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In recent years, the use of artificial intelligence (AI) in medicine and 
healthcare has been praised for the great promise it offers, but has 
also been at the centre of heated controversy. This study offers an 
overview of how AI can benefit future healthcare, in particular 
increasing the efficiency of clinicians, improving medical diagnosis 
and treatment, and optimising the allocation of human and 
technical resources. 

The report identifies and clarifies the main clinical, social and ethical 
risks posed by AI in healthcare, more specifically: potential errors and 
patient harm; risk of bias and increased health inequalities; lack of 
transparency and trust; and vulnerability to hacking and data privacy 
breaches. 

The study proposes mitigation measures and policy options to 
minimise these risks and maximise the benefits of medical AI, 
including multi-stakeholder engagement through the AI production 
lifetime, increased transparency and traceability, in-depth clinical 
validation of AI tools, and AI training and education for both 
clinicians and citizens. 
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I 

Executive summary 

Objectives 

In recent years, a burgeoning interest in and concern over the use of artificial intelligence (AI) in 
medicine and healthcare has stood at the centre of interdisciplinary scientific research, political 
debate, and social activism. The goal of this report is to explain the areas in which AI can contribute 
to the medical and healthcare field, pinpoint the most significant risks relating to its application in 
this high-stakes and quickly-changing field, and present policy options to counteract these risks, in 
order to optimise the use of biomedical AI. Not only will this ensure the safety and respectful 
treatment of patients receiving AI-mediated healthcare, it should also aid the clinicians and 
developers involved in implementing it. 

Methodology  

This study employs an interdisciplinary methodology based on a comprehensive (but non-
systematic) literature review and analysis of existing scientific articles, white papers, recent 
guidelines and regulations, governance proposals, AI studies, and online publications. The multi-
disciplinary resources examined for this report include works from the fields of computer science, 
biomedical research, the social sciences, biomedical ethics, law, industry, and government 
reporting. This report explores a wide range of technical obstacles and solutions, clinical studies and 
results, as well as government proposals and consensus guidelines. 

Specific applications of AI in medicine and healthcare 

This study first outlines the potential for AI in medicine to address pressing issues, in particular the 
ageing population and the rise of chronic diseases, a lack of health personnel, inefficiency of health 
systems, lack of sustainability, and health inequities. The report also details the different fields in 
which biomedical AI could make the most significant contributions: 1) clinical practice, 
2) biomedical research, 3) public health, and 4) health administration.  

In the realm of clinical practice, the report goes into further detail concerning specific contributions 
– both realised and potential – to particular medical areas such as radiology, cardiology, digital 
pathology, emergency medicine, surgery, medical risk and disease prediction, adaptive 
interventions home care, and mental health. In biomedical research, the report details the potential 
contributions of AI to clinical research, drug discovery, clinical trials, and personalised medicine. 
Lastly, the report presents potential contributions of AI at the public health level as well as to global 
health.  

Risks of AI in healthcare 

This study identified and clarifies seven main risks of AI in medicine and healthcare: 1) patient harm 
due to AI errors, 2) the misuse of medical AI tools, 3) bias in AI and the perpetuation of existing 
inequities, 4) lack of transparency, 5) privacy and security issues, 6) gaps in accountability, and 
7) obstacles in implementation. Each section, as summarised below, not only describes the risk at 
hand, but also proposes potential mitigation measures.  

Patient harm due to AI errors 

The study explains the main causes of AI errors: noise and artefacts in AI clinical inputs and 
measurements, data shift between AI training data and real-world data, and unexpected variations 
in clinical contexts and environments. The medical consequences of such errors may include missed 
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diagnosis of life-threatening conditions as well as false diagnosis, leading to inadequate treatment 
and incorrect scheduling or prioritisation of intervention.  

Misuse of biomedical AI tools 

AI tools, even when accurate and robust, are dependent on how human beings use them in practice 
and how the results they produce are used; in the healthcare context, these human actors include 
clinicians, healthcare professionals and patients. Incorrect usage of AI tools can result in incorrect 
medical assessment and decision making, and subsequently in potential harm for the patient. 

Potential causes of AI misuse include limited involvement of clinicians and citizens in AI 
development, a lack of AI training in medical AI among healthcare professionals, lack of awareness 
and literacy among patients and the general public, and the proliferation of easily accessible online 
and mobile AI solutions without sufficient explanation and information. 

Risk of bias in medical AI and perpetuation of inequities 

Systemic human biases often make their way into AI models, including widespread and rooted bias 
based on sex and gender, race and ethnicity, age, socioeconomic status, geographic location, and 
urban or rural contexts. The most common causes of AI biases in the healthcare sphere are due to 
biased and imbalanced datasets which may be based on structural bias and discrimination (systemic 
discrimination that is imbedded in the ways that data is collected or the ways in which doctors treat 
their patients) and disparities in access to quality equipment and digital technologies, as well as lack 
of diversity and interdisciplinarity in technological, scientific, clinical, and policymaking teams.  

Lack of transparency 

A significant risk for AI is a lack of transparency concerning the design, development, evaluation, 
and deployment of AI tools. AI transparency is closely linked to the concepts of traceability and 
explainability, which correspond to two distinct levels at which transparency is required: 
1) transparency of the AI development and usage processes (traceability), and 2) transparency of the 
AI decisions themselves (explainability).  

Specific risks associated with a lack of transparency in biomedical AI include a lack of understanding 
and trust in predictions and decisions generated by the AI system, difficulties in independently 
reproducing and evaluating AI algorithms, difficulties in identifying the sources of AI errors and 
defining who and/or what is responsible for them, and a limited uptake of AI tools in clinical practice 
and in real-world settings. 

Privacy and security 

The increasingly widespread development of AI solutions and technology in healthcare, recently 
underscored by a reliance on big data during the Covid-19 pandemic, has highlighted the potential 
risks of a lack of data privacy, confidentiality and protection for patients and citizens. The main risks 
for data privacy and security in AI for healthcare, including personal data sharing without fully 
informed consent, data repurposing without the patient's knowledge, data breaches that could 
expose sensitive or personal information, and the risk of harmful – or even potentially fatal – 
cyberattacks on AI solutions, at both individual and hospital or health-system level. 

Gaps in accountability  

'Algorithmic accountability' is a crucial aspect of trustworthy and applicable AI in the field of 
healthcare. However, legal lacunae continue to exist in current national and international 
regulations concerning who should be held accountable or liable for errors or failures of AI systems, 
especially in medical AI. It is difficult to define the roles and responsibilities due to the multiplicity 
of actors involved in the process of medical AI, from design to deployment (e.g. healthcare 
professionals or AI developers). This lack of definition can leave clinicians and other healthcare 
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professionals in a particularly vulnerable position, especially if the AI model they are using is not 
entirely transparent.  

