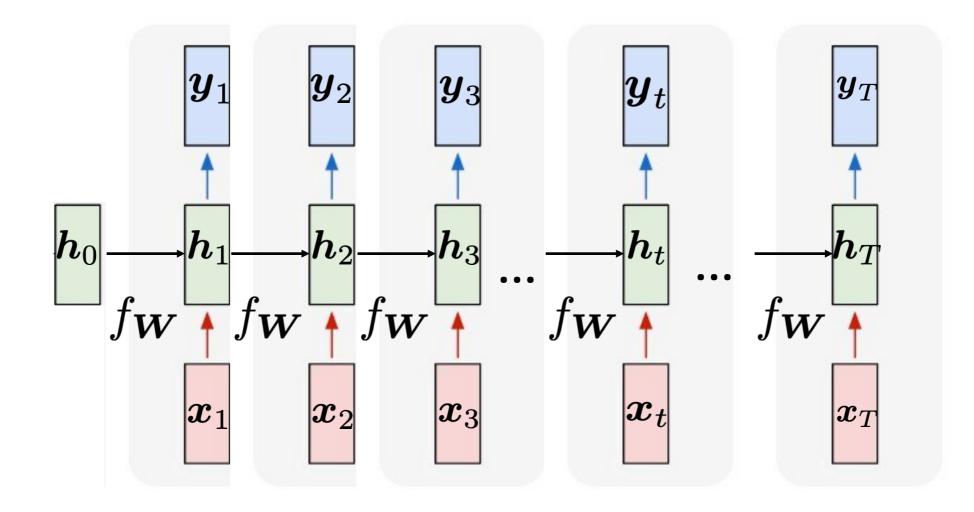
Re-use the same weight matrix W at every time step

Computational Graph-Unrolled recurrent neural network:

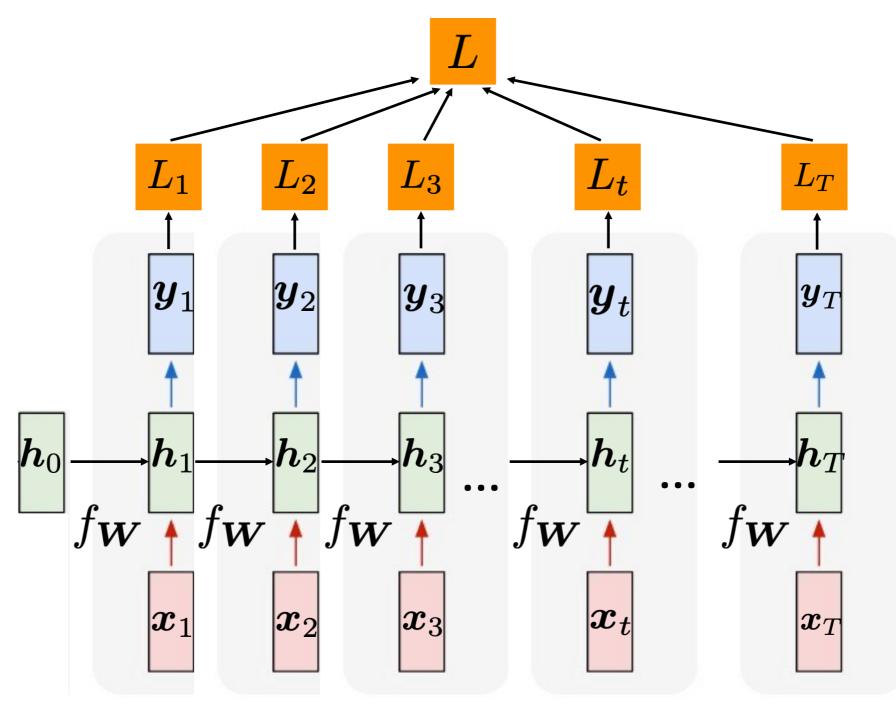


If the relevant input information is close to where is needed, the RNNs can learn to use the past information

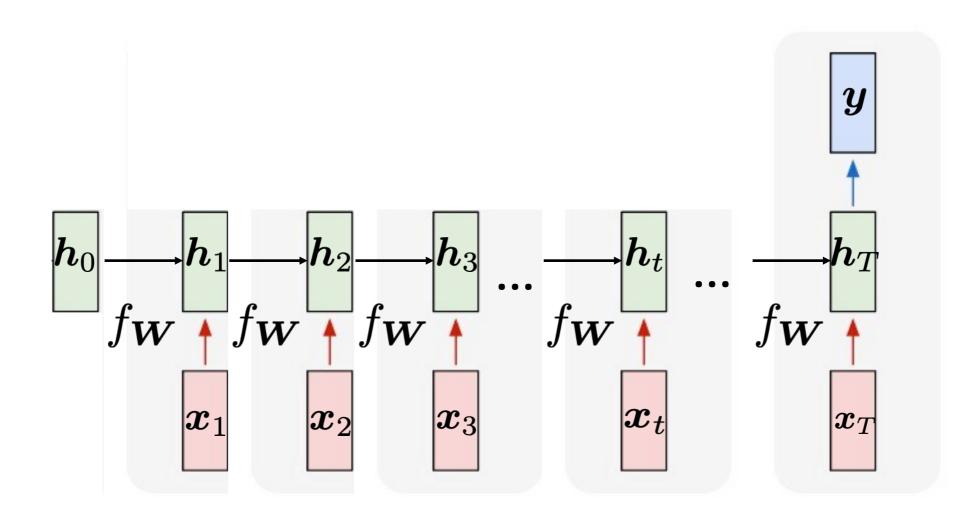
Computational Graph - Many to many



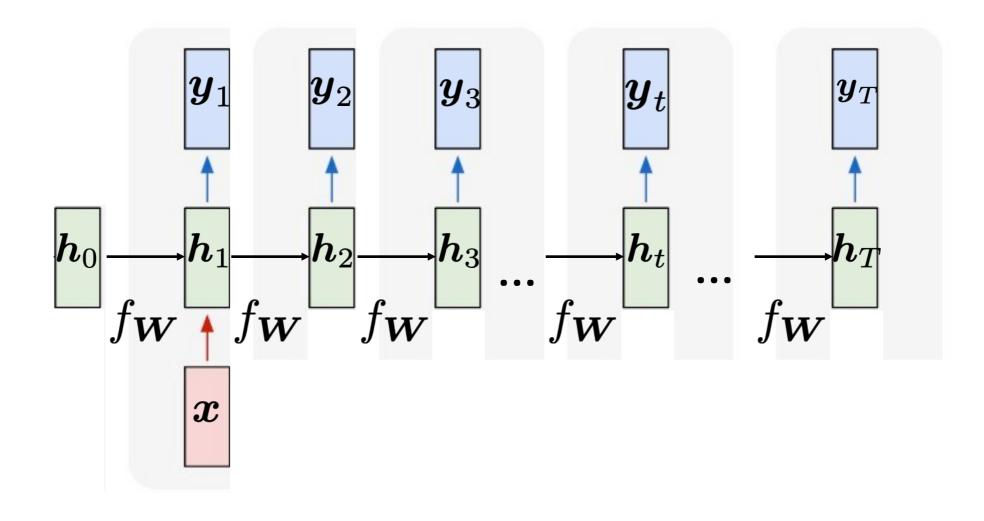
Computational Graph - Many to many



Computational Graph - Many to one



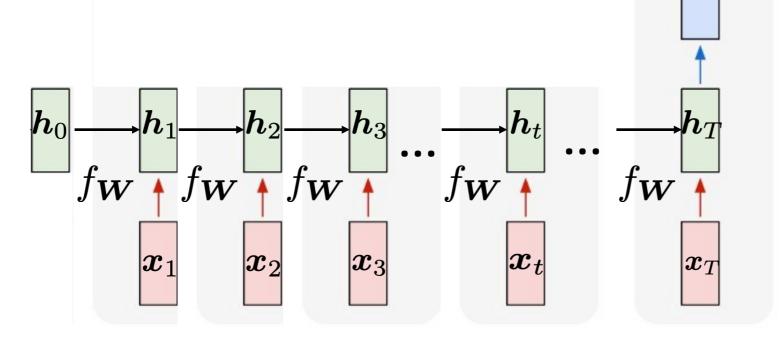
Computational Graph - One to many



Computational Graph -Sequence to sequence: many to one + one to many

Many to one:

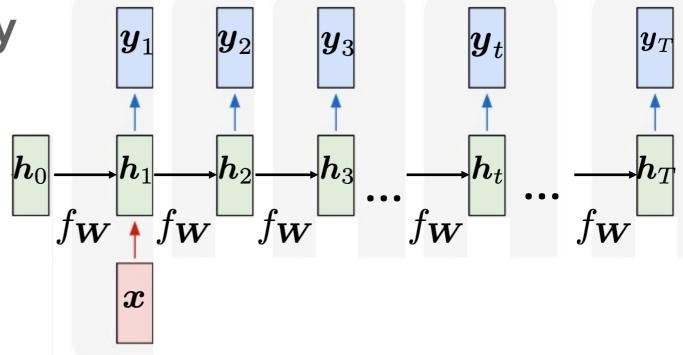
- Encode input sequence in one vector
- weight matrix W_1

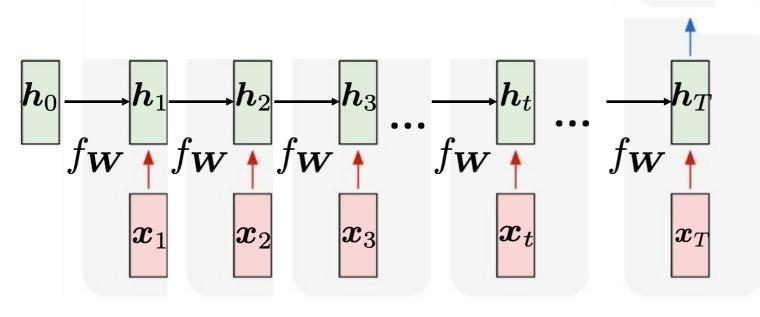


Computational Graph -Sequence to sequence: many to one + one to many

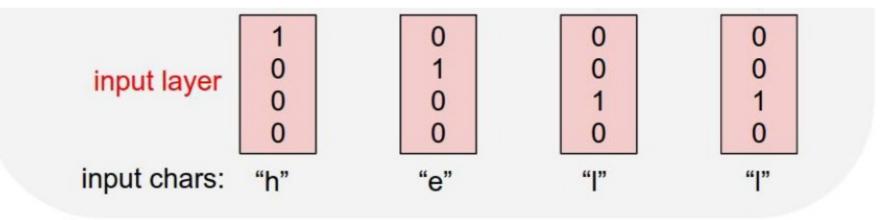
One to many:

