CNN Architectures

Computer Vision
Winter Semester 20/21
Goethe University

Acknowledgement: Some images are from various
sources: UCF, Stanford cs231n, etc.

What we did last week

** Deep Learning

** Convolutional Neural Networks

Today’s class

** CNN architectures:
O LeNet
o AlexNet
o GoogleLeNet (Inception)
O ResNet

¢ Backpropagation

CNN —inspired by neuroscience

Simplified neuroscience: a neuron computes a dot
product between its inputs and the synaptic weights

X3
X1
n
t
1 ts

n
<Xx,t>= Z xitl-
—

l

Simple perceptron

F. Rosenblatt 1957

Weights
Constant
Wo \

o Onelayer NN

Weights Sum

C : \' W1
ﬁ@
Inputs Wh-1
Step Function

neuron fires:or not

Input + | P ; n
constant for bias Y x;w; | Out = sgn() x;w;)
=0

=0

Image credit: missinglink.ai

Simple perceptron

Types of Nonlinearities

o
/
Step function Linear Rectifier (ReLu) Sigmoid
0 rz<0] 0 z<0 1
f(x)_{l x>0 f(x)_{x x>0 U(x)=1+e—x

etc.

Simple perceptron

Weights
Wo
— Wei Sum
W1
l -~ > >
IIIIII Wha-1
Step Function
Whn

Given training samples {X;, Vi}yi - Ve
X; -> input of example |,

y; -> groundtruth target of example /

Simple perceptron

Initialization: L

Initialize the weights WtoOor ™

small random numbers. T A i

Simple perceptron

Initialization: (O~
O
Initialize the weights W to 0 or > ()
IIIIII Xos Wh-1 tep Funcﬁ?n l
. - . ﬁ

small random numbers. o

Iterate:

For each training sample X;:

n

1.Calculate the output value: out = sgn(), x;w;)
i=0

2.Update the weights. W = W + nX;(y; — out)

In case of linear separable data, the learning converges in a bounded number of
iterations.

Electrical signal \
from brain .

Visual area
of brain

Ih$dg?pwue

(1981)

Stimulus

Hubel and Wiesel

LGN-type Simple Complex
cells cells cells

I|
I‘II
| \
|" \ 'l‘.
/ \ \
P -1 -

e - K3 > I}
cells '\l [/

\\:‘\] /

/< Cortical
simple cell

i (Hubel & Wiesel 1959)

Simple and Complex Cells

» Tuning operation (Gaussian-like,

AND-like) y = gF » Max-like operation (OR-like)
or y =max{xl, x2,...}
XW
y ~

I x| » Complex units

»Simple units

Simple and Complex Cells

Unit Pooling Computation
- Selectivity /
Simple > = | template
B matching
I 3
Complex > 1 | Invariance

The visual ventral stream

The ventral stream hierarchy: V1, V2,
V4, IT
A gradual increase in the
receptive field size, in the complexity of the
preferred stimulus, in tolerance to position
and scale changes

Kobatake & Tanaka, 1994

S5

C2b

S2b

"% Complex cells (O Simple cells
— Main routes — TUNING
= Byposs routes <+« MAX

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

Two operations (~OR, ~AND):
disjunctions of conjunctions

»Tuning operation (Gaussian-like,

AND-like) ~ y— g

or

s

XeW

Y

»Simple units Stage 3

» Max-like operation (OR-like)

¥y = max{xl,x2,...} Stage 2

- N - N

» Complex units Stage 1

W /
Complex cells ',_7.1 Simple cells N .) ,- f
. — Main routes — TUNING ' -' 6
Each operation ypass routes oo —

~microcircuits of ~100
neurons

Invariance

C1 units
/e*- = S1 units
- o
Y

O Strongest afferent

C1 units

A A s

Serre, T., and Riesenhuber, M. (2004)

Convolutional Neural
Networks (CNNs)

(.; Sl (': S_ nm n»
mput fearure maps feature maps feature maps feature maps output
32x32 28 x 28 14x 14 10x 10 5x35
N\ N O N\
\ — \ \ o (_)A—» 0 1

3 - ::"\<.:4:- \\ (;msg

5x5 2x2 5x5 . (0)
convolution \ subsampling convolution 2x2 \\ O fully \
N subsampling \\ connected N
feature extraction classification

