
Deep Learning and
Convolutional Neural Networks

Computer Vision
Winter Semester 20/21

Goethe University

1
Acknowledgement: Some images are from various
sources: UCF, Stanford cs231n, etc.

2

What we did last week

v Image classification:

o Linear classifier

o Gradient descent

3

Today’s class

v Deep Learning

v Convolutional Neural Networks

Linear Classifier Recap

• Score function:

s = f(x;W, b) = Wx+ b

4

Linear Classifier

• Score function:

• Shorthand notation

s = f(x;W, b) = Wx+ b

5

s = f(x;W) = Wx

s = [W b][x 1]T

Input x: (D+1)x1
Weight W: Kx(D+1)
Score s:Kx1

xW

Linear Classifier

• Score function:

• Shorthand notation

s = f(x;W, b) = Wx+ b

6

s = f(x;W) = Wx

s = [W b][x 1]TInput x: (D+1)x1
Weight W: Kx(D+1)
Score s:Kx1

xW

LIMITATIONS:
Rather insufficient to predict the class of x
- High dimensional input
- Highly nonlinear classification function

Classification

• Classification function for image is complex, non-linear

7

y = F (x)
x =

y = 1, 2, ... or K (class index)

Classification

• Classification function for image is complex, non-linear

• Given data points (training examples)

• Able to generalize to unseen example

8

y = F (x)
x =

y = 1, 2, ... or K (class index)

yi = F (xi)

Classification

• Classification function for image is complex, non-linear

• Given data points (training examples)

• Able to generalize to unseen example
• Our goal is to learn a good approximation of F(x)
Deep neural network: a class of function with large capacity to
provide this approximation

– With certain parameters learned in training 9

y = F (x)
x =

y = 1, 2, ... or K (class index)

yi = F (xi)

Stacking linear classifiers

• Stacking linear classifiers to improve representational power
(to approximate F(x))

10

s1 = W1x

s2 = W2s1

Still linear, W = W2W1

Stacking linear classifiers

• Stacking linear classifiers to improve representational power
(to approximate F(x))

• Add non-linearity between layers (stages)

• Activation function is applied element-wise

11

s1 = W1x

s2 = W2s1

s1 = W1x

s2 = W2�(s1)

Still linear, W = W2W1

Can approximate any
continuous function F(x)

Stacking linear classifiers

• Activation function is applied element-wise
• Example: Sigmoid

12

s1 = W1x

s2 = W2�(s1)

�(z) =
1

1 + e�z

We obtain a neural network

Can approximate any
continuous function F(x)

• Neural network: collection of neurons
– Connected in an acyclic graph
– Output of a neuron can be input of another

Neural Network

13

s1 = W1x

s2 = W2�(s1)
x W1

�(s1)

W2
s2

wT
j x

• Neural network: collection of neurons
– Connected in an acyclic graph
– Output of a neuron can be input of another

Neural Network

14

x1

x2

x3

+1

w1

w2

w3

b

X

i

wixi + b

�(.)

s1 = W1x

s2 = W2�(s1)

x

W1

�(s1)

W2

s2
wT

j x

A neuron

• Neuron: a computational unit, take input x, output:

15

�(
X

i

wixi + b)

x1

x2

x3

+1

w1

w2

w3

b

X

i

wixi + b

�(.)

A neuron

• Neuron: a computational unit, take input x, output:

• Activation (Sigmoid) function is applied element-wise

16

�(z) =
1

1 + e�z

=
->

�(
X

i

wixi + b)

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

�(.)

�(.)

x

• Neural network: collection of neurons
– Connected in an acyclic graph
– Output of a neuron can be input of another

Neural Network

17

=
->

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

�(.)

�(.)

W1

W1

x

x

• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network

18

2-layer NN: 1 hidden, 1 output layer ?-layer NN: ? hidden, ? output layer

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

�(.)

• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network

19

2-layer NN: 1 hidden, 1 output layer 3-layer NN: 2 hidden, 1 output layer

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

�(.)

• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network

20

2-layer NN: 1 hidden, 1 output layer 3-layer NN: 2 hidden, 1 output layer

Artificial neural network (ANN)
Multi-layer perceptrons (MLP)

• Hidden layer: values are not observed in the training set
• Output layer: no activation

Neural Network

21

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

�(.)

Output layer

Input layer Hidden layer

Hidden layer
Explicit
indication
of bias

Activation function

22

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

f(.)

Sigmoid -Incorporate non-linear

-Limit the output range (or additional
normalization)

-Decision / probabilistic interpretation
-Detect feature or not
-Biological neuron: to fire or not

�(z) =
1

1 + e�z

Activation function

23

Sigmoid derivative:

�(z) =
1

1 + e�z

�0(z) = �(z)(1� �(z))

Easy to compute gradient:

Plots for derivatives: https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html

Activation function

24

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

f(.)

f(z) = tanh(z) =
ez � e�z

ez + e�z

Hyperbolic tangent PROBLEMS:
-Saturation, vanishing gradient
(as the sigmoid)

-Slow and difficult to train with
gradient descent

-Stronger gradient than the
sigmoid

Activation function

25

Hyperbolic tangent derivative:

RECAP CHAIN RULE DER.:

Activation function

26

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

f(.)
f(z) = max(0, z)

Rectified linear unit (ReLU)

MOST COMMONLY USED
- Avoids vanishing gradient

problem
- If strong in negative area,

there is no gradient an unit
is dead

Activation function

27

Rectified linear unit (ReLU) derivative

f(z) = max(0, z)

Undefined at 0:

Activation function

28

x1
x2
x3
+1

w1
w2
w3
b

X

i

wixi + b

f(.)

Rectified linear unit (ReLU) variants: e.g. Leaky ReLU

Activation function

29

Leaky ReLU derivative

Undefined at 0

NN as a function approximation

• NN with one hidden layer can approximate any
continuous function F(x)

• Classification function in our case

• In practice, NN with multiple hidden layers
performs better -> It’s an active research
question: e.g. compositionality: f(f(f(x)))
captures world structure

30

31

Today’s class

v Deep Learning

v Convolutional Neural Networks

Convolutional Neural Network

• CNN: similar to ordinary NN
• In most cases, the inputs are images
• Special network architecture for images
– Less computation in the forward pass
– Reduce the number of parameter
– Better accuracy 224x224x3

=150528

If using hidden layer of similar size,
approximately 1x1010 parameters (only W1)

Revisit Image Filtering

• Correlation / convolution (precisely, there are
subtle differences)

Correlation /
convolution

33

Image Filtering

34

• Filtering (convolution) operation

Image Filtering

35

• Filtering (convolution) operation
• Slide the filter kernel over the entire image to

produce the output (image/activation)

Image Filtering

• Filtering as feature detection / template matching

36

[[-1,0,1],
[-1,0,1],
[-1,0,1]]

[[-1,-1,-1],
[0, 0, 0],
[1, 1, 1]]

Detect vertical edge Detect horizontal edge

Image Filtering

• Filtering as feature detection / template matching

37

[[-1,0,1],
[-1,0,1],
[-1,0,1]]

[[-1,-1,-1],
[0, 0, 0],
[1, 1, 1]]

Detect vertical edge Detect horizontal edge

Activatio
n /
feature
map

Vertical
edge is
detected
here
(large
output)

Image Filtering

• Filtering as feature detection / template matching

38

Generalize to curve detector

Image Filtering

• Filtering as feature detection / template matching

39

Curve is
detected
here
(large
output)

Image Filtering

• Filtering as feature detection / template matching

40

Small output: no curve is detected

Take away: Filtering (convolution) is an efficient mechanism for finding
patterns
Filters respond most strongly to pattern elements that look like the filters

Image Filtering

• Filtering as feature detection / template matching

41

-Need different filter kernels to detect different
features
-Data driven approach: use training images to tell
us what filter kernels are useful (learns the filters)

How to recognize an object?