- output sequence from input vector
- weight matrix W_2

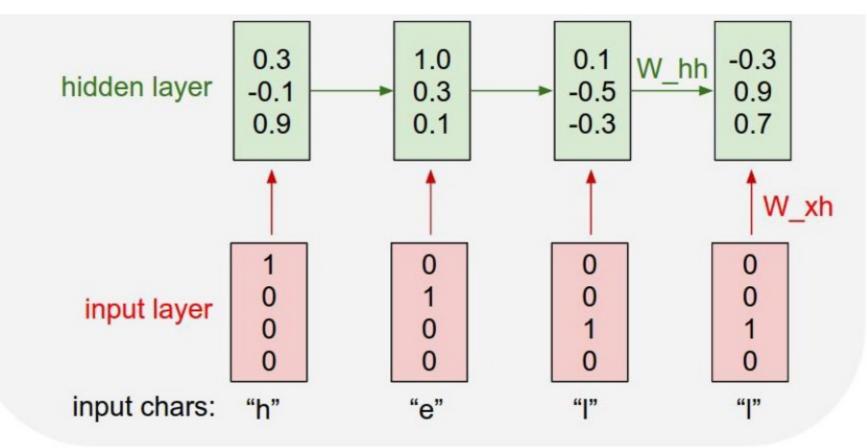




- Vocabulary: [h,e,l,o]
- Example training: "hello"



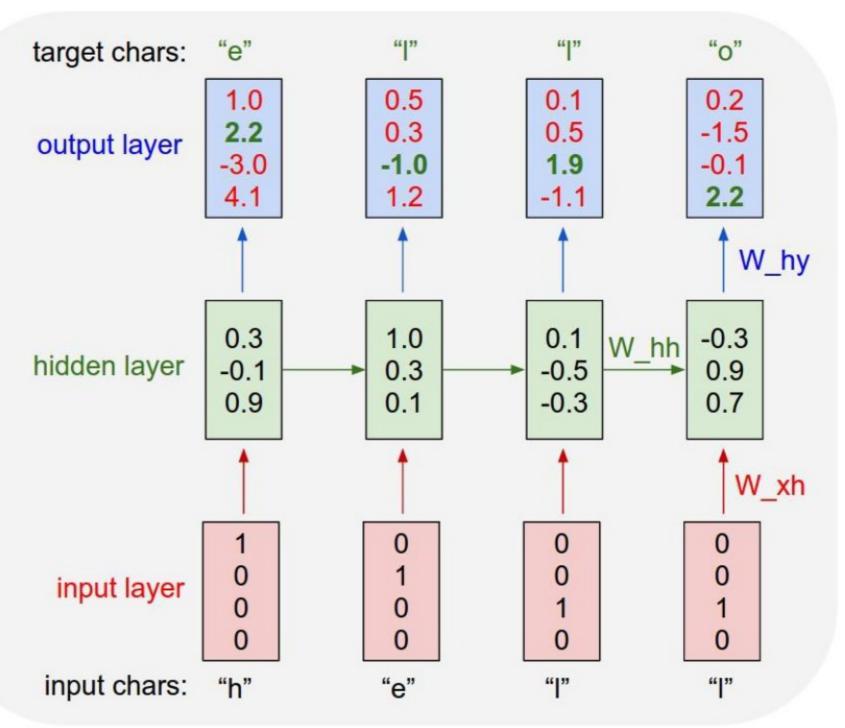
- Vocabulary: $oldsymbol{h}_t = tanh(oldsymbol{W}_{hh}oldsymbol{h}_{t-1} + oldsymbol{W}_{xh}oldsymbol{x}_t)$
- Example training: "hello"



Example: Character-level Language model

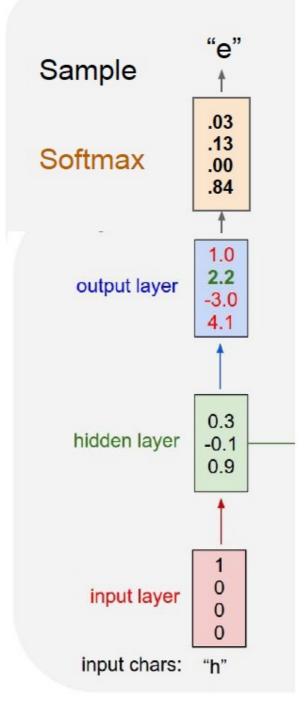
- Vocabulary: [h,e,l,o]
- Example training: "hello"

$$\boldsymbol{y}_t = \boldsymbol{W}_{hy} \boldsymbol{h}_t$$

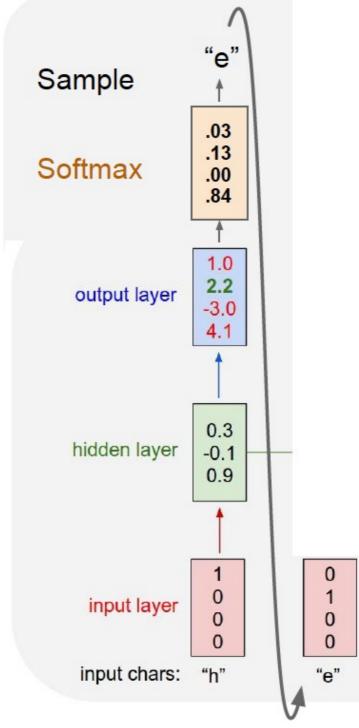


Source: Li, Johnson, Yeung

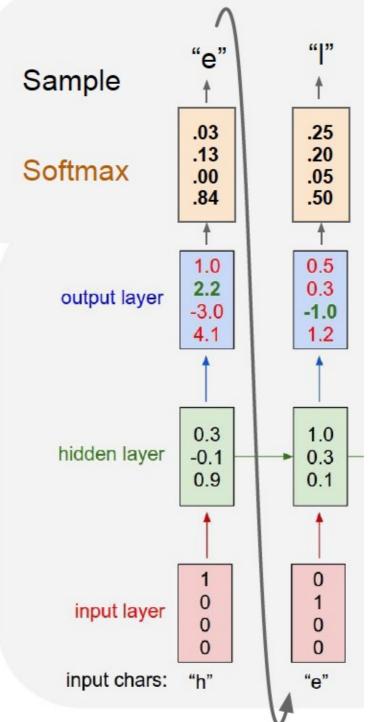
- Vocabulary: [h,e,l,o]
- Test: one character at a time