Convolutional assumption

LeCun et al. 98

CNN

3D volumes of neurons

depth
55555 height
- ~ QO0O00K) ~ 7
OOOOOMV width

Input: width x height x numChannel Output: 1 x 1 x numClass

e Stack of
— Convolutional layer
— Fully connected layer
— Pooling layer

CNN

* One example

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected
ll
Depth
-o_ dog(0.01)
cat (0.04)
" boat (0.94)
in bird (0.02)
-4 '-.-I‘l -
o . - I 1 -
‘D a [P
Input:
Output:

width x height x numChannel

e Stack of

— Convolutional layer

1 x 1 x numClass

— Fully connected layer
— Pooling layer

CNN Architecture

* LeNet for character recognition

C3:f. maps 16@10x10

INPUT gg@ éggtzuere maps S4:f. maps 16@5x5
32x32 S2: f. maps C5: layer gq. OUTPUT
6@14x14 120 oz layer o

| Full conrlection l
Convolutions Subsampling Convolutions Subsampling Full connection

-Average pooling
-Sigmoid or tanh nonlinearity
-Trained on MNIST digit dataset (60K training examples)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278-2324, 1998

CNN Architecture

* AlexNet for image recognition

128

| BN

27

Max
pooling

48

-8 layers, 650K neurons, 60M parameters

128

-Max pooling, ReLU nonlinearity
-1.2M training images of 1000 classes

k s 3 X
XY ’
----- ’fﬁz' 192 192 2048 2048
13 13
- | [\ 13 dense’| [dense
192 192 128 Max H]
Max pooling 2948 2048
pooling

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

dense

1000

CNN Architecture

Revolution of Depth

152 layers
S
\
\
\
\
\
\
\
22 layers | 19 Ilycrs |
\ 6.7

357 I____I |8Iayers] 8 layers shallow

ILSVRC'1IS ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

23

Inception module and GooglLeNet

* Filter size: hyperparameter

 What is the right filter size?

* Inception module
— Use filters of different size in the same layer
— Concatenate all the filter results as output
— Use 1x1 convolution to reduce complexity
— Increase width and depth of the network

— All convolutions use RelLU, including 1x1 convolution for
reduction / projection

Christian Szegedy, Wei Liu, Yangging Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, Andrew Rabinovich, “Going Deeper with Convolutions,” CVPR 2015

Inception module and GooglLeNet

* Inception module, naive version

Filter
concatenation
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

\|/

Previous layer

Computation expensive: 28x28x192 input, need 5x5x192 filtering

25

Inception module and GooglLeNet

e 1x1 convolution for dimensionality reduction: reduce number
of channels

 —
1x1xC1
HxWx1
HxWxC1 (stride = 1)
[Lin et al.; 2014]
-With C2 filters (1x1xC1 each), output HXWxC2; usually
C2<(C1

-Followed by non-linear as in ordinary convolution *

Inception module and GooglLeNet

e 1x1 convolution for dimensionality reduction:

Conv 5x5x192; 32

>

Computation: (5x5x192x28x28)x32 = 120.4M

Computation: (1x1x192x28x28)x16 + (5x5x16x28x28)x32 = 12.4M
> >
Conv 1x1x192; 1 Conv 5x5x16; -

Inception module and GooglLeNet

* Inception module with dimensionality reduction

Filter
concatenation

A ————

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

}

1x1 convolutions 1x1 convolutions

)

3x3 max pooling

—>

Previous layer

28

Inception module and GooglLeNet

* Inception module with dimensionality reduction:

28x28x256 output inception 3a

Filter
concatenation

28x28x32
2828x64 _78x28x128 L
/ 3x3 convolutions 5x5 convolutions 1x1 convolutions

3x3x96;128 5x5x16;32 1x1x192;32

1x1 convolutions 4 28x28x96 } 28x28x16 A 28x28x192
1x1x192; 64

1x1 convolutions 1x1 convolutions 3x3 max pooling
1x1x192; 96 1x1x192; 16
—>

Previous layer

28x28x192 input

29

Inception module and GooglLeNet

* GoogleNet

Convolution
Pooling
Auxiliary networks:

added during training to avoid vanishing gradients. During training,
their loss gets added to the total loss of the network with a discount
weight (auxiliary classifiers were weighted by 0.3).