Obstacles to implementation in real-world healthcare 

Many medical AI tools have been developed recently; however, obstacles abound in the path 
towards implementation, integration and use of these tools in real-world clinical settings. Such 
obstacles include limited data quality, structure, and interoperability across heterogeneous clinical 
centres and electronic health records; potential alterations in the physician-patient relationship 
owing to the introduction of AI medical tools; increased and under-regulated access to patient data; 
and a lack of clinical and technical integration and interoperability of AI tools with existing clinical 
workflows and electronic health systems.  

Risk assessment methodology  

There is a need for a structured approach to risk assessment and management that specifically 
addresses the technical, clinical and ethical challenges of AI in healthcare and medicine. 

Regulatory frameworks for AI 

AI risks can be characterised and classified according to the severity of the harm they may induce, 
as well as to the probability and frequency of the harm induced. Currently, the applicable 
regulations for medical AI tools in the EU are the 2017/745 Medical Devices Regulation (MDR) and 
the 2017/746 In Vitro Diagnostic Medical Devices Regulation (IVDR), which were passed in 2017. 
However, because they were derived at a time when AI was at an early stage in its development, 
many aspects specific to AI are not considered, such as continuous learning of AI models or the 
identification of algorithmic biases. 

In 2021, the European Commission published a long-awaited proposal for an AI regulation and to 
harmonise the rules governing AI technologies across Europe. The highest category corresponds to 
AI tools that contradict EU values and hence should be prohibited. The intermediate category, which 
corresponds to high-risk AI and comprises medical AI technologies, can be permitted only when the 
tools comply with specific requirements and obligations for adequate risk management, such as 
ensuring human oversight and conducting post-market monitoring. 

The European Commission proposal for AI regulation is general for all domains of society and does 
not take into account the specificities and risks of AI in the healthcare domain, contrary to the MDR 
and IVDR regulations. Furthermore, the European Commission proposal retains of some of the 
limitations of the MDR and IVDR, such as the lack of mechanisms to address the dynamic nature and 
continuous learning of medical AI technologies.  

Risk minimisation through risk self-assessment 

For risk identification in AI, several stakeholders have suggested a self-assessment, structured 
approach composed of specified checklists and questions. For example, the independent High-
Level Expert Group on Artificial Intelligence (AI HLEG), established by the European Commission, 
published an assessment checklist for trustworthy AI called ALTAI. The checklist is structured around 
seven categories: (1) human agency and oversight; (2) technical robustness and safety; (3) privacy 
and data governance; (4) transparency; (5) diversity, non-discrimination and fairness; 
(6) environmental and societal well-being; and (7) accountability.  

The ALTAI model is general and does not address AI in healthcare specifically. This has motivated 
the recent development of consensus guidelines for trustworthy AI in medicine by a network of 
European Commission funded research projects together with international inter-disciplinary 
experts. Entitled FUTURE-AI, these guidelines are organised according to six principles (fairness, 
universality, traceability, usability, robustness, explainability) and comprise concrete 
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recommendations and a self-assessment checklist to enable AI designers, developers, evaluators 
and regulators to develop trustworthy and ethical AI solutions in medicine and healthcare. 

Risk identification through comprehensive, multi-faceted clinical evaluation of AI solutions 

While identifying and mitigating risks in medical AI by means of adequate evaluation studies is 
crucial, existing scientific literature focused mostly on evaluating model accuracy and robustness of 
the AI tools in laboratory settings. Other aspects of medical AI, such as clinical safety and 
effectiveness, fairness and non-discrimination, transparency and traceability, as well as privacy and 
security, are more challenging to evaluate in controlled environments and have thus received far 
less attention in scientific literature.  

There is a need for a more holistic, multi-faceted evaluation approach for future AI solutions in 
healthcare. Best practices to enhance clinical evaluation and deployment include: (i) employing 
standard definitions of clinical tasks (e.g. disease definition) to enable objective community-driven 
evaluations; (ii) defining performance elements beyond accuracy, such as for fairness, usability, 
explainability and transparency; (iii) subdividing the evaluation process into stages of increasing 
complexity (i.e. to assess feasibility, then capability, effectiveness and durability); (iv) promoting 
external evaluations by independent third-party evaluators; and (v) employing standardised 
guidelines for reporting the AI evaluation results to increase reproducibility, transparency and trust. 

Policy options 

1. Extend AI regulatory frameworks and codes of practice to address healthcare-specific risks 
and requirements  

In order to tailor existing frameworks and AI practices specifically to the medical field, multi-faceted 
risk assessment should be an integral part of the medical AI development and certification process. 
Furthermore, risk assessment must be domain-specific, as the clinical and ethical risks differ in 
different medical fields (e.g. radiology or paediatrics). In the future regulatory framework, the 
validation of medical AI technologies should be harmonised and strengthened to assess and 
identify multi-faceted risks and limitations by evaluating not only model accuracy and robustness 
but also algorithmic fairness, clinical safety, clinical acceptance, transparency and traceability.  

2. Promote multi-stakeholder engagement and co-creation throughout the whole lifecycle of 
medical AI algorithms 

For the future acceptability and implementation of medical AI tools in the real world, many 
stakeholders beyond AI developers – such as clinicians, patients, social scientists, healthcare 
managers and AI regulators – will play an integral role. Hence, new approaches are needed to 
promote inclusive, multi-stakeholder engagement in medical AI and ensure the AI tools are 
designed, validated and implemented in full alignment with the diversity of real-world needs and 
contexts. Future AI algorithms should therefore be developed by AI manufacturers based on co-
creation, i.e. through strong and continuous collaboration between AI developers and clinical end-
users, as well as with other relevant experts such as biomedical ethicists.  

Integrating human- and user-centred approaches throughout the whole AI development process 
will enable the design of AI algorithms that better reflect the needs and cultures of healthcare 
workers, while also enabling potential risks to be identified and addressed at an early stage. 

3. Create an AI passport and traceability mechanisms for enhanced transparency and trust in 
medical AI 

New approaches and mechanisms are needed to enhance the transparency of AI algorithms 
throughout their lifecycle. From this need can emerge the concept of an 'AI passport' for 
standardised description and traceability of medical AI tools. Such a passport should describe and 
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monitor key information about the AI technology, covering at least five categories of information: 
1) model-related information; 2) data-related information; 3) evaluation-related information; 
4) usage-related information; and 5) maintenance-related information.  

The AI passport should be standardised to enable consistent traceability across countries and 
healthcare organisations. Furthermore, the concept of traceability must go beyond the mere 
documentation of the development process or the phase of testing the AI model; instead, it should 
also comprise the process of monitoring and maintaining the AI model or system in the real world 
by continually tracking how it functions after deployment in clinical practice and identifying 
potential errors or changes in performance. Hence, it is important that algorithms are developed 
together with live interfaces that will be intended for continuous surveillance and auditing of the AI 
tools after their deployment in their respective clinical environments.  

