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What we did last week

v Deep Learning

v Convolutional Neural Networks
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Today’s class

v CNN architectures:
o LeNet
o AlexNet
o GoogleLeNet (Inception)
o ResNet

v Backpropagation



Simplified neuroscience: a neuron computes a dot
product between its inputs and the synaptic weights

CNN – inspired by neuroscience



F. Rosenblatt 1957

One layer NN

Weights
Learned

Input + 
constant for bias

Image credit: missinglink.ai

neuron fires or not

Simple perceptron



Types of Nonlinearities

etc.

SigmoidLinear Rectifier (ReLu)Step function

Simple perceptron



Simple perceptron



Simple perceptron



In case of linear separable data, the learning converges in a bounded number of 
iterations.

Simple perceptron



Hubel and 
Wiesel

Nobel prize 
(1981)



Hubel and Wiesel



Simple and Complex Cells



Simple and Complex Cells



The visual ventral stream



HMAX





Invariance



Convolutional Neural 
Networks (CNNs)

Convolutional assumption

LeCun et al. 98



CNN

• 3D volumes of neurons

• Stack of
– Convolutional layer
– Fully connected layer
– Pooling layer

Input: width x height x numChannel Output: 1 x 1 x numClass



CNN

• One example

• Stack of
– Convolutional layer
– Fully connected layer
– Pooling layer

Input:
width x height x numChannel Output:

1 x 1 x numClass

Depth



CNN Architecture

• LeNet for character recognition

21Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278–2324, 1998

-Average pooling
-Sigmoid or tanh nonlinearity
-Trained on MNIST digit dataset (60K training examples)



CNN Architecture

• AlexNet for image recognition

22A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

-8 layers, 650K neurons, 60M parameters
-Max pooling, ReLU nonlinearity
-1.2M training images of 1000 classes 



CNN Architecture
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Inception module and GoogLeNet

• Filter size: hyperparameter
• What is the right filter size?
• Inception module
– Use filters of different size in the same layer
– Concatenate all the filter results as output
– Use 1x1 convolution to reduce complexity
– Increase width and depth of the network 
– All convolutions use ReLU, including 1x1 convolution for 

reduction / projection
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Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru 
Erhan, Vincent Vanhoucke, Andrew Rabinovich, “Going Deeper with Convolutions,” CVPR 2015



Inception module and GoogLeNet

• Inception module, naïve version

25

Computation expensive: 28x28x192 input, need 5x5x192 filtering 



Inception module and GoogLeNet

• 1x1 convolution for dimensionality reduction: reduce number 
of channels
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HxWxC1

1x1xC1

HxWx1

(stride = 1)

-With C2 filters (1x1xC1 each), output HxWxC2; usually 
C2 < C1
-Followed by non-linear as in ordinary convolution

[Lin et al.; 2014]



Inception module and GoogLeNet

• 1x1 convolution for dimensionality reduction:
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28x28x192

Computation: (5x5x192x28x28)x32 = 120.4M

Conv 5x5x192; 32

28x28x32

28x28x192 28x28x3228x28x16
Conv 1x1x192; 16 Conv 5x5x16; 32

Computation: (1x1x192x28x28)x16 + (5x5x16x28x28)x32 = 12.4M



Inception module and GoogLeNet

• Inception module with dimensionality reduction
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Inception module and GoogLeNet

• Inception module with dimensionality reduction:
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28x28x192 input

inception 3a28x28x256 output

1x1x192; 64

1x1x192; 96 1x1x192; 16

28x28x64

28x28x96 28x28x16 28x28x192
3x3x96;128 5x5x16;32 1x1x192;32

28x28x32
28x28x3228x28x128



Inception module and GoogLeNet

• GoogLeNet
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Auxiliary networks: 
added during training to avoid vanishing gradients. During training, 
their loss gets added to the total loss of the network with a discount 
weight (auxiliary classifiers were weighted by 0.3). 
At inference time, these auxiliary networks are discarded.