At inference time, these auxiliary networks are discarded. 30

Concat/Normalize

Inception module and GooglLeNet

Total: 27 layers (dropout, softmax not count)

type pa::ﬁ;ize/ Olslitf:t depth | #1x1 ij:ci #3x3 iﬁ:ci #5%5 g:g: params | ops N um b er Of 1X 1
convolution TxT/2 | 112x112x64 | 1 27k | am | filtersin the

max pool 3x3/2 56 % 56 x 64 0 p— reduction |ayer
convolution 3x3/1 56x 56192 2 64 192 ,// 112K ﬂ&_ before 3X3 or 5X5
max pool 3x3/2 | 28x28x192 0 —])

inception (3a) 28% 28 %256 2 @ 96 128 16 (32) 323 159K | 128m | €O nvolution
inception (3b) 28 % 28 x 480 2 128 128 192 32 96 64 %\\3041\4

max pool 3x3/2 | 14x14x480 | 0 N Number of 1x1
inception (4a) 14x14x512 2 192 96 208 16 48 64 | 364K | 73M)

inception (4b) 14x14x512 2 160 112 224 24 64 64 | 437K | 88M filters after max
inception (4c) 14x14x512 2 128 128 256 24 64 64 | 463K | 100M pOO| [nNg

inception (4d) 14x14x528 2 112 144 288 32 64 64 | 580K | 119M

inception (4e) 14x14x832 2 256 160 320 32 128 | 128 | 840K | 170M

max pool 3x3/2 TXTx832 0

inception (5a) TXTx832 2 256 160 320 32 128 | 128 | 1072K | 54M

inception (5b) Tx7x1024 2 384 192 384 48 128 | 128 | 1388K | 7IM

avg pool TX7/1 1x1x1024 0 K

dropout (40%) 1x1x1024 | 0 \

linear 1x1x1000 1 1000K | 1M

softmax 1x1x1000 0 P"'mb"r Of X5

Table 1: GoogLeNet incarnation of the Inception architecture.

31

Shortcut connection and Resnet

e Challenges of going deeper

— Vanishing gradient: gradient is backpropagated to earlier layers,
repeated multiplication may make the gradient very small

— Overfitting: good in training, bad in testing

— Difficult to learn an identity mapping in a deep architecture

Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer
“plain” networks. The deeper network has higher training error, and thus test error

201

training error (%)

o

—
(=)
T

56-layer

20-layer

o

2 3 4
iter. (1e4)

5 6

test error (%)

20

—
o
T

56-layer

20-layer

2 3 4
iter. (1e4)

Shortcut connection and Resnet

e Challenges of going deeper

— Vanishing gradient: gradient is backpropagated to earlier layers,
repeated multiplication may make the gradient very small

— Overfitting: good in training, bad in testing

— Difficult to learn an identity mapping in a deep architecture

-
-

T
g

Adding an identity
mapping layer
would have no
worse performance
-> difficulty in
learning an identity
mapping results in
poorer performance
when going deeper

33

Shortcut connection and Resnet

* Deep residual learning
— Learn the residual mapping instead of the entire mapping

Kaiming He, Xiangyu Zhang,
Shaoging Ren, Jian Sun, Deep
Residual Learning for Image
Recognition, CVPR 2016

weight layer
F(x) L relu

weight layer

X

identity

y = F(x, {W;}) +x Element-wise addition,
channel by channel

34

Shortcut connection and Resnet

* Deep residual learning
— Learn the residual mapping instead of the entire mapping

Kaiming He, Xiangyu Zhang,
Shaoging Ren, Jian Sun, Deep
Residual Learning for Image
Recognition, CVPR 2016

y = ‘F(Xv {WZ}) + X
F = WQU(WlX)

weight layer
F(x) L relu

weight layer

X

identity

N

Optimal mapping is close to an identity mapping, residual
learning is a construction to ease the learning 35

Understanding Residual Learning

* Deep residual learning
— Learn the residual mapping instead of the entire mapping
Want AX to be small, so that the output feature

maps would not cause dramatic change (degrade)
in performance

X: 28x28x64 - Incremental approach to build complex DNN

- Need W = 1, i.e., identity mapping
Conv 3x3, 64 - But hard to learn with data-driven approach
X + AX: 28x28x64 - An issue with optimization (non-convex, high

dimensional loss function)

010
010 All zero in other slices

One of the 64 filters:

3x3x64 36

Understanding Residual Learning

* Deep residual learning

— Learn the residual mapping instead of the entire mapping
Want AX to be small, so that the output feature
maps would not cause dramatic change

(degrade) in performance
X: 28x28x64 - With Sklp connection, need W = 0

- Easy to learn with regularization on W
Conv 3x3i 94
AX: 28x28x64

S+ “We hypothesize that it is easier to
X + AX: 28x28x64 optimize the residual mapping than to
| ' 000 optimize the original, unreferenced

One of the 64 filters:

mapping. To the extreme, if an identity
mapping were optimal, it would be
easier to push the residual to zero than
to fit an identity mapping by a stack of
nonlinear layers.”

