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What we did last week

v Image histogram

v Image classification:
o data-driven approach
o K-nn
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Today’s class

v Image classification:
o Linear classifier
o Gradient descent



Data driven approach
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Training set: images with 
known class information

A model for this 
specific classification 
problem and classifier

Learn a model 
using some 
algorithm  

Testing set (with label 
during evaluation, without 
label in an application)

Classifier 
algorithm

Predicted class 
information for this 
new image 
(compare with 
ground-truth during 
evaluation)

Training/Learning (usually offline) 

Testing/Evaluation (usually 
online) 

For practically use, testing time 
should be small



Training, validation, testing

5From: scikit-learn.org



Training, validation, testing
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K-fold cross-validation

7From: scikit-learn.org



Image classification with a Linear 
Classifier

• Given a test image x, produce the confidence score for each 
class using linear transformation (total: K classes)

• Higher confidence score for a class -> more likely to be the 
ground-truth class

• Test image x: flatten to a Dx1 column vector, D is the image 
resolution times number of channel
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Input x: Dx1
Weight W: KxD
Bias b: Kx1
Score s:Kx1



Image classification with a Linear 
Classifier

9

s = f(x;W, b) = Wx+ b

Input x: Dx1
Weight W: KxD
Bias b: Kx1
Score s:Kx1

Score function:



Linear Classifier

• Testing: W, b are fixed, x is the input

• Training: Given N training samples (xi, yi), yi takes value in 
[1,...,K], learn W and b

• The ground truth class is yi
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s = f(x;W, b) = Wx+ b



Linear Classifier

Training: (xi,yi) are given and fixed; W, b are the variables to be 
determined

Example: 
K=3, {cat, dog, ship}

xi=           
yi = 2
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s = f(x;W, b) = Wx+ b



Linear Classifier

• Testing: W, b are fixed, x is the input

s = f(x;W, b) = Wx+ b
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60.75



Linear Classifier

• Training: learn W, b to discriminate the classes

• Each row of W extracts the features of a specific class from 
input

s = f(x;W, b) = Wx+ b
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Linear Classifier

• Shorthand notation (equivalent to the above notation):

s = f(x;W, b) = Wx+ b
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s = f(x;W ) = Wx

s = [W b][x 1]T

Input x: (D+1)x1
Weight W: Kx(D+1)
Score s:Kx1

xW



Linear Classifier

• QUESTION: For image classification, what other ways can we 
compute x from the original image?

s = f(x;W, b) = Wx+ b
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60.75



Loss function

• Training: 

Given:
- N training samples (xi, yi), 
- yi takes value in [1,...,K], 
- learn W
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s = f(x;W, b) = Wx+ b



Loss function

• Training: Given N training samples (xi, yi), yi takes value in 
[1,...,K], learn W

• Loss function: measure how consistent are the ground-truth 
labels and the score function outputs, for some W

• Small loss: good W
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Loss function

• Training: Given N training samples (xi, yi), yi takes value in 
[1,...,K], learn W

• Loss function: measure how consistent are the ground-truth 
labels and the score function outputs, for some W

• Small loss: good W

EXAMPLES OF LOSS FUNCTIONS: 
• Softmax classifier with cross-entropy loss
• Multiclass Support Vector Machine (SVM) loss
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Softmax classifier

• Regard output of the score function f(x; W) as the 
unnormalized log probability of each class
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Softmax classifier

• Regard output of the score function f(x; W) as the 
unnormalized log probability of each class

• Probability of each class can be obtained by applying a 
softmax function (exp, then normalize):

20

For the m-th classsoftmax(f) =
efm

PK
j=1 e

fj

s = f(x;W, b) = Wx+ b



Softmax classifier

• Probability of each class can be obtained by applying a 
softmax function (exp, then normalize):

• Cross-entropy loss (apply –log(.) to only the ground-truth 
class):
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For the m-th class

For the i-th 
training 
sample

softmax(f) =
efm

PK
j=1 e

fj

Li = � log
efyi

PK
j=1 e

fj



Softmax classifier

• Cross-entropy loss (apply –log(.) to only the ground-truth 
class):
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For the i-th 
training 
sample