4. Develop frameworks to improve the definition of accountability and monitoring of 
responsibilities in medical AI  

Frameworks and mechanisms are needed to assign responsibility adequately to all actors in the AI 
workflow in medical practice, including the manufacturers, thus providing incentives for applying 
all measures and best practices to minimise errors and harm to the patient. Such expectations are 
already an integral part of the development, evaluation and commercialisation of medicines, 
vaccines and medical equipment, and need to be extended to future medical AI products. 

Another way to bolster accountability is through periodic audits and risk assessments, which can be 
used to evaluate how much regulatory oversight a certain AI tool might need. To this end, the 
assessments must be conducted through the whole AI pipeline, from data collection, to 
development, to pre-clinical stages, to deployment, but also when the tools are in use.  

5. Introduce education programmes and campaigns to enhance the skills of healthcare 
professionals and the literacy of the general public in medical AI 

To increase adoption and minimise error, future medical professionals should be adequately trained 
in medical AI, including its advantages in terms of improving care quality and access to healthcare, 
and its limitations and risks. It is therefore time to update educational programmes in medicine and 
increase their interdisciplinarity.  

Furthermore, there is an urgent need to increase the AI literacy of the public so that citizens and 
patients can empower themselves and thus better take advantage of the benefits of emerging 
medical AI tools; increased AI literacy will also help minimise the potential risk of misuse of the AI 
tools, especially during remote monitoring and care management.  

6. Promote further research on clinical, ethical and technical robustness in medical AI  

There is a need for further research on the interrelated areas of medical AI to address the current 
clinical, socio-ethical and technical limitations. Examples of areas for future research include 
explainability and interpretability, bias estimation and mitigation, and secure and privacy-
preserving AI. 

More research is also needed to develop adaptation methods that can ensure a high level of 
generalisability of future AI tools across population groups, clinical centres and geographical 
locations. Future AI solutions for healthcare should be implemented by integrating uncertainty 
estimation, a relatively new field of research that aims to provide clinicians with clinically useful 
indications on the degree of confidence in AI predictions. 
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7. Implement a strategy for reducing the European divide in medical AI  

While the EU has made significant investments in AI in recent years, inequalities persist between 
different European countries. The AI divide can be explained by structural differences in research 
programmes and technological capacities, as well as by varying levels of investment from the public 
and private sectors. The disparities in AI development and implementation between EU countries 
are particularly marked in medical AI. In this context, the EU can act as an umbrella to coordinate an 
EU-wide strategy for reducing the gaps in medical AI between European countries. This strategy 
should include concrete actions to boost the technological, research and industrial capacities of 
emerging EU countries in the field of AI for healthcare.  

The EU Member States, in particular those in eastern Europe, could develop specific programmes to 
further support future AI in healthcare. The European Commission could implement specific 
coordination and support programmes of activities implemented in this sector by different Member 
States, thereby supporting the implementation of common guidelines and approaches. 
Furthermore, infrastructure projects should be established specifically for those EU countries that 
have limited research infrastructures and data availability. Existing education-focused programmes 
such as the Marie-Curie training networks could be strengthened to enhance training capacities and 
human capital in medical AI. 
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1. Introduction 

1.1. Objectives of this study 
In recent years, there has been growing interest in the application of artificial intelligence (AI) in 
healthcare. From drug discovery to healthcare provision, artificial intelligence (AI) has the potential 
to revolutionise the field of health. Precisely, AI will likely improve access to healthcare and how 
patients are treated, but it also optimises the way resources are allocated, thus helping health 
systems function more effectively and efficiently (EIT Health, 2020). 

The potential for AI to reshape the field of healthcare – to help improve diagnosis and enable an 
increasingly personalised precision approach to medicine – may seem boundless. Some of the main 
applications of AI in medicine include medical image quantification, automated analysis of genetic 
data, disease prediction, medical robotics, telemedicine and virtual doctors. The coronavirus 
pandemic has accelerated the development and deployment of AI applications in the medical and 
clinical areas, as AI-related technologies lay at the main core of the response to this worldwide 
health crisis.  

However, as with other technological advances, AI in the domain of healthcare comes with its 
specific benefits and risks, and needs its own set of regulatory frameworks that address the socio-
ethical implications of its use. While the implementation of AI in healthcare holds great promise, this 
rapidly developing field also raises concerns for patients, healthcare systems and society; these 
concerns include issues of clinical safety, equitable access, privacy and security, appropriate use and 
users, as well as liability and regulation. Hence, researchers, the general public, and policymakers 
have all pointed to important bioethical issues, including how to evaluate the risks and benefits of 
AI in healthcare, how to establish accountability in the sphere of biomedical AI and how to regulate 
its use in this particularly high-stakes context. Another important question at the heart of the field 
is whether AI might increase inclusion and fairness in the treatment of traditionally 
underrepresented communities, or whether it runs the risk of perpetuating and augmenting pre-
existing health disparities and inequities.  

The study will provide an overview of AI health-related applications and an analysis of the potential 
of AI to transform the provision of healthcare. The study will also define, assess and clarify risks in 
the current and potential applications of AI in the domain of healthcare. At the same time, it will 
consider major clinical, socio-ethical and regulatory aspects of AI in its various health applications. 
Finally, the study will also propose a series of policy options aimed at minimising the risks of medical 
AI, enhancing governance at the EU level and strengthening its responsible development. 

1.2. Methodology and resources used 
The methodology implemented in this study is based on a comprehensive interdisciplinary (but 
non-systematic) literature review and analysis of existing scientific articles, white papers, recent 
guidelines, governance proposals, AI studies and results, news articles and online publications. 
These have been generated by AI developers, public agencies, expert leaders, clinical researchers, 
healthcare professionals and social scientists that have been actively working in the field of AI for 
medicine and healthcare in recent years, especially in the last two to three years.  

A highly interdisciplinary body of literature was examined for this report, including works from the 
fields of computer science, biomedical research, the social sciences, biomedical ethics, law, industry, 
and government reporting. Hence, this report examines a wide range of technical obstacles and 
solutions, clinical studies and results, as well as government proposals and consensus guidelines.  
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A wide range of key phrase searches were performed in literature databases, in particular in Google 
Scholar, PubMed and Web of Science. Depending on the different themes investigated in this study, 
examples of key phrase searches include 'medical AI', 'AI risks', 'ethical challenges of AI', 'clinical 
safety', 'AI fairness', 'AI bias', 'AI inequities', 'AI accountability', 'data privacy', AI explainability', 'AI 
transparency', 'risk management', 'AI evaluation'. 