37

Understanding Residual Learning

* Another reasoning: Ensembles of networks

-Residue networks can be viewed as a collection of
many paths, instead of a single ultra-deep network

Building block

Skip
connection

(a) Conventional 3-block residual network

(b) Unraveled view of (a) T

|

Averaging many networks

Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016 38

Understanding Residual Learning

* Another reasoning: Ensembles of networks

-These paths do not strongly
depend on each other, even
thought they are trained jointly
-Exhibit ensemble-like behavior:
overall performance correlates
smoothly with the number of
valid paths

o fiH L H P>

(a) Deleting f> from unraveled view (b) Ordinary feedforward network

o

Figure 2: Deleting a layer in residual networks at test time (a) is equivalent to zeroing half of the
paths. In ordinary feed-forward networks (b) such as VGG or AlexNet, deleting individual layers
alters the only viable path from input to output.

Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks

Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016 39

Understanding Residual Learning

* Another reasoning: Ensembles of networks

Test error when dropping any single block
from residual network vs. VGG on CIFAR-10

— residual network v2, 110 layerg

§0.8 __________________ ‘.’GQ neltwork. lrilayell'.s

2 S ek bt -These paths do not strongly

g D e e

8 depend on each other, even they

S are trained jointly

»§°2—k ----------------------------------- -Exhibit ensemble-like behavior:
005~ ===~ R R = e overall performance correlates

dropped layer index

smoothly with the number of

Figure 3: Deleting individual layers from VGG valid paths
and a residual network on CIFAR-10. VGG per-

formance drops to random chance when any one

of its layers is deleted, but deleting individual

modules from residual networks has a minimal

impact on performance. Removing downsam-

pling modules has a slightly higher impact.

Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016 40

Understanding Residual Learning

Another reasoning: Ensembles of networks

Error

0.3

08|

0.7}

06|

05F

0.4f

03

0.2}

0.1F

0.0

Error when deleting layers

1 1 11 | I 11 1 | -

L1
4 567 8 51011121314151617181520
Number of layers deleted

(a)

Error

0.5,

0e

0.7

0.6

05

0.4

0.3

0.2

0.1

0.0
1.0 058 056 034 0532 03

Error when permuting layers

X

3
SRE kit
—éééggggLL%ll

Kendall Tau correlation

(b)

1
oege o0ee 084

Figure 5: (a) Error increases smoothly when randomly deleting several modules from a residual
network. (b) Error also increases smoothly when re-ordering a residual network by shuffling building
blocks. The degree of reordering is measured by the Kendall Tau correlation coefficient. These results
are similar to what one would expect from ensembles.

Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016

41

Understanding Residual Learning

* Another reasoning: Ensembles of networks

. total gradient magnitude per path langth

10—s Jradient magnitude per path length

200 _ L . 1.0
l/\l
’V ‘|‘ -
J \
w L e -ll - _.l ____________ _é’
s I' |' 6
§ |‘ 'u _g
© 10 e e S E
B "4 l.| g
: ;
C 06 — — — o el T o
II E
\ 5
'Y J—— /_ _________ -------- 0.0 \
0 10 20 30 40 50
path length path length path length
(a) (b) (©)

Figure 6: How much gradient do the paths of different lengths contribute in a residual network?
To find out, we first show the distribution of all possible path lengths (a). This follows a Binomial
distribution. Second, we record how much gradient is induced on the first layer of the network
through paths of varying length (b), which appears to decay roughly exponentially with the number
of modules the gradient passes through. Finally, we can multiply these two functions (c) to show how
much gradient comes from all paths of a certain length. Though there are many paths of medium
length, paths longer than ~20 modules are generally too long to contribute noticeable gradient during
training. This suggests that the effective paths in residual networks are relatively shallow.

