Image classification: Linear classifier

Computer Vision Winter Semester 20/21 Goethe University

Acknowledgement: Some images are from various and the state of the sources: UCF, Stanford cs231n, etc.

What we did last week

❖ Image histogram

❖ Image classification: o data-driven approach o K-nn

Today's class

❖ Image classification: o Linear classifier o Gradient descent

Data driven approach

Training, validation, testing

Training, validation, testing

Data Permitting:

K-fold cross-validation

Image classification with a Linear Classifier

- Given a test image *x*, produce the confidence score for each class using linear transformation (total: *K* classes)
- Higher confidence score for a class -> more likely to be the ground-truth class
- Test image *x*: flatten to a Dx1 column vector, D is the image resolution times number of channel

Input *x*: Dx1 Weight *W*: KxD Bias *b*: Kx1 Score *s*:Kx1

Image classification with a Linear Classifier

Score function:

$$
s = f(x;W,b) = Wx + b
$$

Input *x*: Dx1 Weight *W*: KxD Bias *b*: Kx1 Score *s*:Kx1

$$
s = f(x;W,b) = Wx + b
$$

- **Testing**: W, b are fixed, x is the input
- Training: Given N training samples (x_i, y_i), y_i takes value in [1,...,K], learn W and b
- The ground truth class is y_i

$$
s = f(x;W,b) = Wx + b
$$

Training: (x_i,y_i) are given and fixed; W, b are the variables to be determined

Example:

K=3, $\{cat, dog, ship\}$

 $y_i = 2$

$$
s = f(x;W,b) = Wx + b
$$

• **Testing**: W, b are fixed, x is the input

$$
s = f(x;W,b) = Wx + b
$$

• Training: learn W, b to discriminate the classes

• Each row of W extracts the features of a specific class from input

$$
s = f(x;W,b) = Wx + b
$$

• **Shorthand notation (equivalent to the above notation):**

$$
s = [W b][x 1]^T
$$

$$
W \quad x
$$

$$
s = f(x;W) = Wx
$$

Input *x*: (D+1)x1 Weight *W*: Kx(D+1) Score *s*:Kx1

$$
s = f(x;W,b) = Wx + b
$$

• **QUESTION: For image classification, what other ways can we compute x from the original image?**

Loss function

• **Training**:

Given:

- N training samples (x_i, y_i),
- y_i takes value in $[1,...,K]$,
- learn W

$$
s = f(x;W,b) = Wx + b
$$

Loss function

- Training: Given N training samples (x_i, y_i), y_i takes value in [1,...,K], learn W
- Loss function: measure how consistent are the ground-truth labels and the score function outputs, for some W
- Small loss: good W

Loss function

- Training: Given N training samples (x_i, y_i), y_i takes value in [1,...,K], learn W
- Loss function: measure how consistent are the ground-truth labels and the score function outputs, for some W
- Small loss: good W

EXAMPLES OF LOSS FUNCTIONS:

- Softmax classifier with cross-entropy loss
- Multiclass Support Vector Machine (SVM) loss

• Regard output of the score function f(x; W) as the *unnormalized log probability* of each class

• Regard output of the score function f(x; W) as the *unnormalized log probability* of each class

 $f(x;W,b) = Wx + b$

• Probability of each class can be obtained by applying a softmax function (exp, then normalize):

$$
softmax(f) = \frac{e^{fm}}{\sum_{j=1}^{K} e^{f_j}}
$$

For the m-th class

• Probability of each class can be obtained by applying a softmax function (exp, then normalize):

$$
softmax(f) = \frac{e^{f_m}}{\sum_{j=1}^{K} e^{f_j}}
$$

For the m-th class

• Cross-entropy loss (apply $-\log(.)$ to only the ground-truth class):

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

For the i-th training sample

• Cross-entropy loss (apply $-\log(.)$ to only the ground-truth class):

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^{K} e^{f_j}}
$$

For the i-th training sample

Example: a dog (which looks like a dog):

• Cross-entropy loss (apply $-\log(.)$ to only the ground-truth class):

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

For the i-th training sample

Example: a dog (which looks like a dog)

print(np.exp(f)) print(np.exp(f) / sum(np.exp(f)))

stretch pixels into single column

[9.12628762e-043 1.50505935e+190 2.41762966e+026] $[6.06373937e-233 1.00000000e+000 1.60633510e-164] \rightarrow Probability$

 $y_i = 2$ $L_i = -log(1) = 0$

23

• Cross-entropy loss (apply $-\log(.)$ to only the ground-truth class):