In addition to summarising the considerations, findings and recommendations that apply to each 
of the themes examined in this report, concrete examples from a wide range of medical domains 
and applications (e.g. in radiology, cardiology, digital pathology, surgery, emergency medicine, etc.) 
are provided whenever possible to illustrate the challenges and potential future directions in 
medical AI.  

1.3. Definitions 
To introduce the readers to the field of AI, the table below provides a list of definitions of the main 
terms and concepts used throughout this report.  

Table 1 – Main definitions and concepts in medical AI 

Term Definition 

Artificial intelligence 
(AI) 

Here we will first use the historical definition of AI, i.e. when a machine is able to 
mimic human intelligence or even surpass it to perform a given task such as 
prediction or reasoning. However, in this report, we will mostly focus on one 
subfield of AI that is dominant in the healthcare area, namely machine learning 
(ML). 

Machine learning 
(ML) 

ML is a subfield of AI and concerns the methods that learn to perform given tasks, 
such as prediction or classification, based on existing data.  

Big data  

 

The term big data is used in instances in which the data samples are too large to 
be adequately analysed with traditional AI methods. In this case, new methods 
such as deep neural networks (otherwise known as deep learning) can be used 
(Raghupathi et al., 2014). 

Neural networks 
(NNs) 

NNs, technically known as artificial NNs, are circuits composed of a set number 
of interconnected neurons organised hierarchically in layers and which are 
capable of learning to perform highly complex tasks from data. Each neuron acts 
as a type of specialised processing unit which transforms input data into output 
signals. These transformations are application specific and learned from 
available application-specific data. Progressively, the neurons combine their 
outputs, layer by layer, approximating the processing of a large complex 
function, until the network outputs a final result, such as the prediction of a 
disease (Esteva et al., 2019). 

Deep learning 

 

DL refers to NNs with more than three layers; in this case, the availability of big 
data is needed to estimate the optimal values of the parameters for this larger, 
more complex type of deep neural network (Goodfellow et al., 2016). Note that 
not all AI and ML tools are based on deep learning or NNs. Other techniques such 
as decision trees or support vector machines are widely used, especially when 
the data sample is not sufficiently large to build NNs or deep NNs (Figure 1). 

AI model, AI 
algorithm or AI tool 

Technically, in the specialised AI literature, an AI algorithm is the procedure used 
to build an AI model for a specific application, hence the AI model is the output 
of the machine learning algorithm. In other words, the same AI algorithm can be 
used to build models (e.g. predictive models) for many different applications, but 
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the AI model is specific to a given application (e.g. predicting the patient's 
response to a given cancer treatment). However, the terms AI algorithms and AI 
models (or ML algorithms and ML models) are often used interchangeably. AI 
tools are AI models that are packaged to be used by end-users, so they contain 
more than just the AI model, such as user interfaces. In non-specialised literature, 
AI models, algorithms, tools, solutions and software are used interchangeably, 
especially in medical circles. 

Training, validation & 
testing data 

Training data are datasets that are used by AI developers to train their AI models. 
Validation data are also used by AI developers. However, the latter is used to 
optimise the parameters of the AI models so that they can be applied to new data 
other than the training data. In other words, validation data are used to fine-tune 
the AI models to make them generalisable (to use a terminology from the 
technical literature). Testing data are new data that are distinct from those used 
for training and optimising the AI models. They are used to evaluate the AI 
models, ideally by evaluators that did not take part in the AI development phase 
(in other words by external independent evaluators, though in practice AI 
models are still widely evaluated by the same teams that developed them in the 
first place). 

Medical AI or 
healthcare AI 

This is a type of AI which is focused on specific applications in medicine or 
healthcare. 

AI design, 
development, 
evaluation & 
deployment 

These are roughly the main steps of the AI lifecycle in healthcare. First the AI tools 
are designed, generally in a co-creation approach and through collaborations 
between AI developers and clinical experts in the field (and sometimes by also 
involving patients and other experts such as healthcare managers). The AI 
developers write some code to build and optimise the AI models from the 
training and validation data they have at their disposal. Subsequently, the AI 
model is evaluated using testing data that is distinct from the training and 
validation data. The AI tool (AI model with a user interface) is also evaluated with 
end-users (e.g. doctors and/or patients). If the evaluation is successful and 
convincing for the relevant stakeholders (e.g. patients, clinicians, healthcare 
managers, regulatory authorities), the AI tool is validated, approved, and then 
deployed in practice. The forementioned pipeline is of course an ideal scenario, 
and in practice there is some degree of variation in the AI development lifecycle. 

 

Figure 1 – Relationship between artificial intelligence, machine learning and deep learning 
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2. Artificial intelligence applications in healthcare 
Information generated by medical science currently spans a very wide scope; it is rapidly growing 
and will continue to do so both in volume and variety. In parallel, the potential for AI in medicine 
and health is massive and is constantly expanding as AI technologies are being developed by 
industry, academia, government, and individuals. It is expected that the integration of AI-based 
technologies into medical practice will produce substantial changes in many areas of medicine and 
healthcare (Roski et al., 2019; Fihn et al., 2019).  

2.1. Artificial intelligence and healthcare needs 

2.1.1. Main challenges for EU's healthcare systems  
Before reviewing the most recent developments in medical AI in this chapter, it is important to first 
detail the main healthcare challenges and unmet needs that could benefit from the deployment of 
AI in future medical care: 

Ageing population and chronic diseases. In 2017, approximately 37% of the ageing population 
of the EU member states reported having at least two chronic diseases, on average. Among people 
aged 80 and over, 56% of women and 47% of men reported multiple chronic diseases on average 
across EU countries (OECD/European Union, 2020). 

Lack of health personnel. European countries suffer from gaps in the supply and skill level of health 
personnel. An estimated overall shortfall of 1.6 million healthcare workers in the EU was reported in 
2013; in order to compensate for this shortage, an annual exponential growth greater than 2% 
would be needed. However, as this rate of increase has not been reached, the expected shortage is 
anticipated to reach 4.1 million by 2030 (0.6 million physicians, 2.3 million nurses and 1.3 million 
other healthcare professionals) (WHO, 2016; Michel, 2020).  

Inefficiency. There is ample evidence of widespread inefficiency in EU healthcare systems (OECD, 
2017). While the relative ability of a particular healthcare system to transform resources into 
outcomes differs across countries, there is considerable waste of health-related resources, which 
contributes to excessive expenditure (Medeiros, 2015). 