Andreas Veit, Michael Wilber, Serge Belongie, “Residual Networks
Behave Like Ensembles of Relatively Shallow Networks,” NIPS 2016

Shortcut connection and Resnet

stack of deep residual learning modules

Resnet:

Com] [Com] s]
|ood 3ae _ooa+ Sne _ 960v % _
A A
715 ‘woexe | | @smuoexe |
A A
715 ‘v exe | | @s'auoaexe |
A
zis‘vo e | |__zswoee |
A A
ZIs‘wo g | | zisavuodexe |
........ A
[asweee | [aswoexe |
A A
o |t/ asorexe | | s o | z/1ood
......... A A
95z ‘A exg | | esz‘auodexg |
A A
95z ‘Audd exg | | gsz‘auodexg |
4 A
| osz'aorexe | | ot numexe |
A A
95z ‘Auodgxg | | 95z ‘numexg |
A
95z ‘Audd exg | | gsz‘auodexe |
A A
95z ‘o exe | | osz'worexe |
A
95z ‘Auodexg | | 95z ‘numexg |
A A
957 ‘MuodExe | | oszmumexe | | zis‘woree |
A A
957 ‘A0dEXE | | 9sz‘numexe | | zismuoee |
A A A
957 ‘Mo EXE | | 95z ‘nwmexe | | zs‘nweee |
......... A A
< s mmexe | [TeszRuoree | [Tzisueee |
A A A
.. |_gl'est'ruorexe | | 7/ '9sz'morexe | z/‘ood
........ A A
87T ‘N &g | | szt'aworpe |
A A
871 ‘Ao x| | szi‘mwuorexe |
A
8z ‘woexe | | sermuorexe |
A A
871 ‘Aumdexg | | szr‘auodexg | | zis‘wosxe |
A A
871 ‘A exe | | ser‘auodexg | | zis'worpe |
A A A
871 ‘Aumd Exg | | ser‘auodexe | | as‘moexe |
.......... A A
o |_ser'awodexe | | szmnwomexe | | zsmwoee |
A A A
. |t BTr'vu0EE | | z/'ser‘norexe | z/jo0d
......... A A
+9 ‘AU EXE _ _ 9 MU0 EXE _
A A
¥9 ‘AU EXE | | $9 ‘AUOD EXE |
A
v nuodexe | | vo'mexe | |__gszauorpxe |
A A A
v9 ‘Auodexe | | y9 ‘Aum exg | | gsz'auorpx |
A A
9 ‘Auodgxg | | va'nwoexe | | 9sz‘mumexe |
A A A
v9 Muodexe | | vomumexe | | estmmee |
£ £
7/ ‘|ood 7/ ‘|o0d 7/ ‘jood
A A A
| 2/ ve o ix | 2/ e rxe [szrmuoree |
h A
z/‘jood
| vo'uodexe |
| vo'wodexe |
adew) adew adew
|enpisal JaAe|-p g ure|d sahe-yg 6T-99A

19
indino

L39S
indino

vi:azs
ndino

8z:as
ndino

95:3zs
indino

TIL @3S
indino

vTT @S
indino

43

ResNet-50/101/152

Other variants

Today’s class

“* CNN architectures:
o LeNet
o AlexNet
o GoogleLeNet (Inception)
o ResNet

»* Backpropagation

Learn W using loss function L(W)

e Determine W with the min loss function

1 .
L = ~ Z L; + AR(W) N training samples

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

INPUT
32x32 6@=mx2s S2: f. maps

| FuIIcoml.ection Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

45

Learn W using loss function L(W)

e Determine W with the min loss function

1 .
L = ~ Z L; + AR(W) N training samples

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

32332 G S2: f. maps C5:1
< :layer gg. OUTPUT
I'I_ 120 Folayer 0

32x32 S2 r
T

| | Fullcomlection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e Start from a random W, iteratively improve W (reduce L(W)):
Gradient descent

* Note: L(W) = LW, (x,y1), (X2,¥2), - (Xi,¥i) .. (XnsYn))

46

Learn W by gradient descent

Update W by W+AW, using the gradient
L(W) — L(wl, w2, ’wl)
W' =W —~VL Gradient descent

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

INPUT
32x32 i S2: f. maps

| FuIIcoml.ection Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

oL

/
e B
l (‘9wl

47

Learn W by gradient descent

e Update W by W+AW, using the gradient
L(W) — L(wl, w2, wl)
W' =W —~VL Gradient descent

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

INPUT
32x32 GeZoxea §2:1. maps

|
| u conrl-ection I Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

oL
Wy =W — Y7 Find 8_L for every w,
(‘9wl 8101

48

Learn W by gradient descent

e Update W by W+AW, using the gradient

, OL
Wy = Wy — Va—wl
1
oL dL; OR(W)
Dur —Zawl A

- Sum gradients for all (partial) training samples for one w,
- Make one update of W once we have all the gradients