- Vocabulary: [h,e,l,o]
- Test: one character at a time

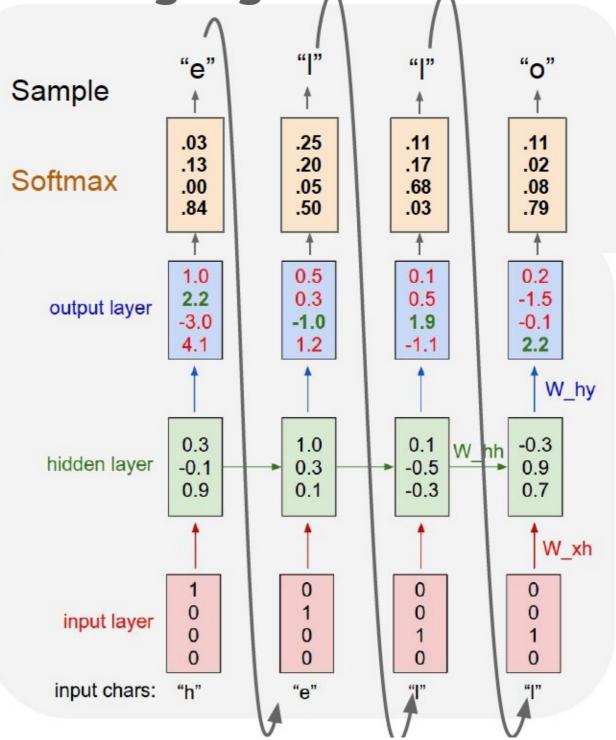


- Vocabulary: [h,e,l,o]
- Test: one character at a time



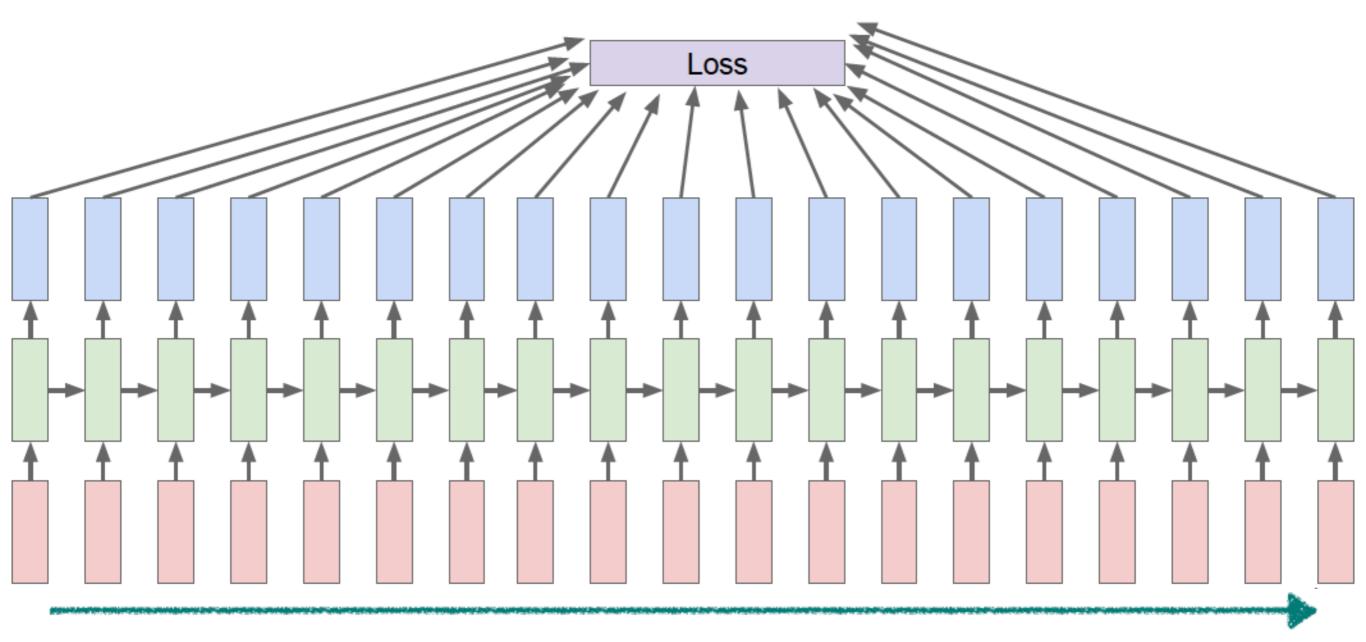
Example: Character-level Language model

- Vocabulary: [h,e,l,o]
- Test: one character at a time



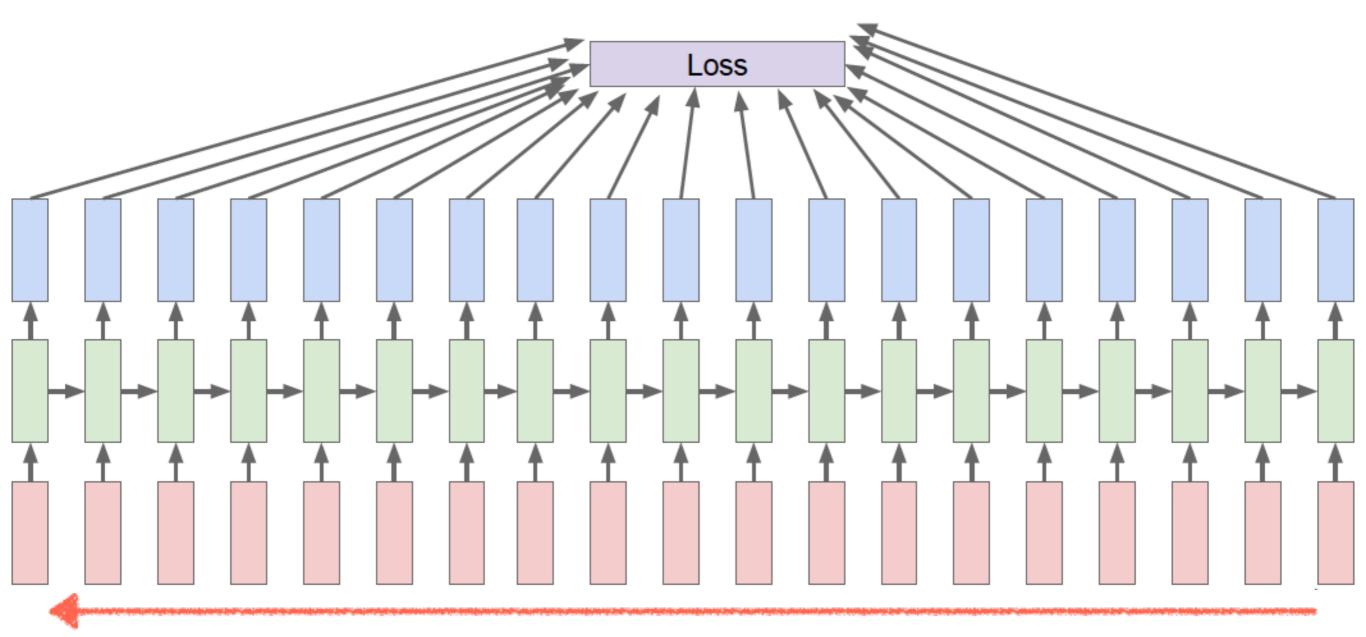
Source: Li, Johnson, Yeung

Learning of the weights - back-propagation through time



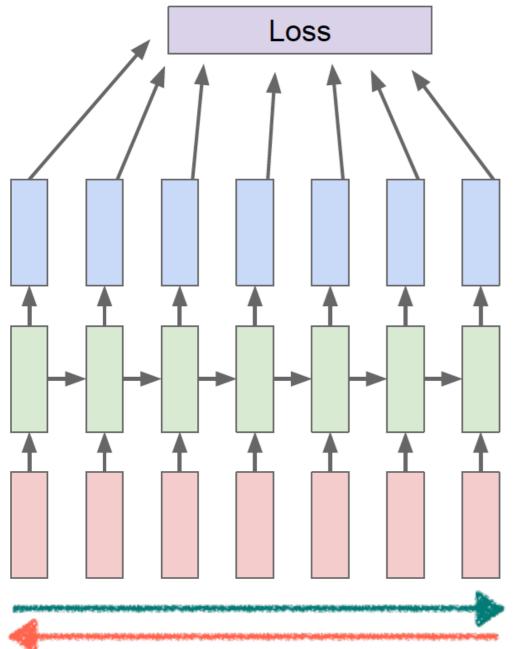
Forward through all the sequence to compute the loss

Learning of the weights - back-propagation through time



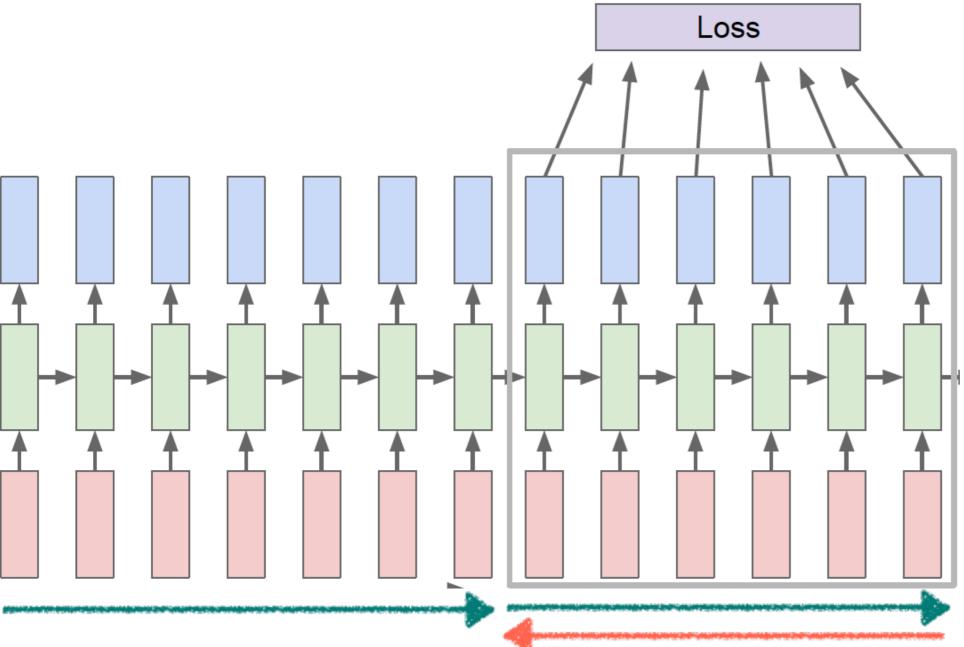
Backward through all the sequence to compute the gradient

Truncated back-propagation through time



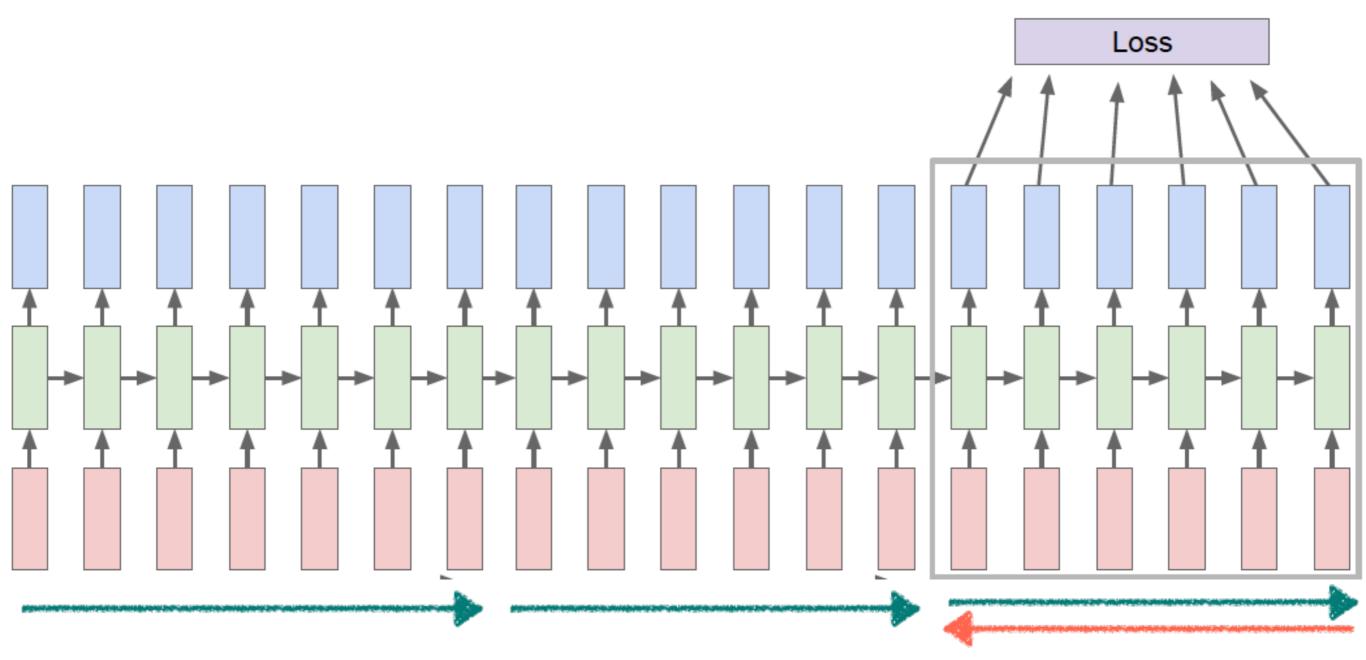
Run forward and backward through chunks of the sequence

Truncated back-propagation through time



Carry hidden states forward in time, but only back-propagate for some smaller number of steps

Truncated back-propagation through time



Carry hidden states forward in time, but only back-propagate for some smaller number of steps

tanh

stack

 \boldsymbol{x}_t

Backpropagation -Gradient flow

 \boldsymbol{h}_{t-1}

$$h_{t} = tanh(\boldsymbol{W}_{hh}\boldsymbol{h}_{t-1} + \boldsymbol{W}_{xh}\boldsymbol{x}_{t})$$

$$h_{t} = tanh(\begin{bmatrix}\boldsymbol{W}_{hh} & \boldsymbol{W}_{hx}\end{bmatrix} \begin{bmatrix}\boldsymbol{h}_{t-1} \\ \boldsymbol{x}_{t}\end{bmatrix})$$

$$h_{t} = tanh(\boldsymbol{W} \begin{bmatrix}\boldsymbol{h}_{t-1} \\ \boldsymbol{x}_{t}\end{bmatrix})$$

$$h_{t}$$

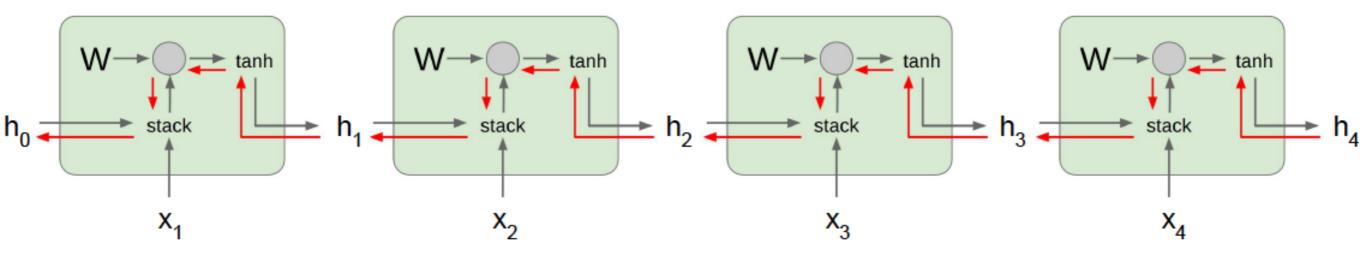
$$h_{t-1} \quad \mathbf{M}_{hh} \quad \mathbf{M}_{hh}$$

$$h_{t-1} \quad \mathbf{M}_{hh}$$

$$h_{t-1} \quad \mathbf{M}_{hh}$$

$$h_{t-1} \quad \mathbf{M}_{hh}$$

Backpropagation -Gradient flow



Computing gradient of h0 involves many factors of W and repeated tanh

* **Exploding gradients** if largest singular value > 1

• **SOLUTION:** gradient clipping with a threshold

* Vanishing gradient if largest singular value <1
 • SOLUTION: change RNN architecture