Li = � log
efyi

PK
j=1 e

fj

Example: a dog (which looks like a dog):



Softmax classifier

• Cross-entropy loss (apply –log(.) to only the ground-truth 
class):
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For the i-th 
training 
sample

Li = � log
efyi

PK
j=1 e

fj

print(np.exp(f))
print(np.exp(f) / sum(np.exp(f)))

[  9.12628762e-043   1.50505935e+190   2.41762966e+026]
[  6.06373937e-233   1.00000000e+000   1.60633510e-164] Probability

yi=2
Li = -log(1) = 0

Example: a dog 
(which looks 
like a dog)
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63

5

70

Softmax classifier

• Cross-entropy loss (apply –log(.) to only the ground-truth 
class):
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For the i-th 
training 
sample

Li = � log
efyi

PK
j=1 e

fj

Exercice: a dog (which does not look like a dog):



Softmax classifier

• The entire loss for N training samples (xi, yi):

• We determine W to minimize this loss given the training 
dataset

• Additional regularization of W 

25

L =
1

N

X

i

Li



Understanding Softmax classifier

• Cross-entropy loss:
– First apply softmax function
– Then apply –log(.) to only the ground-truth class
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For the i-th 
training 
sample

Li = � log
efyi

PK
j=1 e

fj



Understanding Softmax classifier

• Cross-entropy loss:
– First apply softmax function
– Then apply –log(.) to only the ground-truth class

• The term                        is the probability of the correct class 
(i.e., yi)

• Therefore, want this to be large, i.e., maxW log(.) 
• Thus, want this to be small minW –log(.)
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For the i-th 
training 
sample

Li = � log
efyi

PK
j=1 e

fj

efyi
PK

j=1 e
fj



Understanding Softmax classifier

• Why min -log(.) or max log(.)?

• The term                        is the probability, between [0,1]
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Li = � log
efyi

PK
j=1 e

fj

efyi
PK

j=1 e
fj



Understanding Softmax classifier
• Stretch the numerical range during min/max
• Often used when working with probability
• p1xp2 is small: log(p1xp2) = log(p1) + log(p2)
• Maximum Likelihood Estimation (MLE)
– Minimize the negative log likelihood of the correct class

29

log(.)



Understanding Softmax classifier

• Why exp before normalization?

• Much higher confidence if the activation is large (clear 
images)
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Li = � log
efyi

PK
j=1 e

fj

s = np.array([1,2])
print(np.exp(s) / sum(np.exp(s)))

[ 0.26894142  0.73105858]

s = np.array([10,20])
print(np.exp(s) / sum(np.exp(s)))

[  4.53978687e-05   9.99954602e-01]



Understanding Softmax classifier

Another interpretation of the cross-entropy loss

• Difference between:
– The model (estimated) prob Q: 

– The data (true) prob P: [0,0,....,1,....,0] (1 at the yi-th
position)

– Measured by Kullback-Leibler (KL) divergence (DKL=0 when 
P, Q are “the same”

31

Li = � log
efyi

PK
j=1 e

fj

softmax(f) =
efm

PK
j=1 e

fj



Understanding Softmax classifier

Another interpretation of the cross-entropy loss

– The model (estimated) prob Q: 

– The data (true) prob P: [0,0,....,1,....,0] (1 at the yi-th 
position)

– Measured by Kullback-Leibler (KL) divergence (DKL=0 when 
P, Q are “the same”

32

softmax(f) =
efm

PK
j=1 e

fj

Want Q to be 
close to P



• Another interpretation of the cross entropy loss

• Difference between P and Q as measured by Kullback-Leibler
(KL) divergence

Understanding Softmax classifier
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Li = � log
efyi

PK
j=1 e

fj

Entropy of P: H(P) = 0 
in this case

Cross- entropy of 
P and Q



Softmax classifier

• Additional regularization of W (L2 or L1 norm of weights):