Sustainability. The issue relating to health-systems sustainability is rapidly growing in the EU. 
According to the OECD 'Health at a glance: Europe 2020' report, the EU spends 8.3% of its GDP on 
healthcare, with marked differences in spending across regions: in Germany and France, it is 11% 
and in Luxembourg and Romania, less than 6%. Health expenditure is projected to continue to 
escalate, mainly due to sociodemographic changes – the ageing population and the subsequent 
increase in chronic diseases and long-term care needs – as well as the impact of new technologies. 
In addition to the aforementioned challenges, in recent years EU healthcare systems have also been 
under significant pressure due to economic difficulties (Quaglio, 2020). The COVID‑19 pandemic in 
particular is expected to increase the health spending share of GDP in multiple countries.  

Healthcare inequities. Healthcare inequities and inequalities persist among the EU member states 
and their populations. The right of every EU citizen to timely access to affordable, preventive, and 
curative care of high quality is one of the key principles of the newly proclaimed European Pillar of 
Social Rights (European Commission. The European Pillar, 2021). A recent report identified several 
challenges and inequalities related to healthcare access, namely: (a) inadequate public resources 
invested in the healthcare system; (b) fragmented population coverage; (c) gaps in the range of 
benefits covered; (d) prohibitive user charges, in particular for pharmaceutical products; (e) lack of 
protection of vulnerable groups from user charges; (f) lack of transparency on how waiting list 
priorities are set; (g) inadequate availability of services, particularly in rural areas; (h) problems with 
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attracting and retaining health professionals; (i) difficulties in reaching particularly vulnerable 
communities who have limited access to qualitative healthcare such as ethnic minorities and 
socioeconomically disadvantaged people; (j) racial bias and unequal healthcare provision (European 
Commission. A study of national policies 2018; Hamed, 2020).  

2.1.2. Main application domains for AI in healthcare 
To date, AI has progressively been developed and introduced into virtually all areas of medicine, 
from primary care to rare diseases, emergency medicine, biomedical research and public health. 
Many management aspects related to health administration (e.g. increased efficiency, quality 
control, fraud reduction) and policy are also expected to benefit from new AI-mediated tools 
(Gómez-González, 2020).  

Healthcare AI tools have been often classified according to the stakeholder user groups, i.e. 
1) patients and citizens; 2) clinicians and caregivers; 3) healthcare administrators; and 4) public 
health professionals and policy makers. Classification of biomedical AI tools can also be based on 
the setting in which the tools are used: 1) clinical settings (hospitals, primary care centres, 
emergency care centres); 2) clinical processing and managing settings (laboratory, pharmacy, 
radiology, etc); and 3) administrative settings.  

For the purpose of this study, we adopt a more comprehensive classification of AI applications, 
dividing them into four practices: 1) clinical; 2) research; 3) public health; and 4) administrative 
(Figure 2). The next sections provide a summary of the current developments and applications of AI 
in these four areas.  

Figure 2 – Main classes of AI tools reviewed in this report 

  

2.2. AI in clinical practice 
The potential for the application of AI in the clinical setting is enormous and ranges from the 
automation of diagnostic processes to therapeutic decision making and clinical research. The data 
necessary for diagnosis and treatment comes from many sources, including clinical notes, 
laboratory tests, pharmacy data, medical imaging, and genomic information.  

AI will play a major role in tasks such as automating image analysis (e.g. radiology, ophthalmology, 
dermatology, and pathology) and signal processing (e.g. electrocardiogram, audiology, and 
electroencephalography). In addition to its implementation in test and image interpretation, AI 
could be used to integrate and array results with other clinical data to facilitate clinical workflows 
(Topol et al., 2019). Many impressive examples exist in clinical settings where AI tools are applied, a 
number of which are expounded below. The following sections also touch on the possible 
application of AI into specific areas of medicine that are more scarcely reported, such as nephrology 
and personalised medicine.  

Clinical practice Biomedical research

Public health Health administration

AI tools in healthcare
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2.2.1. Radiology 
Radiology is among the medical specialities that have seen significant AI developments over the last 
years. Imaging AI technologies show promise in assisting radiologists in the work of medical image 
quantification. For example, segmentation with limited human supervision has been achieved by 
using deep network models, which enable to automatically localise and delineate the boundaries 
of anatomical structures or lesions (Peng & Wang, 2021). These AI tools can also prioritise and track 
findings that mandate early attention, and enable radiologists to concentrate on images that are 
most likely to be abnormal (Lee et al., 2018; Peng & Wang, 2021). A good example of AI tools for 
medical image segmentation is 'cvi42', a cardiovascular imaging platform commercialised by the 
Canadian company Circle CVI that has been adopted in over 40 countries (Zange et al., 2019).  

Radiomics is another imaging processing technique in which AI has proven useful. Although the 
term is not strictly defined, radiomics generally aims to extract quantitative information (the so-
called radiomic features), from diagnostic and treatment planning images (Gillies, 2016; 
Mayerhoefer et al., 2020). Radiomic features capture tissue and lesion characteristics, such as 
heterogeneity and shape, and may be used for clinical problem solving alone or in combination with 
demographic, histologic, genomic, or proteomic data. The impact of radiomics increases when the 
wealth of information that it provides is processed using AI techniques (Cook et al., 2019; 
Mayerhoefer et al., 2020). 

A recent meta-analysis compared the performances of deep learning software and radiologists in 
the field of imaging-based diagnosis (Liu, 2019). According to the study, the diagnostic performance 
of deep learning models is equivalent to that of healthcare professionals. However, a major finding 
of the review is that most of the studies analysed have serious limitations: (i) most studies took the 
approach of assessing deep learning diagnostic accuracy in isolation (many studies were excluded 
at screening because they did not provide comparisons between the human and the machine); 
(ii) very few studies reported comparisons with health professionals using the same test dataset; 
(iii) there were very few prospective studies done in real clinical environments (most studies were 
retrospective and based on previously assembled datasets); iv) the scrutinised studies showed 
inconsistencies over key terminology. 

2.2.2. Digital pathology 
The term digital pathology was initially coined to include the process of digitising whole-slide 
images using advanced slide-scanning techniques. It now also refers to AI-based approaches for the 
detection and analysis of digitised images (Bera et al., 2019; Niazi et al., 2019). While the use of 
standardised guidelines can support the harmonisation of diagnostic processes, histopathological 
analysis is inherently limited by its subjective nature and by differences in judgement between 
independent experts (Chi et al., 2016; Evans et al., 2008; Bera et al., 2019).  

AI can contribute to the alleviation of some of the challenges faced by oncologists and pathologists, 
including inter-subject and inter-operator variability. Several studies demonstrate that AI can have 
a similar level of accuracy to that of pathologists (Ehteshami Bejnordi et al., 2017) and, more 
significantly, can improve their diagnostic performances when used in tandem (Steiner et al., 2018; 
Bera et al., 2019). In digital pathology, AI has been applied to a variety of image processing and 
classification tasks. These include low-level tasks such as detection, focused on object recognition 
problems (Sornapudi et al., 2018), as well as higher-level tasks such as predicting disease diagnosis 
and prognosis (Corredor et al., 2018), evaluating disease severity and outcome (Mobadersany et al., 
2018) and using assays to predict response to therapy (Bera, 2019). 

