Lecture Session $Week - 2$

Computer Vision Winter Semester 20/21 Goethe University

Acknowledgement: Some images are from various sources: UCF, Stanford cs231n, etc.

Today's class

V Image histogram

v Image classification: o data-driven approach o K-nn

Image is an array of numbers

-Grayscale image

-2D array of numbers (pixels) / matrix

-Number indicates the intensity: [0,255] for 8 bit representation

-Image resolution / number of pixel in an image: 100x100, 1920x1080, etc.

0: black, 255: white $\frac{3}{3}$

Image Histogram

- Histogram
	- X-axis: bins of possible values
	- Y-axis: frequency of a value (number of samples)
- Normalize Y-axis => probability mass function (the probability of a pixel value in the image)
- Area = total number of pixels

Image (In general, data) **Histogram** 4

Image Histogram

- Image Histogram
- X-axis: pixel values, i.e. 0 to 255
- Y-axis: number of pixels with a certain pixel value

- To increase the contrast of an image
	- Over or under-exposed photographs
	- Medical imaging: x-ray images, etc.
- Distribute intensities more evenly over the range: spread out the most frequent intensity values

Image with low contrast

QUESTIONS: What would be the histogram? Why?

- To increase the contrast of an image
	- Over or under-exposed photographs
	- Medical imaging: x-ray images, etc.
- Distribute intensities more evenly over the range: spread out the most frequent intensity values

• Histogram of a dark image

• Histogram of a dark image

• Histogram of a bright image

• Histogram of a bright image

• Histogram of a low-contrast image

• Histogram of a low-contrast image

• Histogram of a high-contrast image

• Histogram of a high-contrast image

Cumulative distribution / density function (cdf)

• The cdf of a random variable X is given by

$$
F_X(x) = P(X \le x)
$$

• If X is a continuous random variable, cdf is given by:

$$
F_X(x) = \int_{-\infty}^x f_X(w) dw
$$

• $f_{x}(x)$ is the probability density function, pdf

Cumulative distribution / density function (cdf)

• $f_{x}(x)$ is the probability density function, pdf

$$
\int_{-\infty}^{\infty} f(x) dx = 1 \qquad f(x) \ge 0, \forall x
$$

- A probability density is not the same as a probability
- The probability of a specific value as an outcome of continuous experiment is (generally) zero.
- To get meaningful numbers you must specify a range \mathbf{z}

$$
P(a\leq X\leq b)=\int_a^b f(q)\,dq=F(b)-F(a)
$$

• If X is a discrete r.v., cdf is given by

$$
F_X(k) = \sum_{i=-\infty}^{k} p_i
$$

 $(p_i$ is the probability mass of X at i)

Properties:

X is the random variable - > what does the R.V, represents here?

k is a value of the random variable

 $F(-inf) = 0$

$$
F(inf)=1
$$

10,000 pixels (cartoon example)

cdf needs to be normalized

Normalized histogram

Shape of the cumulative distribution function ?

Output Image

Shape of the cumulative distribution function ?

Output Image

23

- We can transform image values to improve the contrast
- Want histogram of the image to be flat
- This will make full use of the entire display range
- This is called histogram equalization

- Apply a transformation T to distribute intensities evenly over the range -> increase contrast
- A mapping of pixel value
- Note area (num. of pixels) in the histogram remains the same after transformation

- A mapping of pixel value
- For a pixel with intensity k, transform it using:
- $(L = number of level = 256)$ *k*

$$
T(k) = \text{floor}((L-1)\sum_{i=0}^{k} p_i) = \text{floor}((L-1)F_X(k))
$$

 $\overline{T}(k)$

 \perp

26 A pixel with value k A pixel with value $T(k)$

- A mapping of pixel value
- For a pixel with intensity k, transform it using $(L =$ number of $level = 256$

$$
T(k) = \text{floor}((L-1)\sum_{i=0}^{k} p_i) = \text{floor}((L-1)F_X(k))
$$

k

- Algorithm:
	- 1. Compute cdf at k [*]
	- 2. Multiply by L-1, then floor(.)
	- 3. The result is the new intensity value