• Prefer small Wk,l, less likely to overfit the training dataset

• Regularize only W, not the bias b

34

R(W ) =
X

k

X

l

W 2
k,l

R(W ) =
X

k

X

l

|Wk,l|

L2:

L1:



Softmax classifier

• Additional regularization of W (L2 or L1 norm of weights)

• The entire loss for N training samples (xi, yi): data loss and 
regularization loss

• We determine W to minimize this loss given the training 
dataset

35

R(W ) =
X

k

X

l

W 2
k,l

L =
1

N

X

i

Li + �R(W )

R(W ) =
X

k

X

l

|Wk,l|



Softmax classifier

• Additional regularization of W (L2 or L1 norm of weights)

• The entire loss for N training samples (xi, yi): data loss and 
regularization loss

• We determine W to minimize this loss given the training 
dataset

• QUESTION: how can we determine lambda? 36

R(W ) =
X

k

X

l

W 2
k,l

L =
1

N

X

i

Li + �R(W )

R(W ) =
X

k

X

l

|Wk,l|



Multiclass SVM loss

• SVM loss: The correct class has a score higher than the 
incorrect class by some fixed margin d

• For this test image i, zero score contributed by class j iff

37

0 >= sj – syi + d

syi >= sj + d

Correct class score syi is higher than class j score sj by at least d
(otherwise, +ve. contribution of loss from class j)

Li =
X

j 6=yi

max(0, sj � syi + d)



Multiclass SVM loss
EXAMPLE
• S = [13,-7,11]
• yi= 1
• d=10

Li = max(0, -7-13+10) + max(0, 11-13+10)
=               0               +              8

• Ground-truth score 13 is higher than -7 by more than the 
margin d=10

• Ground-truth score 13 is not higher than 11 by d=10 

Train W so that the correct class yi has a score higher than the 
incorrect classes by at least d 38

For test image i

Li =
X

j 6=yi

max(0, sj � syi + d)
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63

5
70

Softmax classifier

• Cross-entropy loss (apply –log(.) to only the ground-truth 
class):

39

For the i-th 
training 
sample

Li = � log
efyi

PK
j=1 e

fj

print(f)
print(np.exp(f))
print(np.exp(f) / sum(np.exp(f)))
[ 112.1   110.6    -5.45]
[  4.83516636e+48   1.07887144e+48   4.29630469e-03]
[  8.17574476e-01   1.82425524e-01   7.26458780e-52] Probability

yi=2
Li = -log(0.182) = 1.7

EXERCISE SOLUTION: 
a dog (which does not look like a dog)



Linear Classifier

• After learning of the parameter W, do not need the training 
data in deployment

• Fast in deployment

• How to learn W?

40

s = f(x;W, b) = Wx+ b
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Today’s class

v Image classification:
o Linear classifier
o Gradient descent



Linear Classifier

• Testing: W, b are fixed, x is the input

• Training: Given N training samples (xi, yi), yi takes value in 
[1,...,K], learn W and b

Training: (xi,yi) are given and fixed; W, b are the variables to be 
determined

42

s = f(x;W, b) = Wx+ b



Learn W using loss function L(W)

• Try different W (randomly), choose the one with the min loss 
function

• W is very large: Kx(D+1)
• Even larger in deep neural network

• Start from a random W, iteratively improve W (reduce L(W)): 
Gradient descent

L =
1

N

X

i

Li + �R(W ) N training samples

43



Learn W using loss function L(W)

• Try different W (randomly), choose the one with the min loss 
function

• W is very large: Kx(D+1)
• Even larger in deep neural network

• Start from a random W, iteratively improve W (reduce L(W)): 
Gradient descent

• Note: L(W) = L(W; (x1,y1), (x2,y2), ...(xi,yi)...(xN,yN))

L =
1

N

X

i

Li + �R(W ) N training samples

44



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

• Gradient: a vector of partial derivatives in each dimension

45



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

46

L =
1

N

X

i

Li + �R(W )

w0
l = wl � �

@L

@wl

N training samples



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

47

L =
1

N

X

i

Li + �R(W )

w0
l = wl � �

@L

@wl

@L

@wl
=

1

N

X

i

@Li

@wl
+ �

@R(W )