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

For the i-th training sample

Exercice: a dog (which does not look like a dog):

stretch pixels into single column -0.5 10 0.2 2.0 0.1 1.1 1.3 2.1 0.0 1.5 63 3.2 $\mathbf{0}$ 0.25 0.2 -0.3 -1.2 5 W 70 \boldsymbol{b} x_i

24

• The entire loss for N training samples (x_i, y_i) :

$$
L = \frac{1}{N} \sum_i L_i
$$

- We determine W to minimize this loss given the training dataset
- Additional regularization of W

• **Cross-entropy loss:**

- First apply softmax function
- Then apply –log(.) to only the ground-truth class

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

For the i-th training sample

• **Cross-entropy loss:**

- First apply softmax function
- Then apply –log(.) to only the ground-truth class

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^{K} e^{f_j}}
$$
 For the i-th
training sample
in the term
$$
\frac{e^{f_{y_i}}}{\sum_{j=1}^{K} e^{f_j}}
$$
 is the probability of the correct class
(i.e., y_i)

- Therefore, want this to be large, i.e., $max_{W} log(.)$
- Thus, want this to be small min_W $-\log(.)$

For the i-th

• Why min -log(.) or max log(.)?

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

• The term $\frac{e^{i\theta}$ is the probability, between [0,1] $e^{f_{y_i}}$ $\sum_{j=1}^K e^{f_j}$

- Stretch the numerical range during min/max
- Often used when working with probability
- $p1xp2$ is small: $log(p1xp2) = log(p1) + log(p2)$
- Maximum Likelihood Estimation (MLE)
	- Minimize the negative log likelihood of the correct class

• Why exp before normalization?

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

• Much higher confidence if the activation is large (clear images)

 $s = np.array([1,2])$ print(np.exp(s) / sum(np.exp(s)))

[0.26894142 0.73105858]

 $s = np.array([10, 20])$ print(np.exp(s) / sum(np.exp(s)))

[4.53978687e-05 9.99954602e-01]

Another interpretation of the cross-entropy loss

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

- Difference between:
	- Final section of the model (estimated) prob Q: $\operatorname{softmax}(f) = \frac{e^{fm}}{\sum K}$ $\sum_{j=1}^K e^{f_j}$
	- The data (true) prob P: [0,0,....,1,....,0] (1 at the y_i-th position)
	- $-$ Measured by Kullback-Leibler (KL) divergence (D_{KI}=0 when P, Q are "the same"

Another interpretation of the cross-entropy loss

 $-$ The model (estimated) prob Q: $\operatorname{softmax}(f) = \frac{e^{fm}}{\sum K}$ $\sum_{j=1}^K e^{f_j}$

- The data (true) prob P: [0,0,....,1,....,0] (1 at the y_i-th position)
- $-$ Measured by Kullback-Leibler (KL) divergence (D_{KI}=0 when P, Q are "the same"

$$
D_{\mathrm{KL}}(P\|Q) = -\sum_i P(i) \, \log \frac{Q(i)}{P(i)} \quad \text{Want Q to be} \quad
$$

- Another interpretation of the cross entropy loss $L_i = -\log \frac{e^{f_{y_i}}}{\sum K_i}$
- Difference between P and Q as measured by Kullback-Leibler (KL) divergence

 $\sum_{j=1}^K e^{f_j}$

$$
D_{\text{KL}}(P||Q) = -\sum_{i} P(i) \log \frac{Q(i)}{P(i)}
$$

\n
$$
D_{\text{KL}}(P||Q) = -\sum_{x} p(x) \log q(x) + \sum_{x} p(x) \log p(x)
$$

\n
$$
= H(P,Q) - H(P)
$$

\nCross- entropy of Entropy of P: H(P) = 0
\nP and Q in this case

• Additional regularization of W (L2 or L1 norm of weights):

$$
R(W) = \sum_{k} \sum_{l} W_{k,l}^2
$$

$$
R(W) = \sum_{k} \sum_{l} |W_{k,l}|
$$

- Prefer small $W_{k,l}$, less likely to overfit the training dataset
- Regularize only W, not the bias b

• Additional regularization of W (L2 or L1 norm of weights)

$$
R(W) = \sum_{k} \sum_{l} W_{k,l}^{2} \qquad R(W) = \sum_{k} \sum_{l} |W_{k,l}|
$$

• The entire loss for N training samples (x_i, y_i) : data loss and regularization loss

$$
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
$$

• We determine W to minimize this loss given the training dataset

• Additional regularization of W (L2 or L1 norm of weights)

$$
R(W) = \sum_{k} \sum_{l} W_{k,l}^{2} \qquad R(W) = \sum_{k} \sum_{l} |W_{k,l}|
$$