Note: From now, here we refer to gradient of one training sample for simplicity

Compute the gradient

 Example

K1) AU, B+1) B(1+2) R(1+3)

\

output layer
input layer 50
hidden layer

Compute the gradient

 Example

K1) AU, B+1) B(1+2) R(1+3)

Approach 1: compute L(W®?), then differentiate

51

Compute the gradient

 Example

R-1) AU, B+1) B(1+2) R(1+3)

Approach 1: compute L(W®), then differentiate

-Tedious task, e.g. for deep NN

-Not flexible; if some layer changes (Sigmoid -> RelLU), need to
re-derive again

52

Compute the gradient

 Example

R-1) AU, B+1) B(1+2) R(1+3)

Approach 2: back propagation
-Assume we have L

oh)

oL 9L onW oL oL onW
ow® o oW) Oh(=1) 9pM) Hhl-1)
For grad descent For back prop

53

Back prop

h(-1) h() oh®)
OL B0 OL
Oh(—1) Oh)
- aE
W) l oL
Modular design: OW ()

-Each module knows how to compute local gradients
-Multiply by the global gradient from upstream
-Generalize to other modules, e.g. RelLU

oL 9L onW oL oL onW
oww — op® oW) Oh=1 9n® Hhl-1)
For grad descent For back prop

54

cyx1

f-1)

Back prop: fully connected

cox1 1xcq
K oh®)
oL z
8h(l_1)

— — S
4L
oL oL

501 — 9n0) W Recall:

OL OL BT h =W h

w,?: i-th row of W

ow® a0

1xc,

55

Back prop: max pooling

c1x1 1x1 1xcq 1x1
B B0 oL
. Ohl-1) Oh®) oL
— D S — Oh®)
— — —

Y

If x is max, y=x, dy/dx =1
If x is not max, y and x are independent, dy/dx=0

oL oL
5,00 — a0

Oh®)

I(h(l Y g max) I(h(1 g max)

on!' ™"
I(c) =1 if cis true, O otherwise

Only 1 branch has gradient, and
gradient goes to the max input branch

56

Back prop: max pooling

c1x1 1x1 1xcq 1x1
R X0 oL
Oh(—1) ohW OL

If x is max, y=x, dy/dx =1
If x is not max, y and x are independent, dy/dx=0

oL oL
5,00 — a0

Oh®)
8h(l 1)

I(h(l Y g max) I(h(1 g max)

I(c) =1 if cis true, O otherwise

Only 1 branch has gradient, and
gradient goes to the max input branch

57

cx1

f-1)

Back prop: RelLU

cyx1 1xcq
) oL
Oh(-1)
e «— «—
— — —
— «— «—
. oV .
= max(0, A") 8h(lz_ 5 =1(hy " > 0)

I(c) =1 if cis true, O otherwise

Gate: gradient can or cannot pass through

1xcq

oL
oh)

58

Back prop: RelLU

c1x1 cix1 1xcq 1xcq

h() 0L

Oh(-1)
5 05 2
5 0 0

oL
Orl=1) ~ 9p() gpU-1)
ontY _
h = max(, ™) Gy = T >0

I(c) =1 if cis true, O otherwise

Gate: gradient can or cannot pass through -

Back prop: Sigmoid

cx1 cyx1 1xcq 1xcq
h-D) W oL
Oh(i—1) oL
— — — — PYXO)
— — — —
— — — —
onY

W = o(hiV)

60

Back prop: Softmax

Kx1 Kx1 1xK 1xK
h-D) 0 oL
Oh(=1) oL
. . - a0
- —> — —
(1)
8?2—1) is a KxK Jacobian matrix
3h7(;l) l l .
J
Ohy"
= O i3

-1 ~
Oh!

61

Back prop: Cross entropy loss

Kx1
h The y-th
Cross class is the
© entropy ~— L ground-
—
. truth

L = —log(h!!)

0L —1
8h(l) — [0,0,...,W,...,
Yy

0]

Back prop starts from the loss function 62

Back prop: Exercise

Kx1 Kx1
K1) B The first
5 class is the
06 — — L ground-
- — g
' truth
Compute:
(i) L (i) 0.07
oL

(ii) [-0.0687 0.0687]

(ii)

Oh(—1)

63

Today’s class

** CNN architectures:
O LeNet
o AlexNet
o GoogleLeNet (Inception)
O ResNet

¢ Backpropagation

Next week’s class

*** Presentation of project idea and
preliminary results by the teams (8
and 10 Nov)