@wl



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

48

L =
1

N

X

i

Li + �R(W )

w0
l = wl � �

@L

@wl

@L

@wl
=

1

N

X

i

@Li

@wl
+ �

@R(W )

@wl

-Sum gradients for all (partial) training samples for one wl
-Make one update of W once we have the whole gradient 
vector (dim: Kx(D+1)) 



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

49

@L

@wl
=

1

N

X

i

@Li

@wl
+ �

@R(W )

@wl

-Sum gradients for all (partial) training samples for one wl
-Make one update of W once we have the whole gradient 
vector (dim: Kx(D+1)) 

ΔW=-γ �W = ��rL



Gradient of one training sample: 
SVM loss

• SVM loss

• wj : j-th row of W
• Loss function of one training sample:          

Li(W; (xi,yi)) 50

Li =
X

j 6=yi

max(0, sj � syi + d)

Li =
X

j 6=yi

max(0,wT
j xi �wT

yi
xi + d)



Gradient of one training sample

• SVM loss

• For row j, wj, j = yi

• For row j, wj, j <> yi

51

Li =
X

j 6=yi

max(0,wT
j xi �wT

yi
xi + d)

I(cond) = 1 if cond is true, 0 otherwise

rwjLi = I(wT
j xi �wT

yi
xi + d > 0)xi

rwjLi = �

2

4
X

j 6=yi

I(wT
j xi �wT

yi
xi + d > 0)

3

5xi



Gradient of one training sample

• SVM loss

• For row j, wj, j = yi

• Justification:

52

Li =
X

j 6=yi

max(0,wT
j xi �wT

yi
xi + d)

I(cond) = 1 if cond is true, 0 otherwise

rwjLi = �

2

4
X

j 6=yi

I(wT
j xi �wT

yi
xi + d > 0)

3

5xi

All the (K-1) terms of Li involve wyi; some are zero; for non-
zero one, grad = -xi



Learn W by gradient descent

• Update W by W+ΔW, using the gradient

53

@L

@wl
=

1

N

X

i

@Li

@wl
+ �

@R(W )

@wl

ΔW=-γ

rwjLi = �

2

4
X

j 6=yi

I(wT
j xi �wT

yi
xi + d > 0)

3

5xi

dim: D+1
i.e. -c xi
c is the number of terms with loss



Learn W by gradient descent

• Update W by W+ΔW, using the gradient
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@L

@wl
=

1

N

X

i

@Li

@wl
+ �

@R(W )

@wl

ΔW=-γ

rwjLi = I(wT
j xi �wT

yi
xi + d > 0)xi

rwjLi = �

2

4
X

j 6=yi

I(wT
j xi �wT

yi
xi + d > 0)

3

5xi

dim: D+1

dim: D+1

J=i.e. 0 (if no loss due to wj) or xi

i.e. -c xi
c is the number of terms with loss

j=yi



Learn W by gradient descent

• Mini-batch gradient descent / stochastic gradient descent: use 
small batch (64, 128, 256) for one update of W

• Random sampling without replacement

• Mini-batch: average for each update of W
• An epoch: go through the entire training dataset (multiple 

updates of W)

55

@L

@wl
=

1

Nbatch

X

i

@Li

@wl
+ �

@R(W )

@wl



Gradient of one training sample: 
Cross-entropy loss

• Cross-entropy loss

• Or, pm is the probability of the m-th class 
(output of softmax function)

• Then
56

Li = � log
efyi

PK
j=1 e

fj

pm =
efm

PK
j=1 e

fj

Li = � log pyi



Gradient (linear classifier, cross-
entropy loss)

• Gradient matrix (for updating W):

57

dim: D+1

dim: D+1

@Li

@wm
= pmxi

rWLi =

@Li

@wm
= (pyi � 1)xi

m 6= yi

m = yi

See derivation in the document in Moodle
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Today’s class

v Image classification:
o Linear classifier
o Gradient descent
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Next week’s class

v Deep learning

v Convolutional Neural Networks