• The entire loss for N training samples (x_i, y_i) : data loss and regularization loss

$$
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
$$

- We determine W to minimize this loss given the training dataset
- **QUESTION**: how can we determine lambda? 36

Multiclass SVM loss

• **SVM loss:** The correct class has a score higher than the incorrect class by some fixed margin d

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + d)
$$

• For this test image i, **zero score** contributed by class j iff

$$
0 \geq s_j - s_{yi} + d
$$

 $s_{\rm vi}$ >= $s_{\rm i}$ + d

Correct class score s_{vi} is higher than class j score s_i by at least d (otherwise, +ve. contribution of loss from class j)

Multiclass SVM loss

 $L_i = \sum_{i} \max(0, s_j - s_{y_i} + d)$

 $j \neq y_i$

EXAMPLE

- $S = [13, -7, 11]$
- $y_i = 1$ For test image i
- \cdot d=10

 $L_i = max(0, -7 - 13 + 10) + max(0, 11 - 13 + 10)$

 $= 0 + 8$

- Ground-truth score 13 is higher than -7 by more than the margin d=10
- Ground-truth score 13 is not higher than 11 by d=10

Train W so that the correct class y_i has a score higher than the incorrect classes by at least d 38

EXERCISE SOLUTION:

a dog (which does not look like a dog)

• Cross-entropy loss (apply –log(.) to only the ground-truth class): For the i-th

 $L_i = -\log \frac{e^{f_{y_i}}}{\sum K_i}$ training $\sum_{j=1}^K e^{f_j}$ stretch pixels into single column sample 0.2 -0.5 0.1 2.0 1.1 10 1.3 2.1 0.0 3.2 1.5 $63 +$ 0.25 0.2 $\mathbf{0}$ -0.3 -1.2 5 W \boldsymbol{h} 70 x_i print(f) $y_i = 2$ print(np.exp(f)) print(np.exp(f) / sum(np.exp(f))) $L_i = -log(0.182) = 1.7$ [112.1 110.6 -5.45] [4.83516636e+48 1.07887144e+48 4.29630469e-03] 39 [8.17574476e-01 1.82425524e-01 7.26458780e-52] $\longrightarrow \longrightarrow \text{Probability}$

$$
s = f(x;W,b) = Wx + b
$$

- After learning of the parameter W, do not need the training data in deployment
- Fast in deployment
- How to learn W?

Today's class

❖ Image classification: o Linear classifier o **Gradient descent**

- **Testing**: W, b are fixed, x is the input
- Training: Given N training samples (x_i, y_i), y_i takes value in $[1,...,K]$, learn W and b

$$
s = f(x;W,b) = Wx + b
$$

Training: (x_i,y_i) are given and fixed; W, b are the variables to be determined

Learn W using loss function L(W)

• Try different W (randomly), choose the one with the min loss function

$$
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
$$
 N training samples

- W is very large: Kx(D+1)
- Even larger in deep neural network
- Start from a random W, iteratively improve W (reduce L(W)): *Gradient descent*

Learn W using loss function L(W)

• Try different W (randomly), choose the one with the min loss function

$$
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
$$
 N training samples

- W is very large: Kx(D+1)
- Even larger in deep neural network
- Start from a random W, iteratively improve W (reduce L(W)): *Gradient descent*
- Note: $L(W) = L(W; (x_1,y_1), (x_2,y_2), ... (x_i,y_i)...(x_N,y_N))$

• Update W by W+ΔW, using the gradient

• **Gradient**: a vector of partial derivatives in each dimension

• Update W by W+ΔW, using the gradient

$$
w'_l = w_l - \gamma \frac{\partial L}{\partial w_l}
$$

$$
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
$$

N training samples

• Update W by W+ΔW, using the gradient

$$
w'_l = w_l - \gamma \frac{\partial L}{\partial w_l}
$$

$$
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
$$

$$
\frac{\partial L}{\partial w_l} = \frac{1}{N} \sum_i \frac{\partial L_i}{\partial w_l} + \lambda \frac{\partial R(W)}{\partial w_l}
$$

• Update W by W+ΔW, using the gradient

$$
w'_l = w_l - \gamma \frac{\partial L}{\partial w_l}
$$

$$
L = \frac{1}{N} \sum_{i} L_i + \lambda R(W)
$$

$$
\frac{\partial L}{\partial w_l} = \frac{1}{N} \sum_i \frac{\partial L_i}{\partial w_l} + \lambda \frac{\partial R(W)}{\partial w_l}
$$

-Sum gradients for all (partial) training samples for one w_1 -Make one update of W once we have the whole gradient vector (dim: Kx(D+1))

Update W by W+ Δ W, using the gradient

-Sum gradients for all (partial) training samples for one w_1 -Make one update of W once we have the whole gradient vector (dim: Kx(D+1))

