
Image, filtering, convolution

Computer Vision
Winter Semester 20/21

Goethe University

1

Acknowledgement:
Some images are from various sources: UCF, Stanford
cs231n, etc.

Image is an array of numbers

-Grayscale image

-2D array of numbers
(pixels) / matrix

-Number indicates the
intensity: [0,255] for 8-
bit representation

-Image resolution /
number of pixel in an
image: 100x100,
1920x1080, etc.

A pixel

0: black, 255: white 2

Image is a discrete array of numbers

-Samples from
continuous object

-Quantized to have a
finite number of
possible values: [0,1,2
to 255]

- Sometimes
normalized from 0 to 1

3

Color image
-Each pixel has three numbers to
represent the red, green, blue color
intensity

-RGB (Red, Green, Blue)

-Other color format:
* HSV (Hue, Saturation, Value)
* YUV (luma component (Y), blue

projection (U), red projection (V)

-Image can be stored in different
format: JPEG, PNG, TIF, etc.

4

Color image with R, G, B channels

5

HSV color space
• Hue represents color in angle of HSV cone

– 0-60: red
– 60-120: yellow
– 120-180: green
– 180-240: cyan
– 240-300: blue
– 300-360: magenta

• Saturation represents the amount of ‘grey’
in the color: ‘0’ is grey, ‘1’ is pure primary
color
– Small saturation means faded color
– It is the radius of the HSV cone

• Value represents intensity
– It is the height of the HSV cone 6

VALUE

HSV represents color in
a similar way as
humans perceive color,
is easy to work with in
some applications

Video

• A video is a sequence of images (frames)
• 30 frame per second (fps)
• Spatial dimension: x,y
• Temporal dimension: t

7

Image Filtering

• An image processing operation
• Remove some unwanted components: noise
• Extract useful information
• Linear filtering: The output is a linear

combination of pixel values in some
neighborhood

8

Filtering is an essential operation in
deep neural networks

9

Image Filtering

• Correlation / convolution (precisely, there are
subtle differences)

Correlation

10

Image Filtering

• Convolution – the kernel is flipped
• Flipping is skipped in convolutional network

Convolution

11

Image Filtering

12

• Filtering (convolution) operation

Emboss filter: directional difference filter

Image Filtering

13

• Filtering (convolution) operation
• Slide the filter kernel over the entire image to

produce the output (image/activation)

Image Filtering

14

Image Filtering

15

Image Filtering

16

Image Filtering

17

Image Filtering

18

Image Filtering

19

Image Filtering

20

Image Filtering

21

Image Filtering

• Exercise: calculate the output of the following
filtering (you can ignore the boundary
condition)

22

Img = kernel =

(3 minutes)

Image Filtering

• Padding to handle boundary condition

• Stride: how many pixels to shift the filter
kernel in each step

23

Image Filtering

• Padding to handle boundary condition

• Stride: how many pixels to shift the filter
kernel in each step

24

Low-pass filtering

• LPF retains low spatial frequency components,
remove high spatial frequency components
(noise, texture)

25

Image Frequency

26

Low spatial
frequency

High spatial
frequency

contrast

frequency

Image Frequency

• Pixel intensity at two rows

27

Which row has higher
spatial frequency?

Image Frequency

• Pixel intensity at two rows

28

Low spatial frequency

High spatial frequency

edge

Image Frequency

29

Low spatial
frequency

High spatial
frequency

Image Frequency

• Image frequency can be obtained quantitatively using 2D
Fourier Transform, which decomposes the image into sine and
cosine components

30

Vertical
spatial
frequency

Horizontal
spatial
frequency

Center point is due to the average intensityImage in frequency domain

Fourier transform (without math)

31

Image Frequency

32

Vertical
spatial
frequency

Horizontal
spatial
frequency

-Higher
horizontal freq

-Lower vertical
freq

• Image frequency can be obtained quantitatively using 2D
Fourier Transform, which decomposes the image into sine and
cosine components

Image Frequency

33

Vertical
spatial
frequency

Horizontal
spatial
frequency

• Image frequency can be obtained quantitatively using 2D
Fourier Transform, which decomposes the an image into sine
and cosine components

Low-pass filtering

• LPF retains low spatial frequency components,
remove high spatial frequency components
(noise, texture)

• An example of low-pass filter kernel

(see exercise in filtering)

34

Low-pass filtering

35

Low-pass filtering

36Larger kernel -> more blurry

Low-pass filtering

37Gaussian function:

Low-pass filtering

38

Noise and denoising

39

Noise: high spatial frequency

Denoising: low-pass filtering to remove the signal component with
high spatial frequencies

Idistorted = Ioriginal + n
Additive Gaussian Noise

n is a normally distributed

n ~ p(n; μ, σ)

Denoising

40

Denoising by median filter

-Non-linear filtering: use the median as the filter output
Median(2,80,6) -> 6

-More robust against outliers
-But more computationally-intensive

41

Edge detection

• Use image filtering to extract useful
information: edge

• Edge: significant change in intensity values

42

Edge detection

• Why edge detection:
– Edge provides important shape information:

fundamental in understanding the image
– Edge sharpen to improve visual quality

43

Edge detection

• Prewitt operator (as the filter kernel/mask)
– Detect horizontal edge, vertical edge
– Compute the difference of the neighboring pixels

to indicate the likelihood of edges

44

[[-1,0,1],
[-1,0,1],
[-1,0,1]]

[[-1,-1,-1],
[0, 0, 0],
[1, 1, 1]]

Detect vertical edge Detect horizontal edge

Edge detection

• Prewitt operator (as the filter kernel/mask)

45

[[-1,0,1],
[-1,0,1],
[-1,0,1]]

[[-1,-1,-1],
[0, 0, 0],
[1, 1, 1]]

Detect vertical edge Detect horizontal edge

Edge detection

• Sobel operator (as the filter kernel/mask)

46

[[-1,0,1],
[-2,0,2],
[-1,0,1]]

[[-1,-2,-1],
[0, 0, 0],
[1, 2, 1]]

Detect vertical edge Detect horizontal edge

Larger weight
near the
center pixel

Image Filtering

• Exercise: calculate the output of the following
filtering (you can ignore the boundary
condition)

47

Img = kernel =

out = [[30,31,33],
[31,33,33],
[33,33,32]]

Image Filtering

• Exercise: calculate the output of the following
filtering (you can ignore the boundary
condition)

48

Img = kernel =

out = [[30,31,33],
[31,33,33],
[33,33,32]]

After filtering,
the intensity
values are
smoother