Inception module and GoogLeNet
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Total: 27 layers (dropout, softmax not count)
Number of 1x1 
filters in the 
reduction layer 
before 3x3 or 5x5 
convolution

Number of 1x1 
filters after max 
pooling

Number of 5x5 
filters



Shortcut connection and Resnet
• Challenges of going deeper

– Vanishing gradient: gradient is backpropagated to earlier layers, 
repeated multiplication may make the gradient very small

– Overfitting: good in training, bad in testing
– Difficult to learn an identity mapping in a deep architecture

32

Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer 
“plain” networks. The deeper network has higher training error, and thus test error



Shortcut connection and Resnet
• Challenges of going deeper

– Vanishing gradient: gradient is backpropagated to earlier layers, 
repeated multiplication may make the gradient very small

– Overfitting: good in training, bad in testing
– Difficult to learn an identity mapping in a deep architecture
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…

…

x

x x

Adding an identity 
mapping layer 
would have no 
worse performance 
-> difficulty in 
learning an identity 
mapping results in 
poorer performance 
when going deeper 



Shortcut connection and Resnet
• Deep residual learning

– Learn the residual mapping instead of the entire mapping

34

Element-wise addition, 
channel by channel

Kaiming He, Xiangyu Zhang, 
Shaoqing Ren, Jian Sun, Deep 
Residual Learning for Image 
Recognition, CVPR 2016



Shortcut connection and Resnet
• Deep residual learning

– Learn the residual mapping instead of the entire mapping
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…
x x + F(x)

Optimal mapping is close to an identity mapping, residual 
learning is a construction to ease the learning

Kaiming He, Xiangyu Zhang, 
Shaoqing Ren, Jian Sun, Deep 
Residual Learning for Image 
Recognition, CVPR 2016



Understanding Residual Learning
• Deep residual learning

– Learn the residual mapping instead of the entire mapping

36

Conv 3x3, 64

X: 28x28x64

X + ΔX: 28x28x64

Want ΔX to be small, so that the output feature 
maps would not cause dramatic change (degrade) 
in performance

- Incremental approach to build complex DNN
- Need W ≈ 1, i.e., identity mapping
- But hard to learn with data-driven approach
- An issue with optimization (non-convex, high 
dimensional loss function)

0  0  0
0  1  0
0  0  0

One of the 64 filters:

3x3x64

All zero in other slices



Understanding Residual Learning
• Deep residual learning

– Learn the residual mapping instead of the entire mapping
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Conv 3x3, 64

X: 28x28x64

ΔX: 28x28x64

Want ΔX to be small, so that the output feature 
maps would not cause dramatic change 
(degrade) in performance

- With skip connection, need W ≈ 0
- Easy to learn with regularization on W

0  0  0
0  0  0
0  0  0

One of the 64 filters:

+
X + ΔX: 28x28x64

“We hypothesize that it is easier to
optimize the residual mapping than to
optimize the original, unreferenced
mapping. To the extreme, if an identity
mapping were optimal, it would be
easier to push the residual to zero than
to fit an identity mapping by a stack of
nonlinear layers.”



Understanding Residual Learning
• Another reasoning: Ensembles of networks

38
Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks 
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016

Averaging many networks

-Residue networks can be viewed as a collection of 
many paths, instead of a single ultra-deep network



Understanding Residual Learning
• Another reasoning: Ensembles of networks

39

Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks 
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016

-These paths do not strongly 
depend on each other, even 
thought they are trained jointly
-Exhibit ensemble-like behavior: 
overall performance correlates 
smoothly with the number of 
valid paths



Understanding Residual Learning
• Another reasoning: Ensembles of networks

40
Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks 
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016

-These paths do not strongly 
depend on each other, even they 
are trained jointly
-Exhibit ensemble-like behavior: 
overall performance correlates 
smoothly with the number of 
valid paths



Understanding Residual Learning
• Another reasoning: Ensembles of networks
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Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks 
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016