Gradient of one training sample: SVM loss

• SVM loss

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + d)
$$

$$
L_i = \sum_{j \neq y_i} \max(0, \mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d)
$$

- **wj** : j-th row of W
- Loss function of one training sample: $L_i(W; (x_i, y_i))$ $\begin{array}{c}\n\end{array}$

Gradient of one training sample

• SVM loss

$$
L_i = \sum_{j \neq y_i} \max(0, \mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d)
$$

• For row j,
$$
\mathbf{w}_j
$$
, $j = \mathbf{y}_i$
\n
$$
\nabla_{\mathbf{w}_j} L_i = - \left[\sum_{j \neq y_i} \mathbf{I}(\mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d > 0) \right] x_i
$$

• For row j, w_j , j <> y_i

$$
\nabla_{\mathbf{w}_j} L_i = \mathbf{I}(\mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d > 0) x_i
$$

I(cond) = 1 if cond is true, 0 otherwise

Gradient of one training sample

• SVM loss

$$
L_i = \sum_{j \neq y_i} \max(0, \mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d)
$$

- For row j, w_j , $j = y_i$ $\nabla_{\mathbf{w}_j} L_i = \sqrt{2}$ \sum $j \neq y_i$ $\mathbf{I}(\mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d > 0)$ $\overline{1}$ $\int x_i$
- Justification:

All the (K-1) terms of L_i involve w_{vi} ; some are zero; for nonzero one, $grad = -x_i$

I(cond) = 1 if cond is true, 0 otherwise

• Update W by W+ΔW, using the gradient

$$
\nabla_{\mathbf{w}_j} L_i = -\left[\sum_{j \neq y_i} \mathbf{I}(\mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d > 0)\right] x_i
$$

\n
$$
\Delta W = \gamma \left[\begin{array}{c}\text{dim: } D+1\\ \text{dim: } D+1\\ \text{c is the number of terms with loss}\end{array}\right]
$$

$$
\frac{\partial L}{\partial w_l} = \frac{1}{N} \sum_i \frac{\partial L_i}{\partial w_l} + \lambda \frac{\partial R(W)}{\partial w_l}
$$

• Update W by W+ΔW, using the gradient

$$
\nabla_{\mathbf{w}_j} L_i = -\left[\sum_{j \neq y_i} \mathbf{I}(\mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d > 0)\right] x_i
$$
\n
$$
\Delta \mathbf{W} = \gamma \left[\begin{array}{c}\text{dim: } \mathbf{D} + \mathbf{1} \\ \text{dim: } \mathbf{D} + \mathbf{1} \\ \text{dim: } \mathbf{D} + \mathbf{1} \end{array}\right]
$$
\n
$$
\nabla_{\mathbf{w}_j} L_i = \mathbf{I}(\mathbf{w}_j^T x_i - \mathbf{w}_{y_i}^T x_i + d > 0) x_i \quad \text{if } \mathbf{w}_j = y_i
$$
\n
$$
\frac{\partial L}{\partial w_l} = \frac{1}{N} \sum_i \frac{\partial L_i}{\partial w_l} + \lambda \frac{\partial R(W)}{\partial w_l}
$$
\n
$$
\frac{\partial R(W)}{\partial w_l} = \frac{\partial L}{\partial w_l} \quad \text{if } \mathbf{w}_j = \frac{\partial L_i}{\partial w_l} + \lambda \frac{\partial R(W)}{\partial w_l}
$$

• Mini-batch gradient descent / stochastic gradient descent: use small batch (64, 128, 256) for one update of W

$$
\frac{\partial L}{\partial w_l} = \frac{1}{N_{batch}} \sum_i \frac{\partial L_i}{\partial w_l} + \lambda \frac{\partial R(W)}{\partial w_l}
$$

- Random sampling without replacement
- Mini-batch: average for each update of W
- An epoch: go through the entire training dataset (multiple updates of W)

Gradient of one training sample: Cross-entropy loss

• Cross-entropy loss

$$
L_i = -\log \frac{e^{f_{y_i}}}{\sum_{j=1}^K e^{f_j}}
$$

• Or, p_m is the probability of the m-th class (output of softmax function)

$$
p_m = \frac{e^{f_m}}{\sum_{j=1}^K e^{f_j}}
$$

• Then

$$
L_i = -\log p_{y_i}
$$

Gradient (linear classifier, crossentropy loss)

• Gradient matrix (for updating W):

See derivation in the document in Moodle

Today's class

❖ Image classification: o Linear classifier o Gradient descent

Next week's class

\dots **Convolutional Neural Networks**