 $[$ *] normalize cdf to $[0,1]$ by: $acc_k - acc_{min}$ $acc_{max} - acc_{min}$

 $acc_{max}:$

- A mapping of pixel value
- For a pixel with intensity k, transform it using $(L =$ number of $level = 256$

$$
T(k) = \text{floor}((L-1)\sum_{i=0}^{k} p_i) = \text{floor}((L-1)F_X(k))
$$

k

- Algorithm:
	- 1. Compute cdf at k [*]
	- 2. Multiply by L-1, then floor(.)
	- 3. The result is the new intensity value

 $[$ *] normalize cdf to $[0,1]$ by: $acc_k - acc_{min}$ $acc_{max} - acc_{min}$

 acc_{max} : Number of pixels

Where does the formula come from?

$$
T(k) = \text{floor}((L-1)\sum_{i=0}^{k} p_i) = \text{floor}((L-1)F_X(k))
$$

- We want a transformation T(k) that will give an output image whose histogram is flat.
- The transformation should be a monotonically increasing function – this prevents artifacts created by reversals of intensity.

Where does the formula come from?

- The motivation for this transformation comes from thinking of the intensities of pixels before and after equalization as continuous random variables X, Y on $[0, L - 1]$.
- Y defined by:

$$
Y = T(X) = (L - 1) \int_0^x f_X(x) dx
$$

Where does the formula come from?

$$
Y = T(X) = (L - 1) \int_0^x f_X(x) dx
$$

- $f_X(x)$ is the probability density function of the original pixel values.
- T is the cumulative distributive function of X multiplied by $(L - 1)$.
- Assume for simplicity that T is differentiable and invertible. It can then be shown that Y defined by T(X) is uniformly distributed on [0, L – 1], namely that $f_Y(y) = \frac{1}{1}$

Summary of justification:

- Discrete case: $T(k) = \text{floor}((L - 1)\sum p_i) = \text{floor}((L - 1)F_X(k))$ *k i*=0
- Continuous case: T(.) transforms a continuous r.v. $X ~ r f_X(x)$ into Y $~ r f_Y(y)$, so that $f_Y(y) = U[0,L-1]$

 $Y = T(X) = (L - 1)F_X(X)$

• Note that for any $X \sim f_X(x)$, Y is U[0,1] when the transformation is the cdf of X

 $Y = F_X(X)$

• Cdf: transform a r.v. to a uniform one, $\sim U[0,1]$

• Exercise

$$
T(k) = \text{floor}((L-1)\sum_{i=0}^{k} p_i) = \text{floor}((L-1)F_X(k))
$$

Output: [[0 176 0 176] [58 176 215 255] [255 215 58 176] [0 58 176 176]]

Output:

• An example

• An example

• An example

• Exercise solution:

$$
T(k) = \text{floor}((L-1)\sum_{i=0}^{k} p_i) = \text{floor}((L-1)F_X(k))
$$

Output: [[0 176 0 176] [58 176 215 255] [255 215 58 176] [0 58 176 176]]

Output: $[$ [0 0 106 191] [191 191 106 106] [255 191 0 0] [255 255 106 106]]

Image classification, data-driven approach, knn

Image classification/ object recognition

Which object is in the image?

What is in the image?

Where is the object in the image?

…

Which pixels belong to the object in the image?

• Given an input image, the algorithm produces one image label from a fixed set of classes (categories)

{fish, **soccer ball**, dog, boat}

- Image recognition (many classes)
	- 1000 categories in IMAGENET Large Scale Visual Recognition Challenge (ILSVRC): zebra, speedboat, lifeboat, …
	- 10,000+ categories in IMAGENET

CIFAR-10airplane automobile bird cat deer dog frog horse ship truck

- **Top-n accuracy**
- The algorithm outputs k confidence for each of the k classes

Test image:

Algorithm outputs: {cat, dog, house, mouse} = $\{0.1, 0.2, 0.0, 0.7\}$

Top-1 class: {mouse}

Top-2 class: {mouse, dog}

Incorrect for **top-1 accuracy**, correct for **top-2 accuracy** (ground truth is contained in the top-2 class)

