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What we did last week

v Image classification:

o Linear classifier

o Gradient descent
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Today’s class

v Deep Learning

v Convolutional Neural Networks



Linear Classifier Recap

• Score function:

s = f(x;W, b) = Wx+ b
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Linear Classifier

• Score function:

• Shorthand notation

s = f(x;W, b) = Wx+ b
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s = f(x;W ) = Wx

s = [W b][x 1]T

Input x: (D+1)x1
Weight W: Kx(D+1)
Score s:Kx1

xW



Linear Classifier

• Score function:

• Shorthand notation

s = f(x;W, b) = Wx+ b
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s = f(x;W ) = Wx

s = [W b][x 1]TInput x: (D+1)x1
Weight W: Kx(D+1)
Score s:Kx1

xW

LIMITATIONS:
Rather insufficient to predict the class of x
- High dimensional input
- Highly nonlinear classification function



Classification

• Classification function for image is complex, non-linear
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y = F (x)
x = 

y = 1, 2, ... or K (class index)



Classification

• Classification function for image is complex, non-linear

• Given data points (training examples)

• Able to generalize to unseen example
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y = F (x)
x = 

y = 1, 2, ... or K (class index)

yi = F (xi)



Classification

• Classification function for image is complex, non-linear

• Given data points (training examples)

• Able to generalize to unseen example
• Our goal is to learn a good approximation of F(x)
Deep neural network: a class of function with large capacity to 
provide this approximation

– With certain parameters learned in training 9

y = F (x)
x = 

y = 1, 2, ... or K (class index)

yi = F (xi)



Stacking linear classifiers

• Stacking linear classifiers to improve representational power 
(to approximate F(x))
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s1 = W1x

s2 = W2s1

Still linear, W = W2W1



Stacking linear classifiers

• Stacking linear classifiers to improve representational power 
(to approximate F(x))

• Add non-linearity between layers (stages) 

• Activation function is applied element-wise
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s1 = W1x

s2 = W2s1

s1 = W1x

s2 = W2�(s1)

Still linear, W = W2W1

Can approximate any 
continuous function F(x)



Stacking linear classifiers

• Activation function is applied element-wise
• Example: Sigmoid 
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s1 = W1x

s2 = W2�(s1)

�(z) =
1

1 + e�z

We obtain a neural network

Can approximate any 
continuous function F(x)



• Neural network: collection of neurons
– Connected in an acyclic graph
– Output of a neuron can be input of another

Neural Network
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s1 = W1x

s2 = W2�(s1)
x W1

�(s1)

W2
s2

wT
j x



• Neural network: collection of neurons
– Connected in an acyclic graph
– Output of a neuron can be input of another

Neural Network
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A neuron

• Neuron: a computational unit, take input x, output:  
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A neuron

• Neuron: a computational unit, take input x, output:  

• Activation (Sigmoid) function is applied element-wise
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• Neural network: collection of neurons
– Connected in an acyclic graph
– Output of a neuron can be input of another

Neural Network
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• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network
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2-layer NN: 1 hidden, 1 output layer ?-layer NN: ? hidden, ? output layer
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• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network
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2-layer NN: 1 hidden, 1 output layer 3-layer NN: 2 hidden, 1 output layer
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• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network
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2-layer NN: 1 hidden, 1 output layer 3-layer NN: 2 hidden, 1 output layer

Artificial neural network (ANN)
Multi-layer perceptrons (MLP)



• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network
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Hidden layer
Explicit 
indication 
of bias



Activation function
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Sigmoid -Incorporate non-linear

-Limit the output range (or additional 
normalization)

-Decision / probabilistic interpretation
-Detect feature or not
-Biological neuron: to fire or not

�(z) =
1

1 + e�z



Activation function
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Sigmoid derivative:

�(z) =
1

1 + e�z

�0(z) = �(z)(1� �(z))

Easy to compute gradient:

Plots for derivatives: https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html



Activation function
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f(z) = tanh(z) =
ez � e�z

ez + e�z

Hyperbolic tangent PROBLEMS:
-Saturation, vanishing gradient 
(as the sigmoid)

-Slow and difficult to train with 
gradient descent 

-Stronger gradient than the 
sigmoid



Activation function
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Hyperbolic tangent derivative:

RECAP CHAIN RULE DER.:



Activation function
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f(z) = max(0, z)

Rectified linear unit (ReLU)

MOST COMMONLY USED
- Avoids vanishing gradient 

problem
- If strong in negative area, 

there is no gradient an unit 
is dead



Activation function
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Rectified linear unit (ReLU) derivative

f(z) = max(0, z)

Undefined at 0:



Activation function
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Rectified linear unit (ReLU) variants: e.g. Leaky ReLU



Activation function
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Leaky ReLU derivative

Undefined at 0



NN as a function approximation

• NN with one hidden layer can approximate any 
continuous function F(x)

• Classification function in our case

• In practice, NN with multiple hidden layers 
performs better -> It’s an active research 
question: e.g. compositionality: f(f(f(x))) 
captures world structure

30
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Today’s class

v Deep Learning

v Convolutional Neural Networks



Convolutional Neural Network 

• CNN: similar to ordinary NN
• In most cases, the inputs are images
• Special network architecture for images
– Less computation in the forward pass
– Reduce the number of parameter
– Better accuracy 224x224x3

=150528

If using hidden layer of similar size, 
approximately 1x1010 parameters (only W1)



Revisit Image Filtering

• Correlation / convolution (precisely, there are 
subtle differences)

Correlation / 
convolution
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Image Filtering
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• Filtering (convolution) operation