2.2.3. Emergency medicine 
Emergency medicine can benefit from AI in different phases of patient management. For instance, 
it offers potential value for improved patient prioritisation during triage, and is versatile in analysing 
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different elements of the patient's clinical history. Currently, patients are assessed with limited 
information in the emergency department (Berlyand et al., 2019; Kirubarajan et al., 2020). However, 
there is potential for emergency department flow metrics and resource allocation to be optimised 
through AI-driven decision making (Berlyand et al., 2018). Nevertheless, concerns remain regarding 
the use of AI for patient safety considering the limited body of evidence to support its 
implementation (Challen et al., 2019; Kirubarajan et al., 2020). 

A recent scoping review analysed the applications of AI in emergency medicine in a total of 
150 studies (Kirubarajan et al., 2020). According to the review, the majority of interventions are 
centred on: (i) the predictive capabilities of AI; (ii) improving diagnosis within the emergency 
department; (iii) studies focused on triage of emergent conditions; and iv) studies demonstrating 
that AI can assist with organisational planning and management within the emergency department. 

2.2.4. Surgery 
In the area of surgery, decisions sometimes need to be taken under time constraints and conditions 
of uncertainty regarding an individual patient's diagnoses and predicted response to treatment. 
Uncertainty may be imposed by unavailability of patient data (e.g. external hospital records or 
diagnostic tests) or absence of high-level evidence to guide important management decisions. 
Under such time constraints and uncertainty, clinicians may instead rely on cognitive shortcuts and 
snap judgments using pattern recognition and intuition (Dijksterhuis et al., 2006; Loftus et al., 2020).  

Ultimately, these factors can lead to bias, error and preventable harm. In a number of conditions, 
traditional decision-support tools appear not to be sufficiently equipped to accommodate time 
constraints and uncertainty regarding diagnoses and the predicted response to treatment, both of 
which can impair surgical decision making (Loftus, 2020). These challenges can be overcome by AI 
models (Loftus et al., 2019). In fact, AI tools provide diverse sources of information (patient risk 
factors, anatomic information, etc.) that can help in the development of better surgical decisions 
(Shickel et al., 2019; Hashimoto et al., 2019). 

2.2.5. Risk prediction 
Risk prediction focuses on assessing the likelihood of individuals experiencing a specific health 
condition or outcomes. It typically generates probabilities for a wide array of outcomes ranging from 
death to adverse disease events (e.g. stroke, myocardial infarction, bone fracture). The process 
involves the identification of individuals with certain diseases or conditions and their classification 
according to stage, severity, and other characteristics. These individuals may subsequently be 
targeted to receive specific medical interventions (Miotto et al., 2016; Steele et al., 2018; Fihn et al., 
2019).  

Risk prediction models have long been available in healthcare. However, these are currently based 
on regression analysis and subsets of available clinical data, resulting in limited prediction accuracy 
which renders them less valuable in the clinical setting. Importantly, the advent of large repositories 
of data and AI techniques has shown promising signs for AI's usefulness in tailoring patient-specific 
conventional approaches for risk prediction (Islam, 2019). For example, predictive AI-based models 
in cardiovascular disease risk assessments have shown improved performance when compared to 
statistically derived predictive risk models (Jamthikar et al., 2019). 

2.2.6. Adaptive interventions 
Adaptive interventions, also defined as 'just-in-time adaptive interventions', are intervention 
designs aimed to deliver the right type and level of support by continuously adapting to an 
individual's changing internal and contextual states (Almirall et al., 2014). In particular, this allows to 
adjust the frequency, duration and dosage of medicines at different time points throughout the 
course of care.  
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AI-driven adaptive interventions can provide support in medical treatment through two different 
pathways: (i) direct input, via self-assessments by patients; or (ii) via passive data collection, where 
physiological information is gathered using special sensors. Using mobile technologies to collect 
self-assessments is referred to as ecological momentary assessment (De Vries et al., 2020). The later 
helps people to self-monitor behaviours at the time and in the context in which they occur.  

For example, ecological momentary assessment has several benefits in substance–use disorders, 
such as increasing the ability to correlate instances of craving with maladaptive behaviours. Passive 
data collection often relies on technologies that record patterns of movement within the patient's 
environment, for example, via global positioning system (GPS) and wireless local area networks (Wi-
Fi), which are used to acquire location-based data (Vijayan et al., 2021).  

The possibility to gather spatial and temporal information (i.e. where and when the behaviours of 
the subject occurred) renders these tools highly specific. In addition, physiological information from 
special sensors (such as those measuring blood pressure, heart rate, temperature or substance 
concentration levels in blood), can be combined with spatial and temporal data in order to get a 
more detailed profile of the patient's behaviour, including monitoring physiological responses or 
precursors to craving (Quaglio et al., 2019). 

2.2.7. Home care 
In 2019, more than one fifth (20.3%) of the EU-27 population was aged 65 and over. The share of 
people aged 80 years or above is projected to have a two and a half folds increase between 2019 
and 2100, from 5.8% to 14.6% (Eurostat. Statistical expanded, 2020). It is worth noting that the 
prevalence of dementia increases rapidly with age (Quaglio et al., 2016). In 2018, an estimated 
9.1 million people aged over 60 were living with dementia in EU Member States (around 7% of the 
population aged over 60), compared to 5.9 million in 2000. In fact, the percentage of people living 
with dementia in EU countries is expected to rise by about 60% over the next two decades and reach 
14.3 million by 2040 (OECD/EU, 2018). 

Importantly, AI can play a significant role in the self-management of chronic diseases and diseases 
that affect the elderly. Self-management tasks range from taking medications to adjusting the 
patient's diet and managing health devices. Home monitoring has the potential to increase 
independence and improve ageing at home by keeping track of physical space and falls. In 
particular, tools, software, smartphone and mobile applications can enable patients to manage a 
large part of their own healthcare and facilitate their interactions with the healthcare system (Sapci 
et al., 2019). 

Nevertheless, smart homes present several inconveniences, namely: 1) changing the lifestyle of 
users; 2) difficulties in the use of smart home technologies; 3) interoperability between systems; and 
4) privacy and security constraints. Despite the current advances, the adoption of these emerging 
home-based technologies still falls short of end-user needs, prompting the search for new strategies 
(Azzi et al., 2020). 