Understanding Residual Learning
• Another reasoning: Ensembles of networks
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Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks 
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016



Shortcut connection and Resnet
• Resnet: stack of deep residual learning modules

43Other variants: ResNet-50/101/152
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Today’s class

v CNN architectures:
o LeNet
o AlexNet
o GoogleLeNet (Inception)
o ResNet

v Backpropagation



Learn W using loss function L(W)

• Determine W with the min loss function

L =
1

N

X

i

Li + �R(W ) N training samples

45



Learn W using loss function L(W)

• Determine W with the min loss function

• Start from a random W, iteratively improve W (reduce L(W)): 
Gradient descent

• Note: L(W) = L(W; (x1,y1), (x2,y2), ...(xi,yi)...(xN,yN))

L =
1

N

X

i

Li + �R(W ) N training samples

46



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

47

W 0 = W � �rL

w0
l = wl � �

@L

@wl

L(W ) = L(w1, w2, ...wl...)

Gradient descent



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

48

W 0 = W � �rL

w0
l = wl � �

@L

@wl

L(W ) = L(w1, w2, ...wl...)

Gradient descent

@L

@wl
Find          for every wl



Learn W by gradient descent

• Update W by W+ΔW, using the gradient
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L =
1

N

X

i

Li + �R(W )

w0
l = wl � �

@L

@wl

@L

@wl
=

1

N

X

i

@Li

@wl
+ �

@R(W )

@wl

- Sum gradients for all (partial) training samples for one wl
- Make one update of W once we have all the gradients

Note: From now, here we refer to gradient of one training sample for simplicity



Compute the gradient
• Example

50

h(l-1) h(l)

W(l) Sigmoid 

h(l+1) h(l+2)

W(l+2) Softmax 

h(l+3)

Cross-
entropy 
loss

L



Compute the gradient
• Example
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h(l-1) h(l)

W(l) Sigmoid 

h(l+1) h(l+2)

W(l+2) Softmax 

h(l+3)

Cross-
entropy 
loss

L

Approach 1: compute L(W(l)), then differentiate



Compute the gradient
• Example
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h(l-1) h(l)

W(l) Sigmoid 

h(l+1) h(l+2)

W(l+2) Softmax 

h(l+3)

Cross-
entropy 
loss

L

Approach 1: compute L(W(l)), then differentiate

-Tedious task, e.g. for deep NN
-Not flexible; if some layer changes (Sigmoid -> ReLU), need to 
re-derive again



Compute the gradient
• Example
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h(l-1) h(l)

W(l) Sigmoid 

h(l+1) h(l+2)

W(l+2) Softmax 

h(l+3)

Cross-
entropy 
loss

L

Approach 2: back propagation
-Assume we have

@L

@h(l�1)
=

@L

@h(l)

@h(l)

@h(l�1)

@L

@h(l)

@L

@W (l)
=

@L

@h(l)

@h(l)

@W (l)

For grad descent                          For back prop



Back prop
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h(l-1) h(l)

W(l)
Modular design:
-Each module knows how to compute local gradients
-Multiply by the global gradient from upstream
-Generalize to other modules, e.g. ReLU

@L

@h(l�1)
=

@L

@h(l)

@h(l)

@h(l�1)

@L

@h(l)

@L

@W (l)
=

@L

@h(l)

@h(l)

@W (l)

For grad descent                          For back prop

@L

@W (l)

@h(l)

@W (l)@L

@h(l�1)

@h(l)

@h(l�1)



Back prop: fully connected
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h(l-1) h(l)

W(l)

@L

@h(l)

@L

@W (l)

@h(l)

@W (l)@L

@h(l�1)

@h(l)

@h(l�1)

1xc1c2x1c1x1 1xc2

wi(l): i-th row of W(l)

@L

@h(l�1)
=

@L

@h(l)
W (l)

@L

@w(l)
i

=
@L

@h(l)
i

[h(l�1)]T
ℎ(") = 𝑊(")ℎ("$%)
Recall:



