Image classification:
Linear classifier

Computer Vision
Winter Semester 20/21
Goethe University

Acknowledgement: Some images are from various
sources: UCF, Stanford cs231n, etc.

What we did last week

*** Image histogram

*** Image classification:
o data-driven approach
o K-nn

Today’s class

*** Image classification:
o Linear classifier
o Gradient descent

Data driven approach

| e ———
-\m
| o

EE-- Training/Learning (usually offline)

v y fankt . . . Learn a model A model for this
Training set: images with . " e
- :) using some specific classification
known class information : e
! | n- algorithm problem and classifier

G e b

Testing/Evaluation (usually l
online)
.= 1eStiNg set (with label Classifier Predicted class
~ during evaluation, without algorithm information for this
label in an application) new image

(compare with
ground-truth during

For practically use, testing time evaluation)
should be small 4

Training, validation, testing

=

From: scikit-learn.org

Training, validation, testing

Data Permitting:

Training

Validation

Testing

Training, Validation, Testing

Joseph Nelson @josephofiowa

Split 1
Split 2
Split 3
Split 4

Split5

K-fold cross-validation

All Data
Training data Test data
Fold1 || Fold2 || Fold3 | Fold4 || Fold5 |)
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
> Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold5 @/

From: scikit-learn.org

Final evaluation {

Test data

Image classification with a Linear
Classifier

Given a test image x, produce the confidence score for each
class using linear transformation (total: K classes)

Higher confidence score for a class -> more likely to be the
ground-truth class

Test image x: flatten to a Dx1 column vector, D is the image
resolution times number of channel

Input x: Dx1
Weight IW: KxD
Bias b: Kx1

' Score s:Kx1

Image classification with a Linear
Classifier

Score function:

s= f(x;W,b) =Wax 4+

Input x: Dx1

Weight IW: KxD

I Bias b: Kx1
Score s:Kx1

Linear Classifier

s= f(x;W,b) =Wz +b

* Testing: W, b are fixed, x is the input

* Training: Given N training samples (x;, y;), y; takes value in
[1,...,K], learn W and b

* The ground truth classisy;

Linear Classifier

s= f(x;W,b) =Wz +b

Training: (x,y:) are given and fixed; W, b are the variables to be
determined

Example:

K=3, {cat, dog, ship}

Xi= Wi
yi=2

11

* Testing: W, b are fixed, x is the input

Linear Classifier

s= f(x;W,b) =Wz +b

stretch pixels into single column

input image

‘ 02 |-05| 01 | 20 5l6 1.1
15 | 1.3 | 21 | 00 | |231 3.2

0 |025| 02 |-03 24 1

%% 2 b

-96.8

437.9

60.75

f(zi; W, b)

cat score

dog score

ship score

12

Linear Classifier

s= f(x;W,b) =Wz +b

* Training: learn W, b to discriminate the classes

Each row of W extracts the features of a specific class from
input

13

Linear Classifier

s= f(x;W,b) =Wz +b

e Shorthand notation (equivalent to the above notation):

s =|Wb|lx 1]T
W x

Input x: (D+1)x1
Weight . Kx(D+1)
Score s:Kx1

s= f(e; W) =Wz

Linear Classifier

s= f(x;W,b) =Wz +b

* QUESTION: For image classification, what other ways can we
compute x from the original image?
stretch pixels into single column
\ 1

02 |-05| 01 | 20 56 1.4 -96.8 | cat score

15 | 13 | 21| 00 | [231| 4 |32 | | 437.9 | gogscore

0 (025 0.2 | -0.3 -1.2 :
input image 24 60.75 ship score

Loss function

* Training:

Given:

- N training samples (x;, yi),
- y; takes value in [1,...,K],

- learn W

S:f(aj;W,b):WZE—I—b

Loss function

Training: Given N training samples (x;, y;), y; takes value in
[1,...,K], learn W

Loss function: measure how consistent are the ground-truth
labels and the score function outputs, for some W

Small loss: good W

Loss function

* Training: Given N training samples (x;, y;), y; takes value in
[1,...,K], learn W

e Loss function: measure how consistent are the ground-truth
labels and the score function outputs, for some W

 Small loss: good W

EXAMPLES OF LOSS FUNCTIONS:

* Softmax classifier with cross-entropy loss
* Multiclass Support Vector Machine (SVM) loss