• Use feature detection (image filtering) in a
hierarchical manner

42

curvecurve

curve

circle circle

bike

Low level feature

High level feature

Implement this approach using CNN

CNN

• 3D volumes of neurons

• Stack of
– Convolutional layer
– Fully connected layer
– Pooling layer

Input: width x height x numChannel Output: 1 x 1 x numClass

CNN

• One example

• Stack of
– Convolutional layer
– Fully connected layer
– Pooling layer

Input:
width x height x numChannel Output:

1 x 1 x numClass

Depth

Convolutional Layer

• Conv layer: core component
• Local connectivity
– Spatial extent: receptive field
– Extent of connectivity along the depth dimension

= depth of the input
• Parameter sharing
• Filtering / convolution
– Instead of matrix multiplication

45

Convolutional Layer
depth

receptive
field

3D input volume
3D output
volume of
neuron
activation

Connections are local in
the spatial dimension

Convolutional Layer
depth

x1
…
x27
+1

w1
…
w27
b

X

i

wixi + b

f(.)

Filter size: FxFxDInput

Convolutional Layer
depth

Parameter sharing

Convolutional Layer
depth

Parameter sharing

Convolutional Layer
depth

Parameter sharing

Convolutional Layer
depth

W1

Convolutional Layer
depth

Multiple sets of neuron
parameters (weights and bias)
-> multiple activation maps

W2

Convolutional Layer
depth

3D input volume
3D output
volume of
neuron
activation

Multiple sets of neuron
parameters (weights and bias)
-> multiple activation maps

Num of filter kernels =
num of output
activation maps
(depth)

Convolutional Layer

54Image credit: codelabs google

Convolutional in deeper layers

55Image credit: codelabs google

Width x height x channels x # filters

Convolutional Layer

• Filtering (Convolution)
• Matched Filter to identify certain image features
– Edges or corners (low level layers)
– Faces or cars (high level layers)

• Assumption of image
– Locality of pixel dependencies
– Stationary of image statistics
– Translation invariance
– Use the same set of filters for the whole image

Pooling layer
• Progressively reduce the spatial size of the feature map
• Reduce model parameters
• Operate independently on every feature map of the

input
• Overlap or non-overlap
• Average or max pooling
• Translation invariant: same pooled feature even when

the image undergoes small translations
– Same label even when the image is translated

57

Pooling layer

58

max pooling

Pooling layer

59

max pooling

?

Pooling layer

60

max pooling

Pooling layer

61

max pooling

?

Pooling layer

62

max pooling

QUESTION: How would be the result if applying average
pooling instead of max pooling?

Pooling layer

63

Pooling animation

Image credit: codelabs google

CNN

• Stack the layers

Input:
width x height x numChannel Output:

1 x 1 x numClass

Depth

CNN

• Stack the layers

Image credit: codelabs google

Stride

• Stride = the number of pixels (input units) by
which the filter shifts

66

Stride = 1

Stride = 2

Receptive field

67

Input layer (image)

Conv 1

Conv 2

Receptive field: part of the image that is visible to a neuron
Inspired by visual cortex architecture

Stride = 1

3x3 receptive field size
(filter size)

- 3x3 receptive field
size w.r.t. conv1
- 5x5 receptive field
size w.r.t. input
image

Although connections are local, neurons in the higher layers could
see large portions of the image (able to recognize object)

Simplified neuroscience: a neuron computes a dot
product between its inputs and the synaptic weights

CNN – inspired by neuroscience

F. Rosenblatt 1957

One layer NN

Weights
Learned

Input +
constant for bias

Image credit: missinglink.ai

neuron fires or not

Simple perceptron

Simple perceptron

Types of Nonlinearities

etc.

SigmoidLinear Rectifier (ReLu)Step function

Simple perceptron

Simple perceptron

Simple perceptron

In case of linear separable data, the learning converges in a bounded number of
iterations.

Simple perceptron

Hubel and
Wiesel

Nobel prize

(1981)

Hubel and Wiesel

Simple and Complex Cells

The visual ventral stream

Simple and Complex Cells

HMAX

Invariance

Convolutional Neural
Networks (CNNs)

Convolutional assumption

LeCun et al. 98

84

Today’s class

v Deep Learning

v Convolutional Neural Networks

85

Next week’s class

v CNN architectures