• ILSVRC: Top-1, Top-5 accuracy

Number of correct / Number of test image

Image classification is fundamental to many computer vision tasks

• **Object localization**

- For a given image, the algorithm produces a **class label** and a **bounding box**
- Evaluation: label that best matches the ground truth label for the image, and bounding box that overlaps with the ground truth
- Error: if predicted label does not match the ground truth, or the predicted bounding box has less than 50% overlap

sea lion

Image classification is fundamental to many computer vision tasks

• **Object detection**

- Given an image, an algorithm produces a set of annotations (ci,si,bi): class label ci, bounding box bi and confidence score si
- Penalize: objects in the image not annotated by algorithm, more than 1 annotations for the same object in the image

- apple
- table
- bowl
- plate rack
- lamp
- chair

200 categories in ILSVRC2017 $\frac{45}{45}$

- Challenges
	- Primitive data: Computer sees a 3d array of intensity values
	- Different variation for a certain class
		- Viewpoint variation
		- Scale variation
		- Deformation
		- Occlusion
		- Background clutter
		- Intra-class variation

Challenges: Sources of Image Variation

• Challenges

Background clutter

Deformation of non-rigid object

Position

Data driven approach

- Provide the computer with many examples of each class: **training data**
- Learn the visual appearance of each class: **learning algorithm**
- ILSVRC: 1.2 million images of 1000 categories
	- About 1k images per category

Data driven approach

Learning from examples

We want the algorithms to **learn** to do object recognition given examples of object categories

Training phase: examples images are shown to the algorithm

Testing phase: labelling of images never shown before

There are different modalities of supervision (fully supervised, unsupervised, semi-supervised, etc.)

Nearest Neighbor Classifier

• Given a test image, compare to every one of the training images

• Use the label of the 'closest training image' as the predicted label

Nearest Neighbor Classifier

• Consider an image as a vector (data point) in a very high dimensional vector space

• $512x512x3 \Rightarrow$ a data point in the 786432-dim vector space

• Find the nearest neighbors of the vector representing the input test image

Nearest Neighbor Classifier

Distance

• L2 distance (Euclidean distance)

$$
d_2(I_1, I_2) = \sqrt{\sum_p (I_1^p - I_2^p)^2}
$$

- L1 distance (Manhattan distance)
	- Sum of abs difference

$$
d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p|
$$

Distance

- L1/L2 circle / ball
- A circle is a set of points with a fixed distance from a point (center)

L1 is more 'restricted', sensitive to rotation of coord system L2 emphasizes dimensions with large differences

k-Nearest Neighbor Classifier (k-NN)

• Find the k closest images (nearest neighbors)

• Use them to vote on the label of the test image

k-Nearest Neighbor Classifier (k-NN)

• How to determine k?

• k is a hyperparameter: related to the design of the machine learning algorithm

• Another hyperparameter: L1 norm or L2 norm

Validation set for hyperparameter tuning

- Use test set to tune the hyperparameter
- Not appropriate, as your model will *overfit* to the test data
- Poor generalization, significant degradation during deployment / testing for other datasets

Training Test

Validation set for hyperparameter tuning

- Partition the training set into a training set and a validation set
- Use validation set to *tune the hyperparameter*
- Use test set to evaluate the performance

Training **Validation** Test

Cross validation

- If the training dataset is small, can use cross validation
- 5-fold cross validation
	- For a given k (a certain setting of hyperparameters)
	- Divide the training dataset into 5 equal folds
	- Use 4 folds for training, 1 for validation
	- Repeat using another fold as the validation set
	- Average the performance

Issues of k-NN

- Memory expensive: need to remember all training data
- Computationally expensive during testing
	- Need to compare all training data
	- Not practical in an application

Original

Position shift

Intensity shift

Issues of k-NN

- Memory expensive: need to remember all training data
- Computationally expensive during testing
	- Need to compare all training data
	- Not practical in an application
- Approximate nearest neighbor (ANN) algorithms accelerate the search of the nearest neighbor
- Using image intensity value for distance comparison is not robust
	- Small position or intensity shift can result in large distance **63**

Original

Position shift

Intensity shift

Today's class

V Image histogram

v Image classification: o data-driven approach o K-nn

Next week's class

❖ Image classification: o Linear classifier o Gradient descent