18

Softmax classifier

e Regard output of the score function f(x; W) as the
unnormalized log probability of each class

Softmax classifier

Regard output of the score function f(x; W) as the
unnormalized log probability of each class

flz;W,b) =Wz +0b

Probability of each class can be obtained by applying a
softmax function (exp, then normalize):

Jm
softmax(f) = - For the m-th class

Zgl'il el

Softmax classifier

Probability of each class can be obtained by applying a
softmax function (exp, then normalize):

fm
softmax(f) = ¢ For the m-th class

Zf:l el

Cross-entropy loss (apply —log(.) to only the ground-truth
class):

T For the i-th

ZK:1 ol training
/ sample

Softmax classifier

* Cross-entropy loss (apply —log(.) to only the ground-truth
class):

. elvi For the i-th
23:1 eli training
sample

Example: a dog (which looks like a dog):

stretch pixels into single column

02 | 05| 0.1 2.0 56 11 -96.8 | cat score

15 [13 [21 [00 [|231| 4| 32 | — | 437.9 | gog score

0 |025| 0.2 | -03 24 -1.2 60.75 | ship score

input image

W 5 b f(zi; W, b)

22

Softmax classifier

* Cross-entropy loss (apply —log(.) to only the ground-truth

class):

e
)

input image

elvi
L;=—1o
¢) K f
. e’JJ
Zg—l
stretch pixels into single column
r;'%
02 |-05| 01| 20 56 = -96.8 | cat score
15| 13| 21| 00 231| 4 | 32 | — | 437.9 | gog score
0 |025) 02 -03 24 12 60.75 | ship score
Ir 2 b f(zi; W, b)
L ~)

print(np.exp(f))

print(np.exp(f) / sum(np.exp(f)))

[9.12628762e-043 1.50505935e+190
[6.06373937e-233 1.00000000e+000

2.41762966e+026]
1.60633510e-164]

For the i-th
training
sample

Example: a dog
(which looks
like a dog)

yi=2
L. =-log(1)=0

<«— Probability

23

Softmax classifier

* Cross-entropy loss (apply —log(.) to only the ground-truth
class):

o elvi For the i-th
Lz - 10g K . .
ijl eli training
sample

Exercice: a dog (which does not look like a dog):
stretch pixels into single column

02 |-05| 01 | 20 10 1.1

15|13 |21 | 00 63 + 32 | -

0o |025|02/-03 ‘5 ‘ 12

24

Softmax classifier

The entire loss for N training samples (x;, v;):
o » L
=N i ;

We determine W to minimize this loss given the training
dataset

Additional regularization of W

Understanding Softmax classifier

* Cross-entropy loss:
— First apply softmax function
— Then apply —log(.) to only the ground-truth class

e For the i-th
L; =—1o i
g ZgK:1 o training

sample

Understanding Softmax classifier

Cross-entropy loss:
— First apply softmax function
— Then apply —log(.) to only the ground-truth class

e For the i-th
L; = —log ZK—1 7, training
F J= sample
e’ vi
The term 7 is the probability of the correct class

(i.e.,) Zj:l e’

Therefore, want this to be large, i.e., max, log(.)
Thus, want this to be small min,, —log(.)

Understanding Softmax classifier

* Why min -log(.) or max log(.)?

L= —lop "
. — — 108
Zle ef:i
Fyi
* The term ¢’ is the probability, between [0,1]

Zle efj

Understanding Softmax classifier

Stretch the numerical range during min/max

Often used when working with probability

plxp2 is small: log(p1xp2) = log(pl) + log(p2)

Maximum Likelihood Estimation (MLE)

— Minimize the negative log likelihood of the correct class

¥

> /

A 1 2 &3 x

log(.)

Understanding Softmax classifier

 Why exp before normalization? efv;

* Much higher confidence if the activation is large (clear
images)

|
s =np.array([1,2]) 1 l
print(np.exp(s) / sum(np.exp(s))) Al /
[0.26894142 0.73105858] il //

| /

s = np.array([10,20]) 2 b /(1,6)
print(np.exp(s) / sum(np.exp(s))) b (O, 1)//
[4.53978687e-05 9.99954602e-01] 0

Understanding Softmax classifier

Another interpretation of the cross-entropy loss

L= —log "
i = — 108
231'11 el
* Difference between: ;
6 m
— The model (estimated) prob Q: softmax(f) = —
Zj:l el
— The data (true) prob P: [0,0,....,1,....,0] (1 at the y;-th

position)