Example - Image Captioning

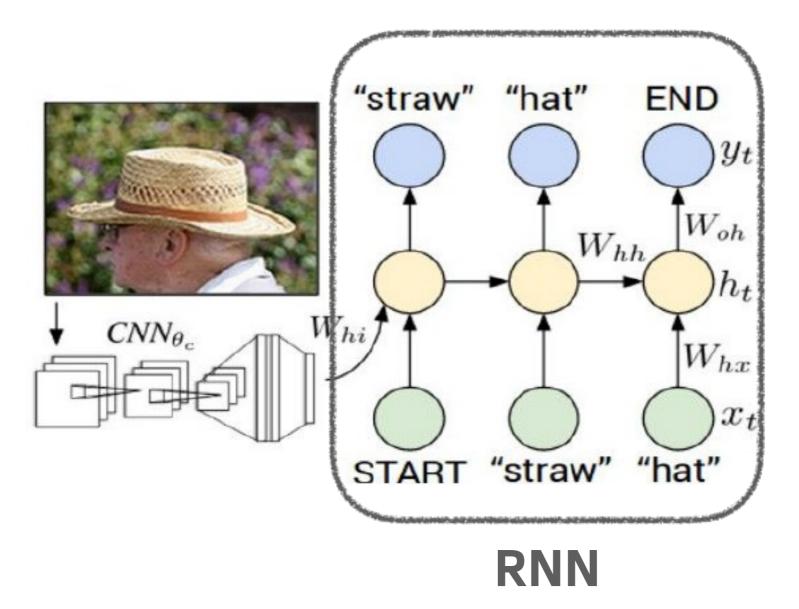
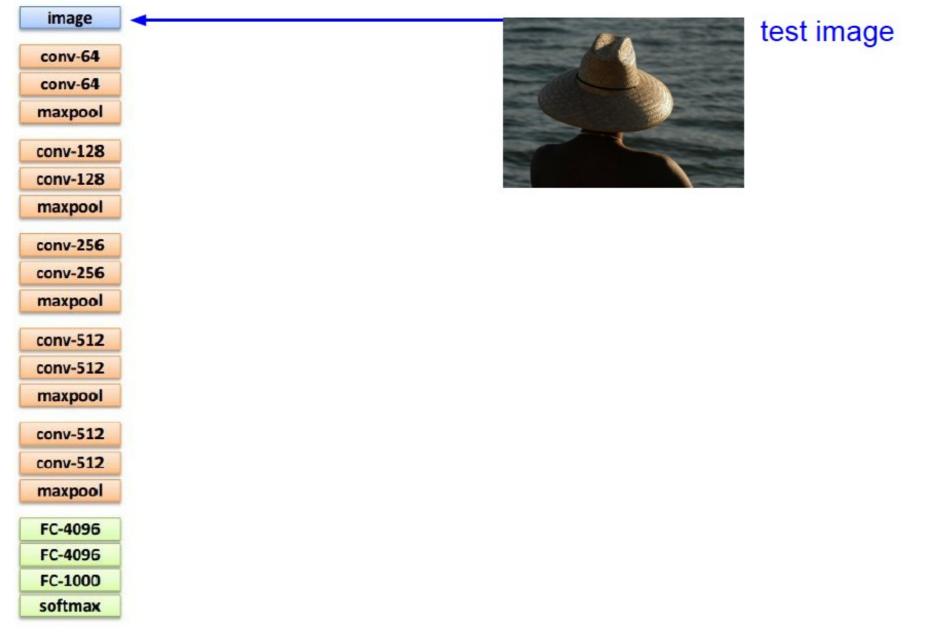


Figure: Karpathy et al. Deep Visual Semiantic Alignments for Generating Image Descriptions. CVPR, 2015.