2.2.8. Cardiology 
The most promising application of AI is for the automated processing of cardiac imaging data, which 
is necessary for the assessment of cardiac structure and function in cardiology (Lopez-Jimenez et al., 
2020). Cardiac imaging modalities such as cardiac ultrasound, cardiac computer tomography and 
cardiovascular magnetic resonance imaging provide complex spatiotemporal data that are tedious 
and time consuming to process by cardiologists. The availability of new AI-driven cardiac image 
processing techniques has revolutionised cardiac clinical practice by enabling cardiologists to make 
more rapid assessment of the patients in their day-to-day practice (Lopez-Jimenez et al., 2020). 
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Machine learning (ML) models are set to improve the diagnostic capacity of echocardiography 
which constitutes the predominant cardiac imaging modality but remains heavily reliant on human 
expertise (Alsharqi et al., 2018). The generation of more accurate and automated echocardiograms 
with the use of AI is expected to reveal unrecognised imaging features that will facilitate the 
diagnosis of cardiovascular disease while minimising the limitations associated with human 
interpretation.  

This is already the case in electrocardiography (ECG), for which AI models – such as deep-learning 
convolutional neural networks – have been generated with the use of large digital ECG datasets 
derived from clinical records (Siontis et al., 2021). As a result, AI-enabled ECGs are now capable of 
identifying diseases such as asymptomatic left ventricular dysfunction and silent atrial fibrillation, 
as well as phenotypic features including sex, age and race (Adedinsewo et al, 2020; Attia et al., 2019a; 
Attia et al., 2019b; Noseworthy et al., 2020).  

Furthermore, AI has been used extensively in nuclear cardiology, which studies non-invasive 
imaging tools evaluating myocardial blood flow, among other things. ML models have been applied 
to two techniques in particular; single-photon emission computed tomography (SPECT) and 
myocardial perfusion imaging (MPI), to ultimately enhance the detection and prognosis of 
obstructive coronary artery disease (Noseworthy et al., 2020). It is believed that cardiac risk scores 
(calculating the 10-year risk of presenting with cardiovascular disease) will be assessed more 
accurately with the use of ML algorithms capable of extrapolating information and delineating 
unseen patterns in data derived from clinical records (Quer et al., 2021).  

Although cardiovascular medicine appears to be at the forefront of AI in health, it will always, to a 
certain extent, depend on the expertise of cardiovascular specialists. Therefore, it is important for 
practitioners to be actively involved in this new and emerging field in order for imaging processing 
techniques to reach their full potential and perhaps revolutionise patient care (Quer et al., 2021). 

2.2.9. Nephrology  
The application of AI in nephrology is more scarcely reported than in other fields of medicine 
(Lindenmeyer et al., 2021; Chaudhuri et al., 2021). Nevertheless, its potential is increasingly being 
recognised by clinicians due to the promising advances made in the last decade. For instance, a 
novel deep learning model for ultrasound kidney imaging non-invasively classifies chronic kidney 
disease (CKD) (Kuo et al., 2019). In addition, the digital analysis of histopathological images has been 
facilitated by the development of a deep neural network capable of annotating and classifying 
human kidney biopsies (Hermsen, 2019). In an attempt to ameliorate early treatment of acute kidney 
injury (AKI), scientists took advantage of the widespread increase in data found in electronic 
healthcare records to develop an AI model enabling up to 48h prediction of inpatient episodes of 
AKI (Tomašev, 2019 ). On the other hand, the so-called 'Intraoperative Data Embedded Analytics' 
(IDEA) algorithm has been trained to predict the risk of developing postoperative AKI by integrating 
physiological data derived before and after an operation (Adhikari et al., 2019).  

AI also holds potential in the computer-aided diagnosis of kidney cancer. As algorithms are 
becoming more robust and generalisable, they are increasingly better at identifying renal masses 
and distinguishing between benign and cancerous ones (Giulietti et al., 2021). Overall, the 
implementation of AI models in nephrology will likely facilitate prognosis, reinforce personalised 
medicine and reduce the global burden of kidney diseases (Park et al., 2021).  

2.2.10. Hepatology 
AI research is steadily progressing in many areas of medicine, and hepatology is no exception (Ahn 
et al., 2021). ML models have been used extensively to facilitate the diagnosis of multiple types of 
liver disease, most of which are life threatening. Interest has been primarily focussed on the 
automated detection of non-alcoholic fatty liver disease (NAFLD), as most patients remain 
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asymptomatic until the development of liver cirrhosis. A recently developed AI neural network 
shows 97.2% accuracy in diagnosing NAFLD (Okanoue et al., 2021).  

Importantly, the same model is capable of distinguishing between patients with NAFLD and those 
with its more advanced form, NASH (non-alcoholic steato-hepatitis). Predictive models have also 
been developed to estimate the severity and prognosis of chronic viral hepatitis, as well as acute-
on-chronic liver failure (Ahn et al., 2021). Despite the considerable progress in AI and hepatology, a 
number of conditions remain under-researched in this aspect, such as alcohol-associated liver 
disease and genetic/autoimmune liver disease, which calls for a more widespread adoption of AI in 
hepatology (Ahn et al., 2021). 

2.2.11. Mental health 
The EU suffers from a significant mental health burden. Neuropsychiatric disorders constitute 26% 
of diseases in EU Member States. Up to 40% of years lived with disability in the EU can be attributed 
to these types of mental health disorders, and especially to depression (WHO, 2021a). The cost of 
mood disorders and anxiety in the EU is about €170 billion per year (WHO, 2021a). In addition, it has 
been shown that depression and anxiety contribute greatly to chronic sick leave from the workplace 
and that these disorders – especially major depression – are often left untreated. 

There is potential for AI to lend support to mental health patients and to mitigate the effects of a 
paucity of health personnel dedicated to mental health conditions. In fact, various tools are currently 
under development. These include digital tracking of depression and mood via keyboard 
interaction, speech, voice, facial recognition, sensors, and the use of interactive chatbots (Firth et al, 
2017; Fitzpatrick et al., 2017; Mohr et al., 2018).  

The computational power harnessed by AI systems could be leveraged to reveal the complex 
pathophysiology of psychiatric disorders and thus better inform therapeutic applications (Graham 
2019; Lee, 2021). Machine learning has been explored to predict the efficacy of antidepressant 
medication (Chekroud et al., 2016), characterising depression (Wager et al., 2017), predicting suicide 
(Walsh et al., 2017) and psychosis in schizophrenics (Chung et al., 2018). 

AI can help to differentiate between diagnoses with overlapping clinical presentations but with 
different treatment options (Dwyer et al., 2018). Examples include the identification of bipolar versus 
unipolar depression (Redlich et al., 2014), or the differentiation between types of dementia (Lee et 
al., 2021).  