— Measured by Kullback-Leibler (KL) divergence (D=0 when
P. Q are “the same”

31

Understanding Softmax classifier

Another interpretation of the cross-entropy loss

fm

e

— The model (estimated) prob Q: softmax(f) = — -
Zj:l €’

— The data (true) prob P: [0,0,....,1,....,0] (1 at the y-th

position)

— Measured by Kullback-Leibler (KL) divergence (D, ,=0 when
P Q are “the same”

ZP Q(i1) Want Qto be

Dy, (P
kL (Pl|Q) = P(7) close to P

32

Understanding Softmax classifier

* Another interpretation of the cross entropy loss

fy,
L; = —log c

Z _ eli

* Difference between P and Q as measured by Kullback-Leibler
(KL) divergence

Dy (P||Q) = Z P(i 8
DxiL(PlQ) = - Z:c p(z)logg(z) + >, p(z)logp(z)
Cross- entropy of Entropy of P: H(P) =0

Pand Q in this case 33

Softmax classifier

* Additional regularization of W (L2 or L1 norm of weights):

L2: R(W) = Z Z W,il
k [

L1: RW) =) " [Wi
k [

* Prefer small W, less likely to overfit the training dataset

* Regularize only W, not the bias b

Softmax classifier

Additional regularization of W (L2 or L1 norm of weights)

RW)=> > W2 RW)=> > |Wi
k [k [

The entire loss for N training samples (x;, y;): data loss and
regularization loss

1

We determine W to minimize this loss given the training
dataset

Softmax classifier

Additional regularization of W (L2 or L1 norm of weights)

RW)=> > W2 RW)=> > |Wi
k [k [

The entire loss for N training samples (x;, y;): data loss and
regularization loss

1
L = NZLZ—i_)\R(W)

We determine W to minimize this loss given the training
dataset

QUESTION: how can we determine lambda? 36

Multiclass SVM loss

* SVM loss: The correct class has a score higher than the
incorrect class by some fixed margin d

L; = Z max(0,s; — sy, +d)
JFYi

* For this test image i, zero score contributed by class j iff

O0>=s,—s;+d
s,i >=s;+d

Correct class score s,; is higher than class j score s; by at least d
(otherwise, +ve. contribution of loss from class j)

Multiclass SVM loss

EXAMPLE
L; = Z max(0,s; — Sy, +d)
e S=][13,-7,11] ;
JF#Yi
¢ y=1 For test image i
« d=10

L. = max(0, -7-13+10) + max(0, 11-13+10)
= 0 + 8

* Ground-truth score 13 is higher than -7 by more than the
margin d=10

* Ground-truth score 13 is not higher than 11 by d=10

Train W so that the correct class y; has a score higher than the
incorrect classes by at least d

Softmax classifier

EXERCISE SOLUTION:
a dog (which does not look like a dog)

* Cross-entropy loss (apply —log(.) to only the ground-truth
class):

el For the i-th
L; = —log — + training
N—— D i1 €7 sample
02 |05 0.1 20 10 1.1
2% 163 +| 32—
0 025| 0.2 | -03 5 1.2
W 70 b
print(f) =
ointinp exp()/ sum(np oxif) Vi~
Fn1n1t(2n.g'expg1o.6 _5.45] L, =-log(0.182) = 1.7

[4.83516636e+48 1.07887144e+48 4.29630469e-03]

[8.17574476e-01 1.82425524e-01 7.26458780e-52] <«— Probability >

Linear Classifier
s= f(x;W,b) =Wz +b

After learning of the parameter W, do not need the training
data in deployment

Fast in deployment

How to learn W?

Today’s class

*** Image classification:
o Linear classifier
o QGradient descent

Linear Classifier

* Testing: W, b are fixed, x is the input

* Training: Given N training samples (x;, y;), y; takes value in
[1,...,K], learn W and b

s= f(x;W,b) =Wz +b

Training: (x,y:) are given and fixed; W, b are the variables to be
determined

42

Learn W using loss function L(W)

Try different W (randomly), choose the one with the min loss
function

1 .
L = ~ Z L; + AR(W) N training samples

W is very large: Kx(D+1)
Even larger in deep neural network

Start from a random W, iteratively improve W (reduce L(W)):
Gradient descent

Learn W using loss function L(W)