Example - Image Captioning

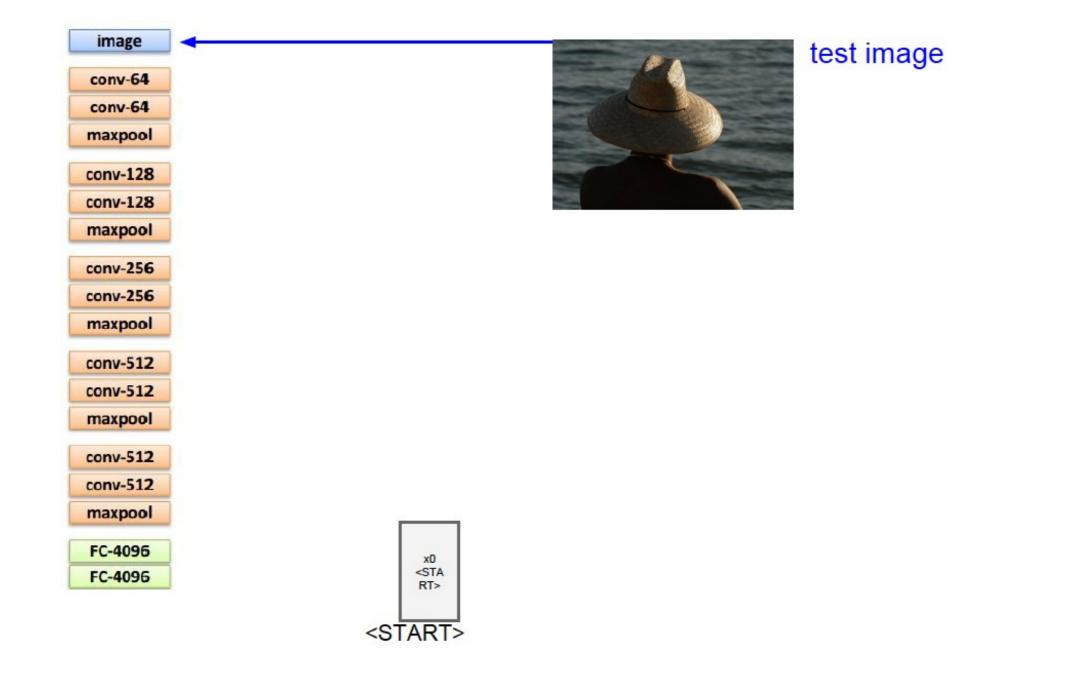


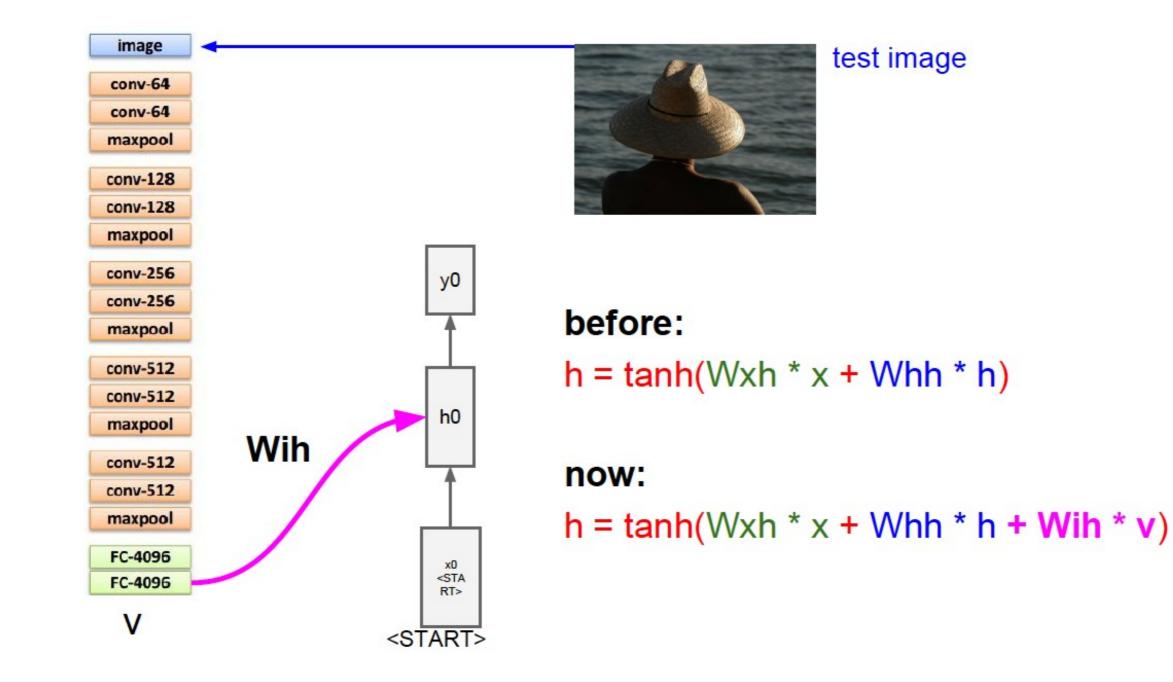
CNN trained on ImageNet

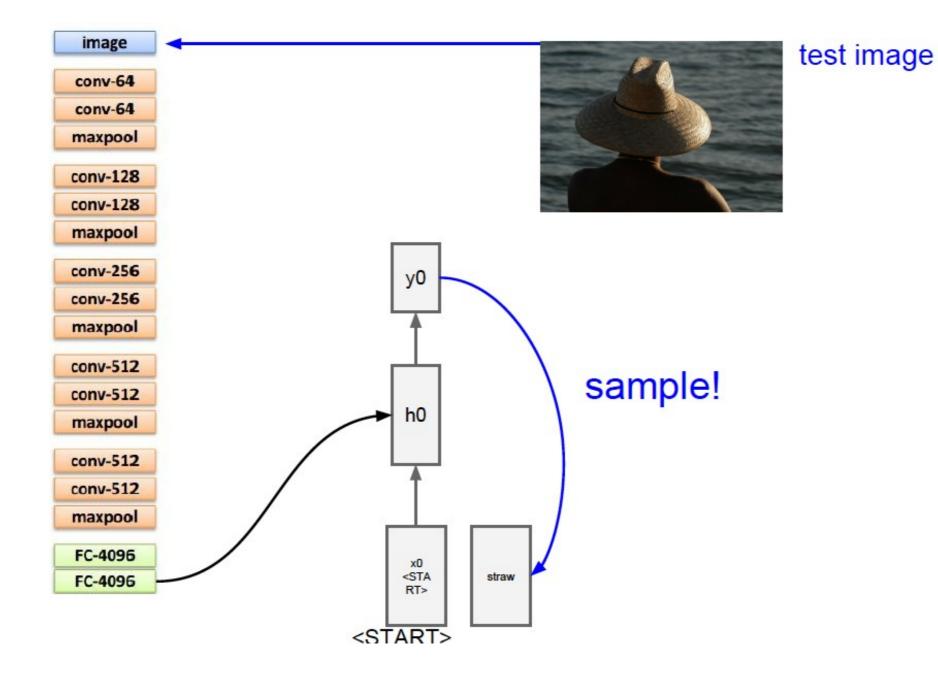
Example - Image Captioning

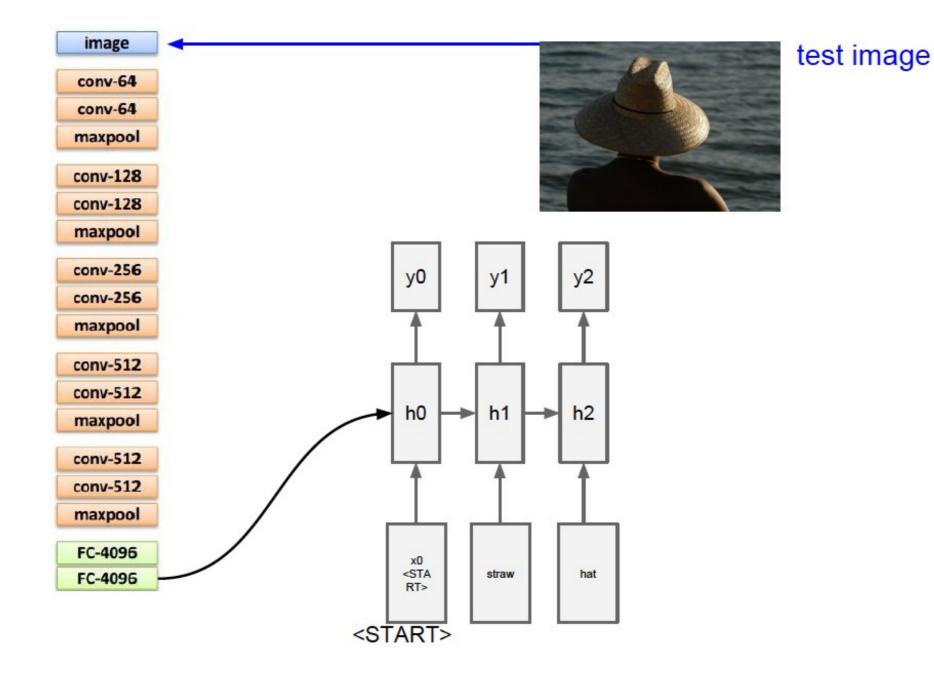


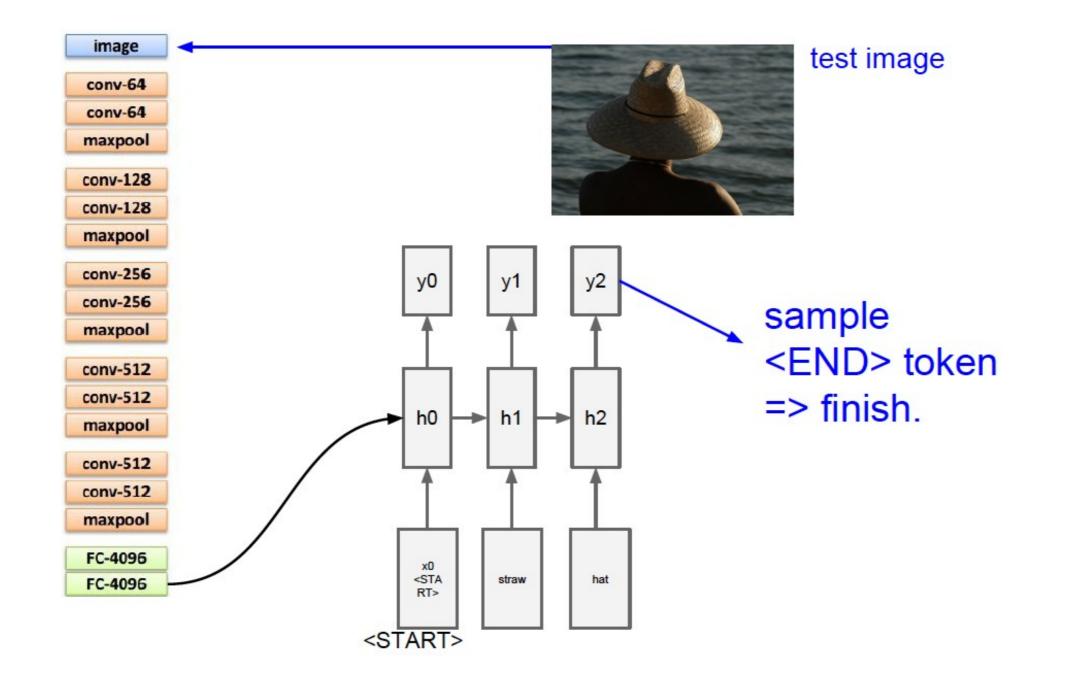
Take features before the lass FC layer











A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

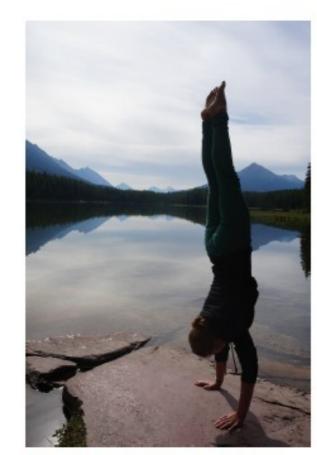
A man riding a dirt bike on a dirt track

Example - Image Captioning (one to many)

A woman is holding a cat in her hand

A person holding a computer mouse on a desk

Failure results



A woman standing on a beach holding a surfboard

A bird is perched on a tree branch



A man in a baseball uniform throwing a ball

Deep RNN

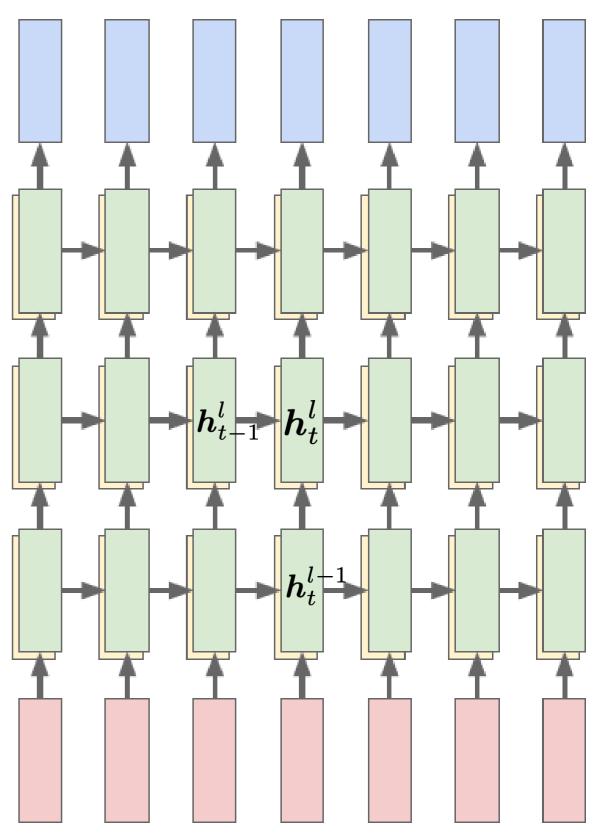
• Multiple layer RNN

$$oldsymbol{h}_t^l = tanholdsymbol{W}^l [oldsymbol{h}_t^{l-1} \ oldsymbol{h}_{t-1}^l]^T$$

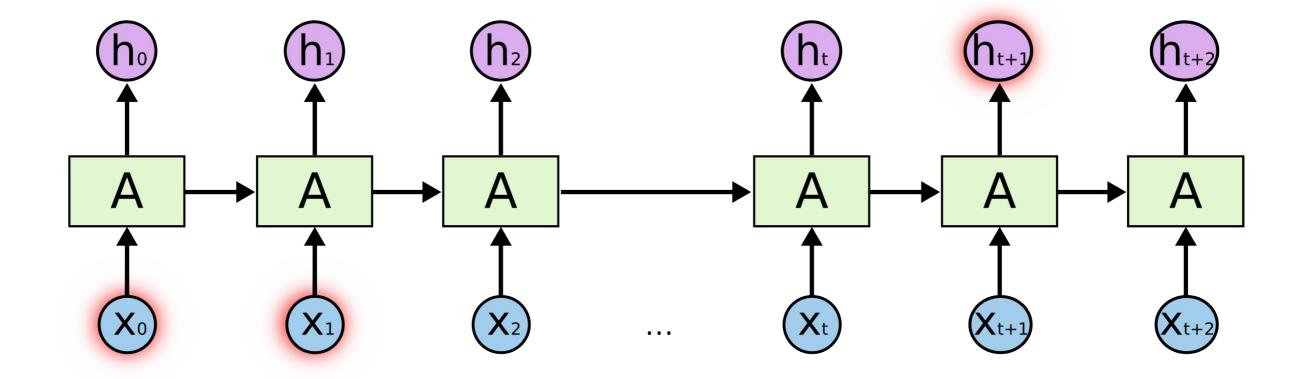
 $oldsymbol{h} \in \mathcal{R}^n$
 $oldsymbol{W}^l \in \mathcal{R}^{n imes 2n}$

• Recall for one layer RNN:

$$\boldsymbol{h}_t = tanh(\boldsymbol{W}_{hh}\boldsymbol{h}_{t-1} + \boldsymbol{W}_{xh}\boldsymbol{x}_t$$