Image Filtering
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• Filtering (convolution) operation
• Slide the filter kernel over the entire image to 

produce the output (image/activation) 



Image Filtering

• Filtering as feature detection / template matching
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[[-1,0,1],
[-1,0,1],
[-1,0,1]]

[[-1,-1,-1],
[ 0,  0, 0],
[ 1,  1, 1]]

Detect vertical edge Detect horizontal edge



Image Filtering

• Filtering as feature detection / template matching
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[[-1,0,1],
[-1,0,1],
[-1,0,1]]

[[-1,-1,-1],
[ 0,  0, 0],
[ 1,  1, 1]]

Detect vertical edge Detect horizontal edge

Activatio
n / 
feature 
map

Vertical 
edge is 
detected 
here 
(large 
output)



Image Filtering

• Filtering as feature detection / template matching
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Generalize to curve detector



Image Filtering

• Filtering as feature detection / template matching

39

Curve is 
detected 
here 
(large 
output)



Image Filtering

• Filtering as feature detection / template matching
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Small output: no curve is detected

Take away: Filtering (convolution) is an efficient mechanism for finding 
patterns
Filters respond most strongly to pattern elements that look like the filters



Image Filtering

• Filtering as feature detection / template matching
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-Need different filter kernels to detect different 
features
-Data driven approach: use training images to tell 
us what filter kernels are useful (learns the filters)



How to recognize an object?

• Use feature detection (image filtering) in a 
hierarchical manner
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curvecurve

curve

circle circle

bike

Low level feature

High level feature

Implement this approach using CNN



CNN

• 3D volumes of neurons

• Stack of
– Convolutional layer
– Fully connected layer
– Pooling layer

Input: width x height x numChannel Output: 1 x 1 x numClass



CNN

• One example

• Stack of
– Convolutional layer
– Fully connected layer
– Pooling layer

Input:
width x height x numChannel Output:

1 x 1 x numClass

Depth



Convolutional Layer

• Conv layer: core component
• Local connectivity
– Spatial extent: receptive field
– Extent of connectivity along the depth dimension 

= depth of the input
• Parameter sharing
• Filtering / convolution
– Instead of matrix multiplication
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Convolutional Layer
depth

receptive 
field

3D input volume
3D output 
volume of 
neuron 
activation

Connections are local in 
the spatial dimension



Convolutional Layer
depth

x1
…
x27
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Filter size: FxFxDInput



Convolutional Layer
depth

Parameter sharing



Convolutional Layer
depth

Parameter sharing



Convolutional Layer
depth

Parameter sharing



Convolutional Layer
depth

W1



Convolutional Layer
depth

Multiple sets of neuron 
parameters (weights and bias) 
-> multiple activation maps

W2



Convolutional Layer
depth

3D input volume
3D output 
volume of 
neuron 
activation

Multiple sets of neuron 
parameters (weights and bias) 
-> multiple activation maps

Num of filter kernels = 
num of output 
activation maps 
(depth)



Convolutional Layer

54Image credit: codelabs google



Convolutional in deeper layers

55Image credit: codelabs google

Width x height x channels x # filters



Convolutional Layer

• Filtering (Convolution)
• Matched Filter to identify certain image features
– Edges or corners (low level layers)
– Faces or cars (high level layers) 

• Assumption of image
– Locality of pixel dependencies
– Stationary of image statistics
– Translation invariance 
– Use the same set of filters for the whole image



Pooling layer
• Progressively reduce the spatial size of the feature map
• Reduce model parameters
• Operate independently on every feature map of the 

input
• Overlap or non-overlap
• Average or max pooling
• Translation invariant: same pooled feature even when 

the image undergoes small translations
– Same label even when the image is translated
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Pooling layer
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max pooling



Pooling layer

59

max pooling

?



Pooling layer
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max pooling



Pooling layer
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max pooling

?



Pooling layer
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max pooling

QUESTION: How would be the result if applying average 
pooling instead of max pooling?



Pooling layer
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Pooling animation

Image credit: codelabs google



CNN

• Stack the layers

Input:
width x height x numChannel Output:

1 x 1 x numClass

Depth



CNN

• Stack the layers

Image credit: codelabs google



Stride

• Stride = the number of pixels (input units) by 
which the filter shifts
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Stride = 1

Stride = 2



Receptive field
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Input layer (image)

Conv 1

Conv 2

Receptive field: part of the image that is visible to a neuron
Inspired by visual cortex architecture

Stride = 1

3x3 receptive field size 
(filter size)

- 3x3 receptive field 
size w.r.t. conv1
- 5x5 receptive field 
size w.r.t. input 
image

Although connections are local, neurons in the higher layers could 
see large portions of the image (able to recognize object) 



Simplified neuroscience: a neuron computes a dot
product between its inputs and the synaptic weights

CNN – inspired by neuroscience



F. Rosenblatt 1957

One layer NN

Weights
Learned

Input + 
constant for bias

Image credit: missinglink.ai

neuron fires or not

Simple perceptron



Simple perceptron



Types of Nonlinearities

etc.

SigmoidLinear Rectifier (ReLu)Step function

Simple perceptron



Simple perceptron



Simple perceptron



In case of linear separable data, the learning converges in a bounded number of 
iterations.

Simple perceptron



Hubel and 
Wiesel

Nobel prize 

(1981)



Hubel and Wiesel



Simple and Complex Cells



The visual ventral stream



Simple and Complex Cells



HMAX





Invariance



Convolutional Neural 
Networks (CNNs)

Convolutional assumption

LeCun et al. 98
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Today’s class

v Deep Learning

v Convolutional Neural Networks
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Next week’s class

v CNN architectures