Try different W (randomly), choose the one with the min loss
function

1 .
L = ~ Z L; + AR(W) N training samples

W is very large: Kx(D+1)
Even larger in deep neural network

Start from a random W, iteratively improve W (reduce L(W)):
Gradient descent

Note: L(W) = L(W; (X1,y1), (X2,¥2), - (Xi,Yi)-..(Xn,¥n))

Learn W by gradient descent

e Update W by W+AW, using the gradient

* Gradient: a vector of partial derivatives in each dimension

Learn W by gradient descent

e Update W by W+AW, using the gradient

L=— Z L; + AR(W) N training samples

Learn W by gradient descent

e Update W by W+AW, using the gradient

Learn W by gradient descent

e Update W by W+AW, using the gradient

1
oL oL OR(W)
o = N Z 50 T o0

-Sum gradients for all (partlal) training samples for one w,
-Make one update of W once we have the whole gradient
vector (dim: Kx(D+1))

Learn W by gradient descent

e Update W by W+AW, using the gradient

— e

OL; W
—:—Z ()

Owy 3wz wy

-Sum gradients for all (partial) training samples for one w,
-Make one update of W once we have the whole gradient
vector (dim: Kx(D+1))

Gradient of one training sample:

SVM loss
e SVM loss

L; = Z max(0,s; — sy, +d)
JFYi

L, = Z max (0, w;-rzcz- — WyTar:Z +d)
JFYi

* w;:j-th row of W

* Loss function of one training sample:
Li(W; (x;,y:))

Gradient of one training sample

e SVM loss

L, = Z max (0, W;‘-Fa:z- — Wg;CCi + d)
JFYi
* Forrow J, w;, =Y,
Vw,Li = — Z I(w;‘rxi — WZ;:EZ' +d > 0)
_j#yz'

* Forrow |, w;, <>y,
Vw,;Li = I(wfxi — nga:i +d > 0)x;

I(cond) = 1 if cond is true, 0 otherwise

Gradient of one training sample

e SVM loss

L, = Z max (0, W;‘-Fa:z- — Wg;CCi + d)
JFYi
* Forrow J, w;, =Y,
Vw,Li = — Z I(w;‘rxi — WZ;:EZ' +d > 0)
_j#yz'

 Justification:
All the (K-1) terms of L; involve w
zero one, grad = -x.

yi;

I(cond) = 1 if cond is true, 0 otherwise

some are zero; for non-

Learn W by gradient descent

e Update W by W+AW, using the gradient

Vw,L;i = — Z I(w;‘-r:z:i — Wiﬂ?i +d>0)| x;

| JFYi

— - dim: D+1
l.e.-cx;
AW=-y | | ' c is the number of terms with loss

oL OL; , \OR(W)
8wl N , 8wl 8wl 53

Learn W by gradient descent

e Update W by W+AW, using the gradient

Vw,L;i = — Z I(W;‘-F:I:z- — Wiﬂ?i +d>0)| x;

| JFYi

— - dim: D+1
l.e.-cx;
AW=-y | | . c is the number of terms with loss

Vw.L; = I(W;‘-in — W;‘;ZC?; +d > 0)x; J'.:J’i
’ ' dim: D+1

J=i.e. 0 (if no loss due to w;) or x;

OL _ 1 ~0L; | OR(W)
(9101 B N , (9101 awl 54

Learn W by gradient descent

Mini-batch gradient descent / stochastic gradient descent: use
small batch (64, 128, 256) for one update of W

OL 1 ~0OL OR(W)
Ow; Npaten “—~ Owy owy

1

Random sampling without replacement

Mini-batch: average for each update of W

An epoch: go through the entire training dataset (multiple
updates of W)

Gradient of one training sample:
Cross-entropy loss

* Cross-entropy loss

fus
Li = — log 2

ijl efj

* Or, p,, is the probability of the m-th class
(output of softmax function)

ofm

e Then

Gradient (linear classifier, cross-
entropy loss)

e Gradient matrix (for updating W):

0L;
— PmTy m 7é Yi

oW,
— — I dim: D+1

' ' OL;
- N9 D m=y

Vi Li =

OW,,,
dim: D+1

See derivation in the document in Moodle .-

Today’s class

*** Image classification:
o Linear classifier
o Gradient descent

Next week’s class

»* Deep learning

** Convolutional Neural Networks