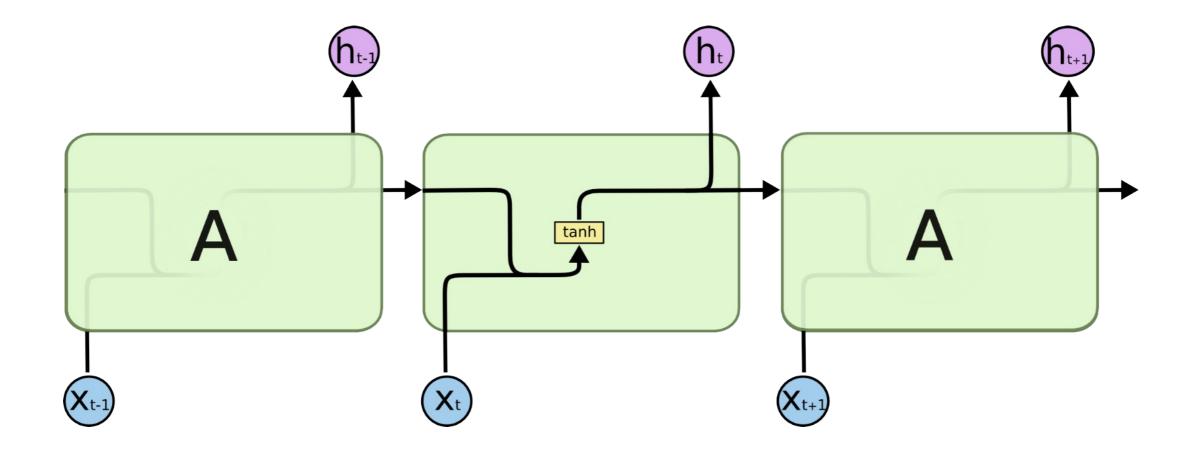


Source: Li, Johnson, Yeung



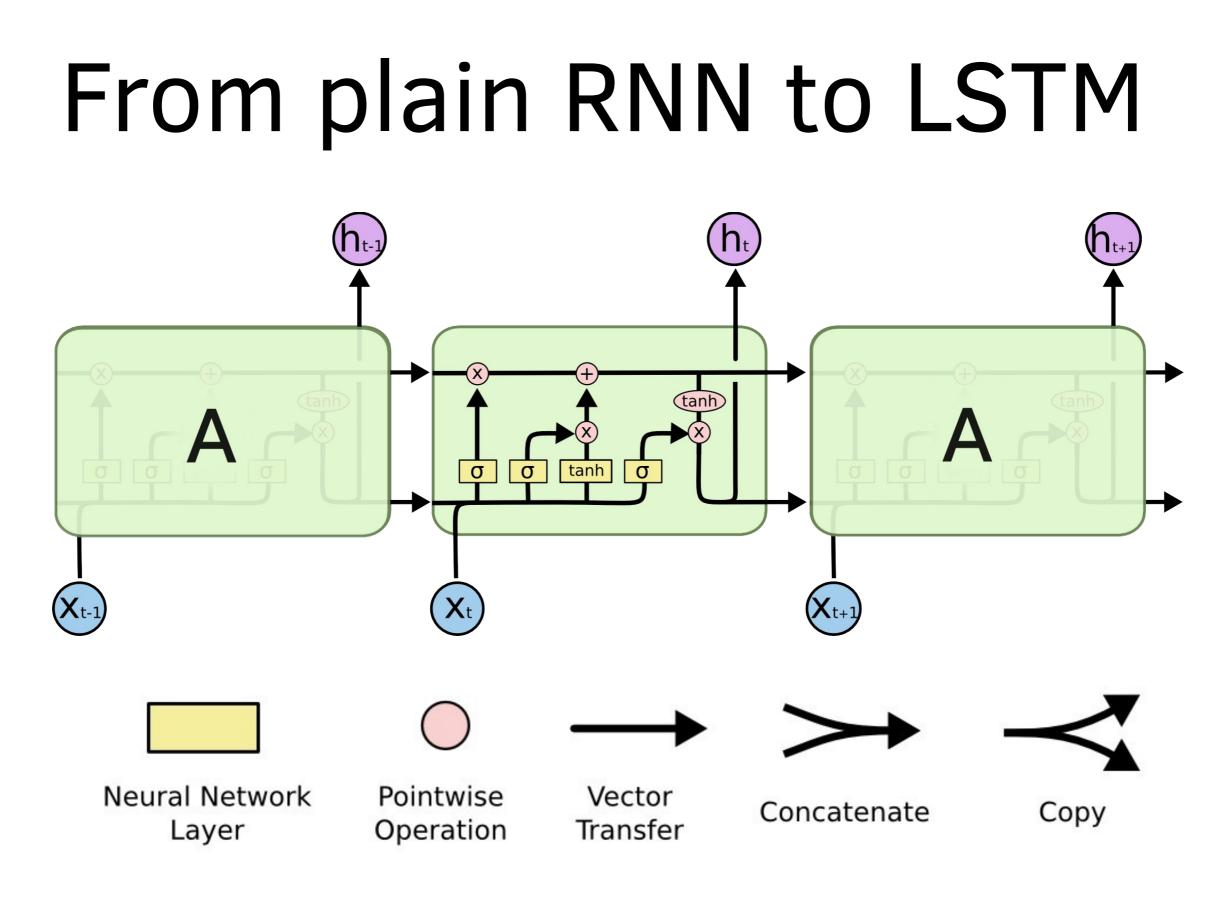
- $A \rightarrow RNN$
- h -> state
- x -> input sequence

Long-term dependencies are hard to model!



- A -> RNN h -> state
- x -> input sequence

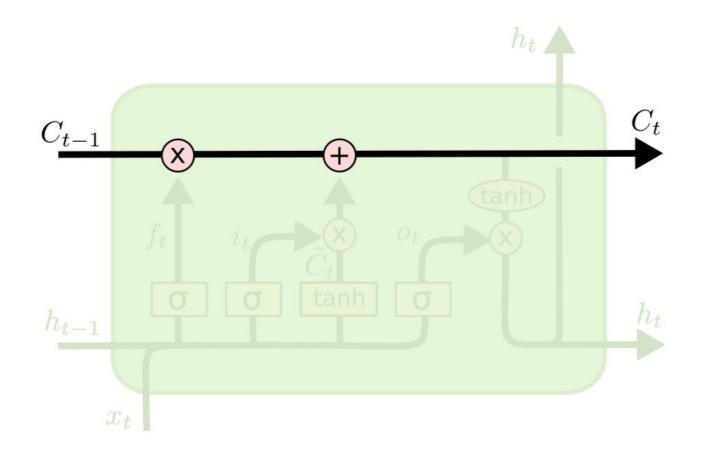
Plain RNN - what we have seen so far



LSTM: Long Short Term Memory Networks

LSTM

1. Cell State / Memory



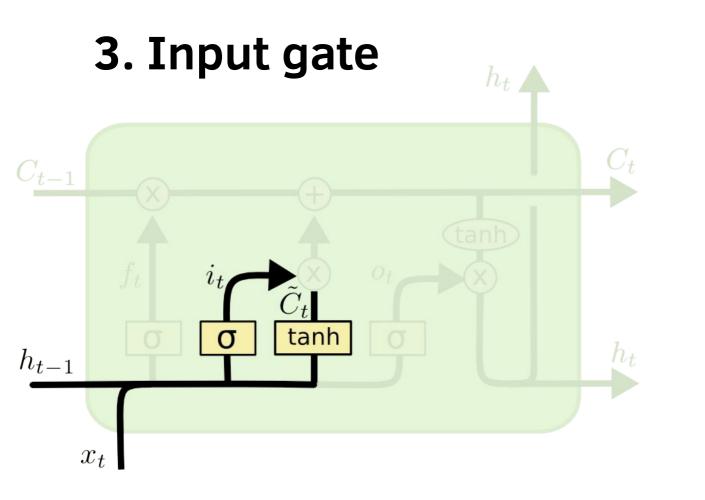
The LSTM have the ability to remove or add information to the cell state, carefully regulated by structures called gates



Should we continue to remember this "bit" of information or not?

The first step in our LSTM is to decide what information we're going to throw away from the cell state. This decision is made by a sigmoid layer called the "forget gate layer."

LSTM



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

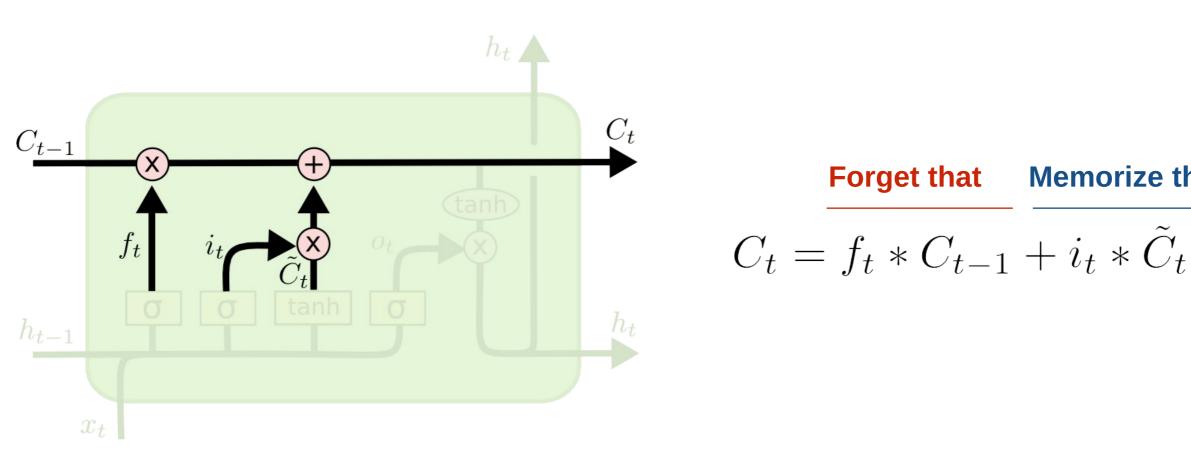
Should we update this "bit" of information or not? If so, with what?

The next step is to decide what new information we're going to store in the cell state. This has two parts. First, a sigmoid layer called the "input gate layer" decides which values we'll update. Next, a

tanh layer creates a vector of new candidate values, $\tilde{C_t}$, that could be added to the state.

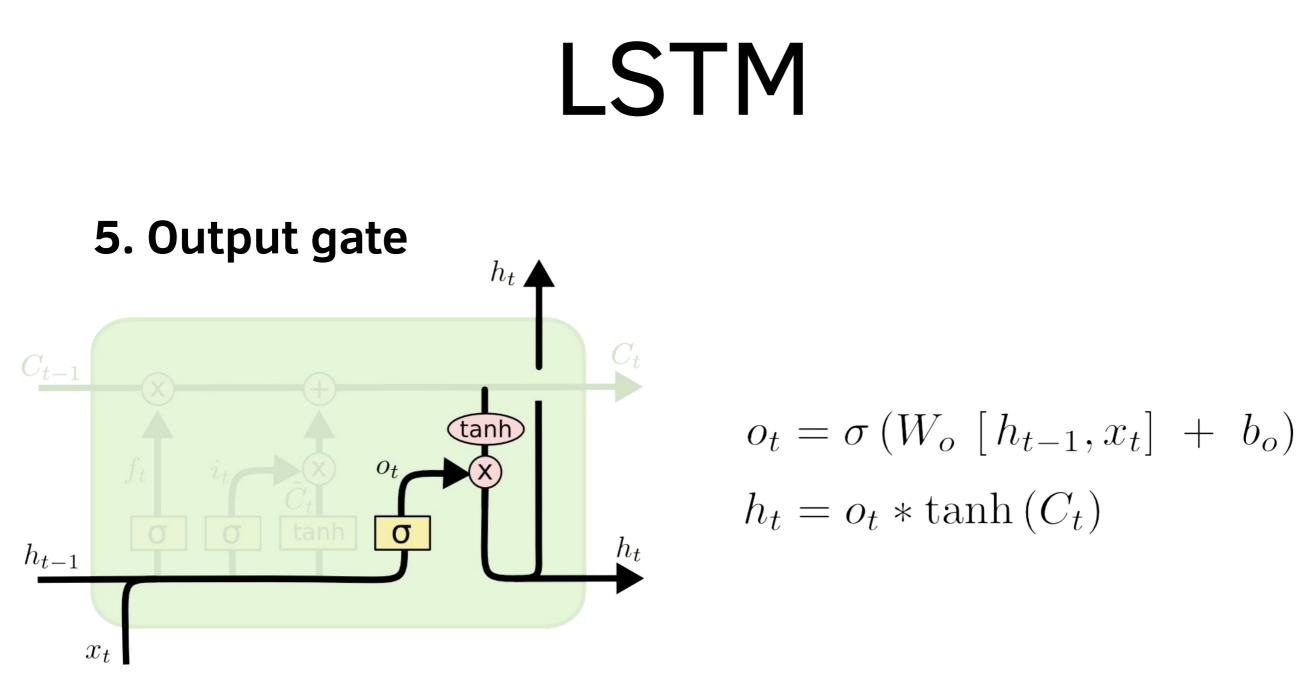
LSTM

4. Memory Update



Decide what will be kept in the cell state/memory

Memorize this

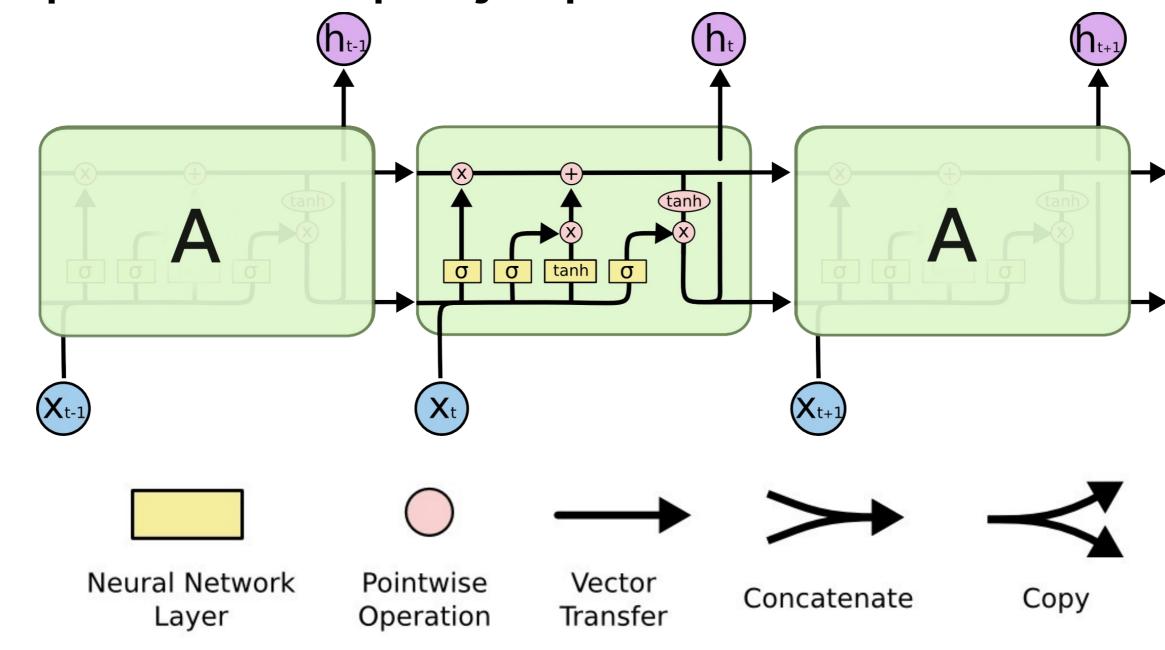


Should we output this "bit" of information?