Back prop: max pooling
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h(l-1) h(l)
@L

@h(l)

@L

@h(l�1) @h(l)

@h(l�1)

1xc11x1c1x1 1x1

Max 
pooling

y
x

If x is max, y=x, dy/dx = 1
If x is not max, y and x are independent, dy/dx=0

@L

@h(l�1)
i

=
@L

@h(l)
I(h(l�1)

i is max)

I(c) = 1 if c is true, 0 otherwise

Only 1 branch has gradient, and 
gradient goes to the max input branch

@h(l)

@h(l�1)
i

= I(h(l�1)
i is max)



Back prop: max pooling
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h(l-1) h(l)
@L

@h(l)

@L

@h(l�1) @h(l)

@h(l�1)

1xc11x1c1x1 1x1

Max 
pooling

3
8

If x is max, y=x, dy/dx = 1
If x is not max, y and x are independent, dy/dx=0

8 10
0
10

@L

@h(l�1)
i

=
@L

@h(l)
I(h(l�1)

i is max)

I(c) = 1 if c is true, 0 otherwise

@h(l)

@h(l�1)
i

= I(h(l�1)
i is max)

Only 1 branch has gradient, and 
gradient goes to the max input branch



Back prop: ReLU
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h(l-1) h(l)
@L

@h(l)

@L

@h(l�1) @h(l)

@h(l�1)

1xc1c1x1

ReLU

I(c) = 1 if c is true, 0 otherwise

Gate: gradient can or cannot pass through

c1x1 1xc1

@h(l)
i

@h(l�1)
i

= I(h(l�1)
i > 0)h(l)

i = max(0, h(l�1)
i )



Back prop: ReLU
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h(l-1) h(l)
@L

@h(l)

@L

@h(l�1) @h(l)

@h(l�1)

1xc1c1x1

ReLU

I(c) = 1 if c is true, 0 otherwise

Gate: gradient can or cannot pass through

c1x1 1xc1

@h(l)
i

@h(l�1)
i

= I(h(l�1)
i > 0)h(l)

i = max(0, h(l�1)
i )

0.5
-1

0.5
0

-2
2

-2
0

@L

@h(l�1)

@L

@h(l)

@h(l)
i

@h(l�1)
i

= I(h(l�1)
i > 0)=



Back prop: Sigmoid
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h(l-1) h(l)
@L

@h(l)

@L

@h(l�1) @h(l)

@h(l�1)

1xc1c1x1 c1x1 1xc1

h(l)
i = �(h(l�1)

i )
@h(l)

i

@h(l�1)
i

= �(h(l�1)
i )(1� �(h(l�1)

i ))

�(.)



Back prop: Softmax
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h(l-1) h(l)
@L

@h(l)

@L

@h(l�1) @h(l)

@h(l�1)

1xKKx1 Kx1 1xK

Softmax

@h(l)
i

@h(l�1)
j

= h(l)
i (1� h(l)

j )

@h(l)
i

@h(l�1)
j

= �h(l)
i h(l)

j

i = j

i 6= j

@h(l)

@h(l�1)
is a KxK Jacobian matrix



Back prop: Cross entropy loss
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h(l)
Kx1

Cross 
entropy 
loss

L

The y-th 
class is the 
ground-
truth

@L

@h(l)
= [0, 0, ...,

�1

h(l)
y

, ..., 0]

L = � log(h(l)
y )

Back prop starts from the loss function



Back prop: Exercise
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h(l-1) h(l)

@L

@h(l�1)

Kx1 Kx1

Softmax
2

-0.6

Cross 
entropy 
loss

L

The first 
class is the 
ground-
truth

Compute:
(i) L

(ii) 

(i) 0.07

(ii) [-0.0687    0.0687]
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Today’s class

v CNN architectures:
o LeNet
o AlexNet
o GoogleLeNet (Inception)
o ResNet

v Backpropagation
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Next week’s class

v Presentation of project idea and 
preliminary results by the teams (8 
and 10 Nov)