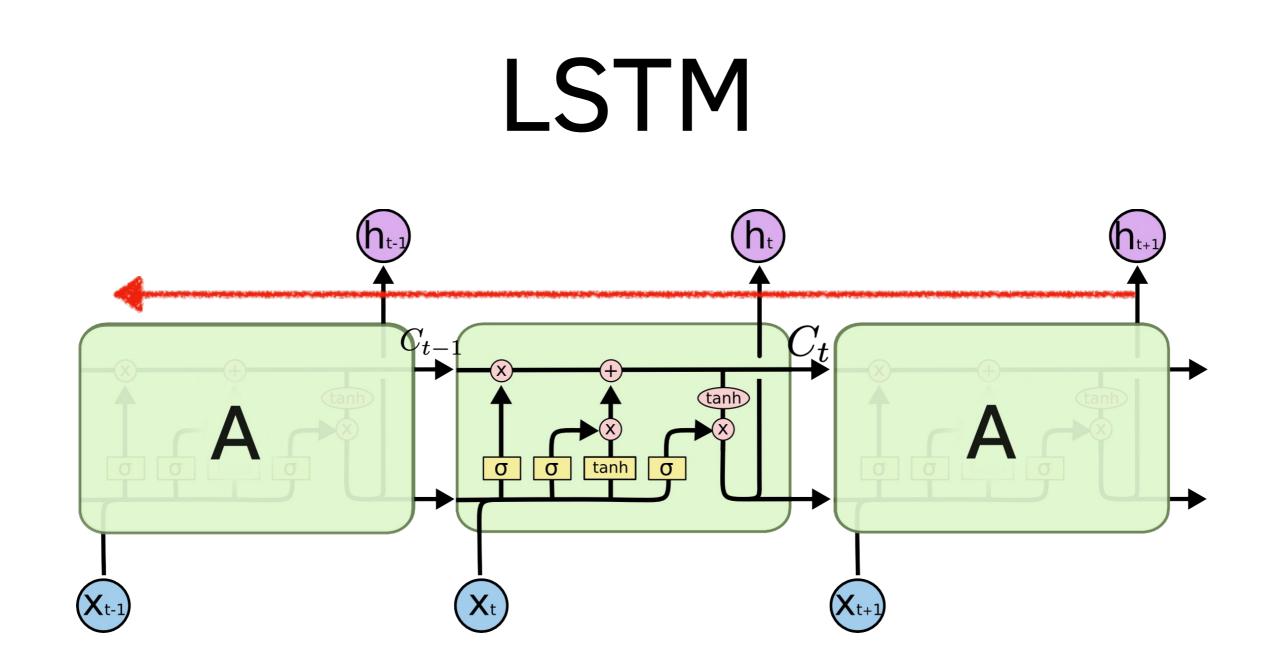
This output will be based on our cell state, but will be a filtered version. First, we run a sigmoid layer which decides what parts of the cell state we're going to output. Then, we put the cell state through tanh (to push the values to be between -1 and 1) and multiply it by the output of the sigmoid gate, so that we only output the parts we decided to.

LSTM

Complete LSTM - A pretty sophisticated cell



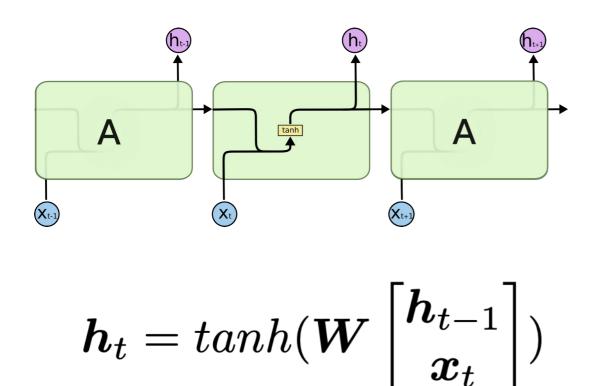
Hochreiter and Schmidhuber. Long Short Term Memory. Neural Computation. 1997



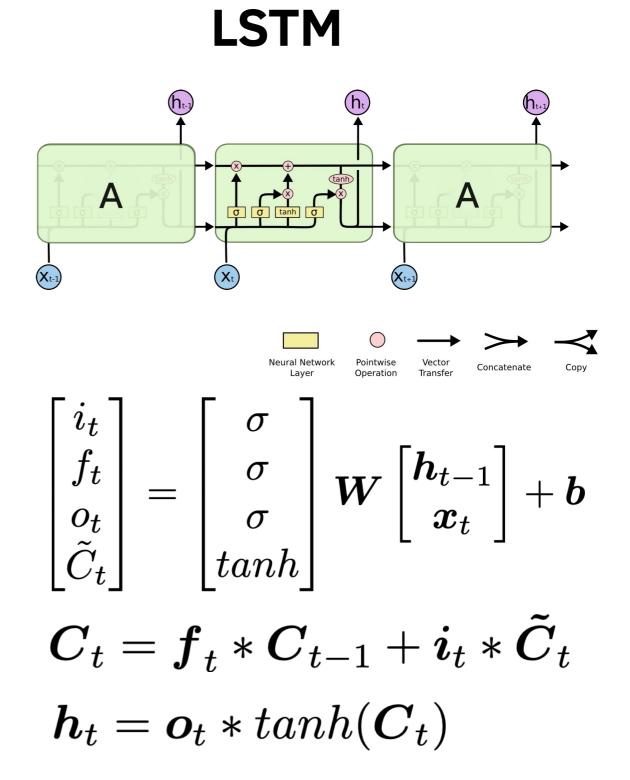
Back-propagation from $G_t C_{t-a}$ and no by weight matrix There is an uninterrupted gradient flow

Plain RNN vs LSTM

Plain RNN

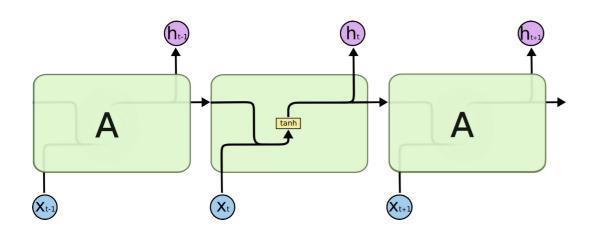


Hochreiter and Schmidhuber. Long Short Term Memory. Neural Computation. 1997



Plain RNN vs LSTM

Plain RNN



Backward flow of gradient in RNN can:

- explode -> gradient clipping
- vanish -> use LSTM

Backward flow of gradient in LSTM: • their additive interactions improve the gradient flow

Vector

Transfer

Pointwise

Operation

LSTM

Α

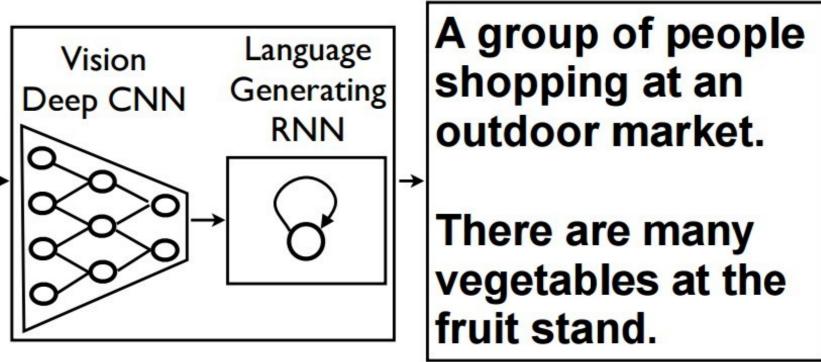
Neural Network

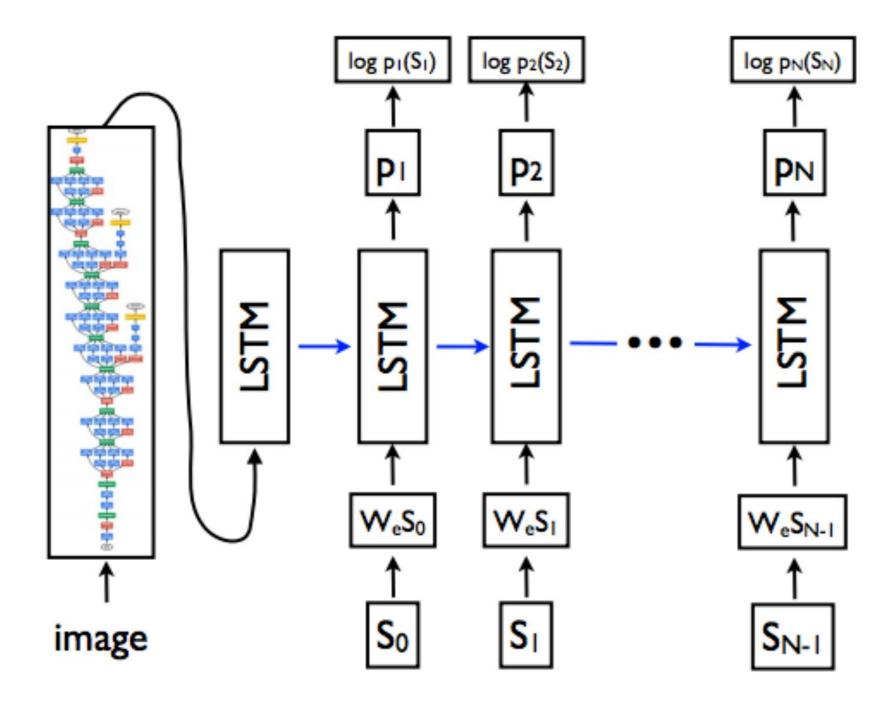
Layer

Hochreiter and Schmidhuber. Long Short Term Memory. Neural Computation. 1997 Α

Copy

Concatenate





A person riding a motorcycle on a dirt road.

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick

A little girl in a pink hat is

A red motorcycle parked on the

A dog is jumping to catch a frisbee.

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Describes without errors

Describes with minor errors

Somewhat related to the image

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick

A little girl in a pink hat is

A red motorcycle parked on the

A dog is jumping to catch a frisbee.

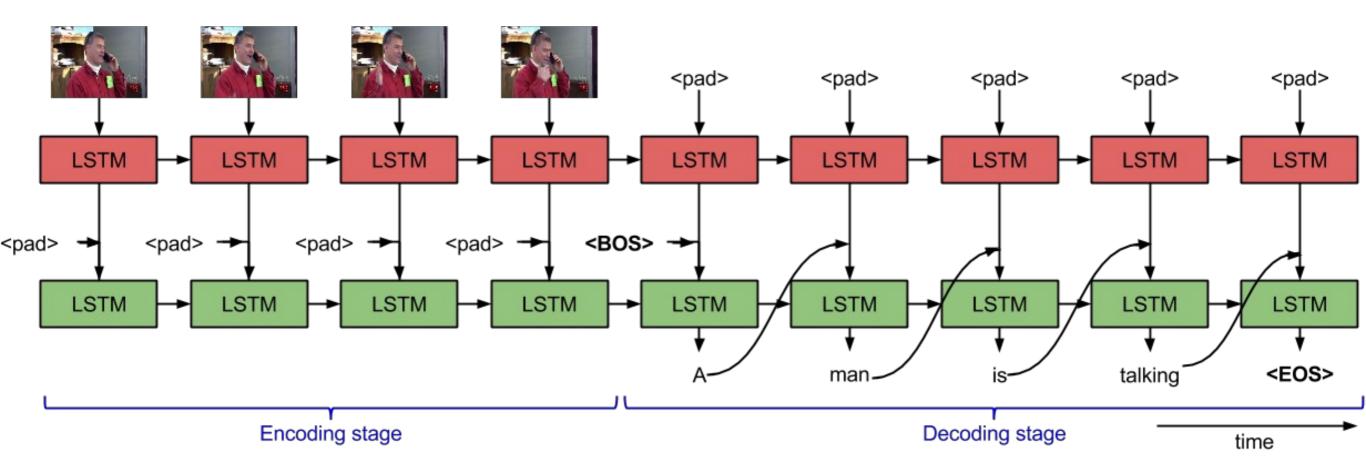
A refrigerator filled with lots of food and drinks.

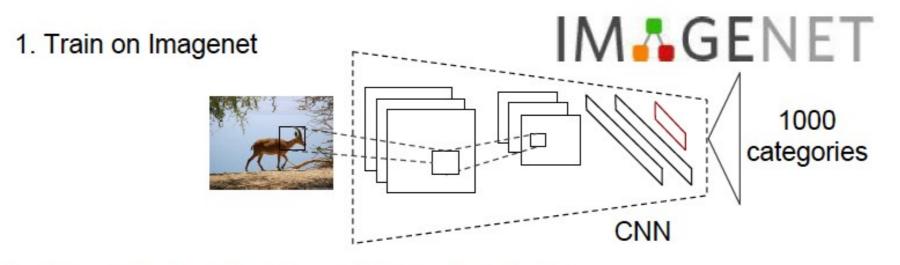
A yellow school bus parked

Describes without errors

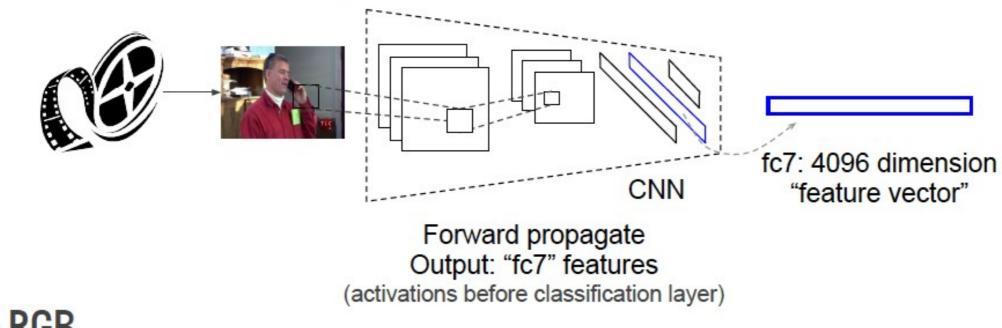
Describes with minor errors

Somewhat related to the image





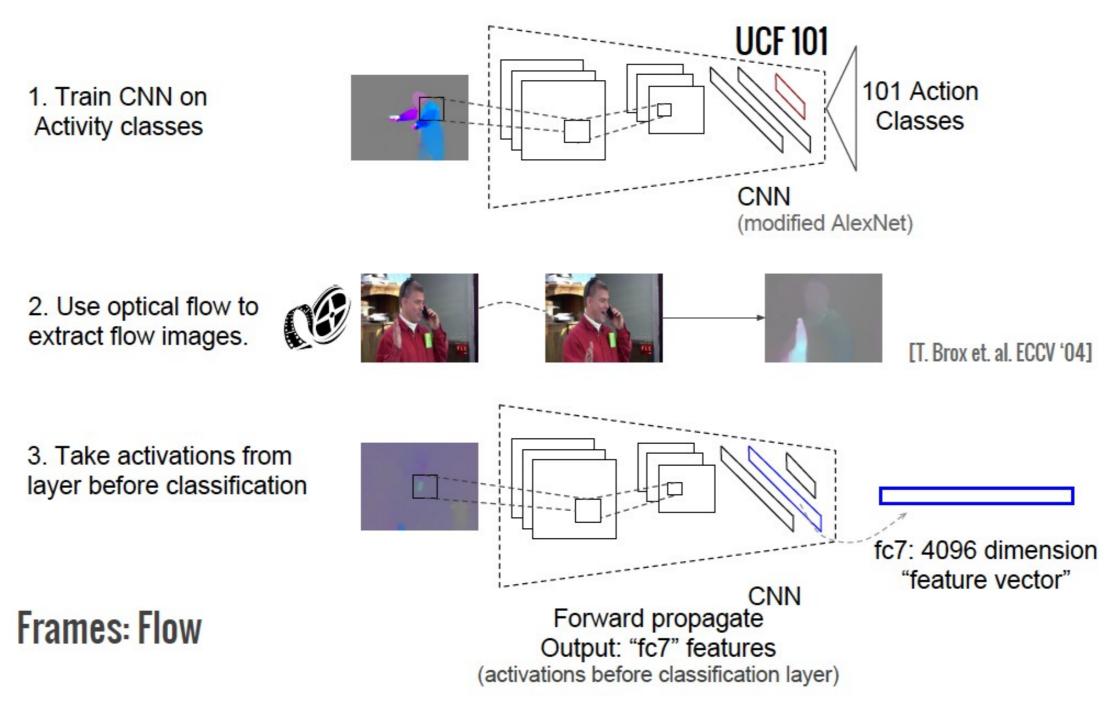
2. Take activations from layer before classification



Frames: RGB

source: Venugopalan

Vanuaanalan at al Saguanca to Saguanca Video to Taxt ICCV 2015



source: Venugopalan

Vanuagonalan at al Saguence to Saguence Video to Taxt ICCV 2015

Sequence to Sequence Video to Text Movie Corpus - DVS

CC: Queen: "Which estate?" DVS: Looking trou- The bled, the Queen de- into scends the stairs. She t

The Queen rushes into the courtyard. She then puts a head scarf on ...

... and gets into the driver's side of a nearby Land Rover.

The Land Rover pulls away.

Three bodyguards quickly jump into a nearby car and follow her.

Processed: Looking troubled, someone descends the stairs. Someone rushes into the courtyard. She then puts a head scarf on ...

source: Venugopalan

Vanuagonalan at al Saguanca to Saguanca Video to Taxt ICCV 2015

Summary and examples of results:

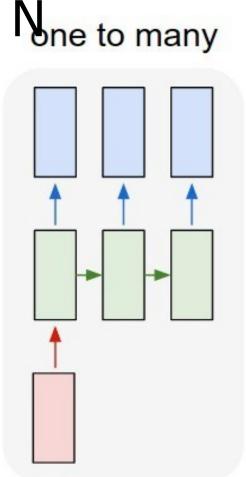
https://youtu.be/-xNI7e7YgDk

source: Venugopalan

Vanuagnalan at al Saguanca to Saguanca Video to Taxt ICCV 2015

Summary of Today's class

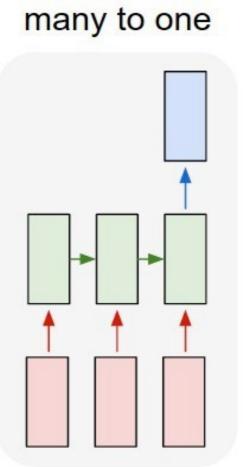
RN



Input: No sequence Output: Sequence

Example:

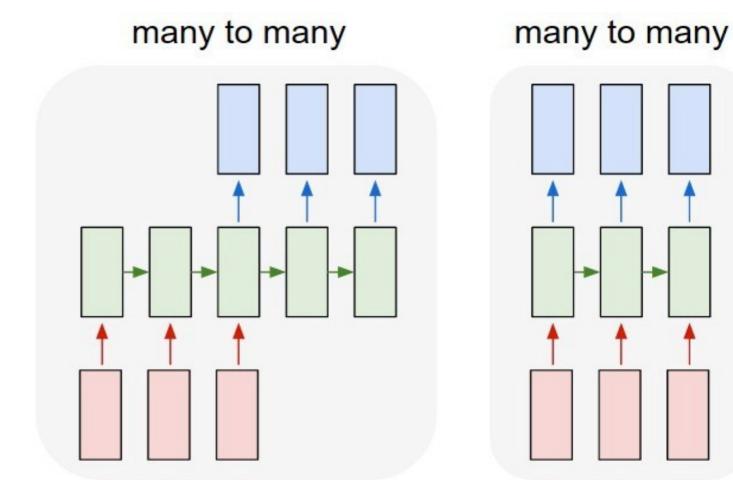
 Image captioning (image -> words)



Input: Sequence Output: No sequence

Example:

- sentence classification
- sentiment classification (words seq.->sentiment)



Input: Sequence Output: Sequence

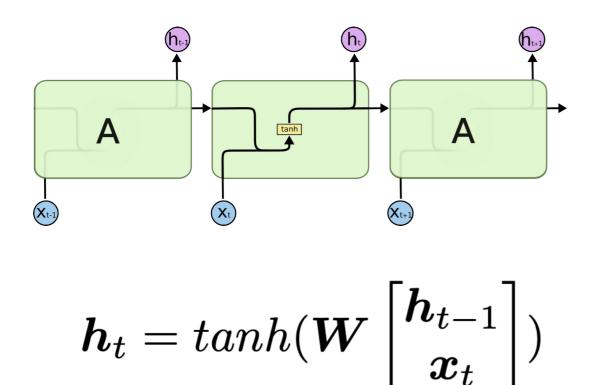
Example:

 machine translation, (words seq-> words seq) Example:

video captioning

RNN vs LSTM

Plain RNN



Hochreiter and Schmidhuber. Long Short Term Memory. Neural Computation. 1997