Nowadays, social media represent a form of daily communication for an extensive part of the 
population. Therefore, examining the content and language patterns of social media can provide 
insights and create new opportunities for predictive psychiatric diagnosis. Mental conditions may 
become observable in online contexts, while social media information analysed with machine 
learning has already been leveraged to predict diagnoses and relapses (Reece et al., 2017; Birnbaum 
et al., 2019; Yazdavar et al., 2020; Lee et al., 2021). 

2.3. AI in biomedical research 

2.3.1. Clinical research 
Biomedical research seems to benefit more from AI-derived solutions compared to clinical 
applications, with recent advances also showing promising applications of AI in clinical knowledge 
retrieval. For example, mainstream medical knowledge resources are already using ML algorithms 
to rank search results, including algorithms that continuously learn from users' search behaviour 
(Fiorini et al., 2018a).  
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One example is PubMed, a widely used search engine for biomedical literature (Fiorini et al., 2018b). 
The AI technologies implemented by PubMed to optimise its search function include machine 
learning and natural language processing algorithms that are trained on patterns found in users' 
activities in order to improve a user's search (Fiorini et al., 2018b). For instance, Best Match is a new 
search algorithm for PubMed that leverages the intelligence of PubMed users and cutting-edge ML 
technology as an alternative to the traditional date sort order. The Best Match algorithm is trained 
using past user searches with dozens of relevance-ranking signals (factors), with the most important 
being the past usage of an article, publication date, relevance score, and type of article. This 
algorithm has significantly improved the finding of relevant information over the default time order 
in PubMed and has increased usage of relevance search over time (Fiorini et al., 2018b). Through 
techniques such as information extraction, automatic summarisation, and deep learning, AI has the 
potential to transform static narrative articles into patient-specific clinical evidence (Elliott et al., 
2014). 

2.3.2. Drug discovery 
Drug designers frequently apply ML techniques to extract chemical information from large 
compound databases and to design new drugs. Central to this shift is the development of AI 
approaches to implement innovative modelling based on the large nature of drug datasets. As a 
result, recently developed AI approaches provide new solutions to enhance the efficacy and safety 
evaluation of candidate drugs based on big data modelling and analysis.  
 
AI models such as these can facilitate greater understanding of a wide range of types of drugs and 
the clinical outcomes that they may offer (Zhu et al., 2020). For example, researchers recently trained 
a deep learning algorithm to predict molecules' potential antimicrobial activity. The algorithm 
screened over one billion molecules and virtually tested over 107 million, identifying eight 
antibacterial compounds that were structurally distant from known antibiotics (Stokes et al., 2020). 
 
Compared to traditional animal models, both in vitro and in silico testing have great potential in 
lowering the cost of drug discovery. The application of in vitro and in silico approaches in the early 
stages of drug research and development procedures can reduce the number of drug attritions 
(Zhang et al., 2017). AI holds great potential as a method to assess compounds according to their 
biological capacities and toxicities. Existing AI models, such as those based on quantitative 
structure-activity relationship (QSAR) approaches (Golbraikh et al., 2016), can be used to predict 
large numbers of new compounds for various biological end points.  

However, the resulting QSAR model predictions of new compounds are characterised by a number 
of limitations (Zhao et al., 2017; Zhu et al., 2020). Over the past decade, new efforts have stimulated 
the development of high-throughput screening (HTS) techniques (Zhu et al., 2014). HTS is a process 
that screens thousands to millions of compounds using standardised protocol. Facilitated by the 
combined efforts of HTS and combinatorial chemical synthesis, modern screening programmes can 
produce enormous amounts of biological data (Zhu et al., 2020). 

2.3.3. Clinical trials 
Randomised controlled trials (RCT) are the most robust method of assessing the risks and benefits 
of any medical intervention. However, undertaking an RCT is not always feasible. Common 
difficulties of unsuccessful RCTs include poor patient selection, inadequate randomisation, 
insufficient sample size, and poor selection of end points (Lee et al., 2020). AI models can be trained 
to better select the study participants with advanced statistical methods, and to assess study end 
points in a data-driven method. The application of AI will generate more efficient execution and 
greater statistical power than the one expected from traditional RCTs (Lee et al., 2020). 
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In addition to the efficient selection process, having a sufficiently large sample size is critical to 
enable detection of statistically significant differences between groups. Many RCTs require a 
considerable sample size because the effect of the treatment in question can be small. AI has the 
potential to select the right patients for RCTs. Furthermore, AI may enable more sensitive 
quantification of key study end points compared to the way they are usually measured. AI will also 
improve and complement RCTs significantly in the future. However, enhanced collaboration and 
synergy among clinicians, researchers, and industries is required for AI algorithms to be used to their 
full potential in RCTs (Lee et al., 2020). 

2.3.4. Personalised medicine 
Personalised medicine strongly relies on a scientific understanding of how an individual patient's 
unique characteristics, such as molecular and genetic profiles, make this patient vulnerable to a 
disease and sensitive to a therapeutic treatment (Strianese et al., 2020). Hundreds of genes have 
been identified for their contributions to human illness, and genetic variability in patients has also 
been used to distinguish individual responses to treatments (Zhu et al., 2020; Strianese et al., 2020).  

The original concept of personalised medicine has been expanded to include other properties and 
individual clinical characteristics to ultimately form a new concept called 'extended personalised 
medicine'. The latter is developed from additional sources of information such as clinical sources, 
demographic data, social data, lifestyle parameters (sleep hours, physical activity, nutritional habits, 
etc), environmental conditions, etc. (Gómez-González, 2020). 

AI tools may enhance the progress made in personalised medicine by evaluating the clinical benefit 
of different research methods and multiple data types (Mamoshina et al., 2018). Drug-target 
predictions (Sydow et al., 2019), metabolic network modelling, and population genetics pattern 
identifications (Schrider et al., 2018) constitute some of the recent advancements in this field that 
rely on computational modelling (Lorkowski et al., 2021). To truly impact routine care, however, the 
data needs to represent the diversity of patient populations (OECD, 2020). Therefore, the shift 
toward a data-driven personalised medicine system will have far-reaching implications for patients, 
clinicians, and the pharmaceutical industry (Boniolo et al., 2021). 

2.4. AI for public and global health 

2.4.1. Public health 
Public health has many definitions, but one that is frequently used is that it is 'the science and art of 
preventing disease, prolonging life and promoting health through the organised efforts and 
informed choices of society, organisations, public and private, communities and individuals' 
(Wanless, 2004). Experiments with relevant AI solutions are currently under way within a number of 
public health areas. A selected number of these areas are discussed below. 

AI can help identify specific demographics or geographical locations where the prevalence of 
disease or high-risk behaviours exist (Maharana & Nsoesie, 2018; Shin et al., 2018). The range of AI 
solutions that can improve disease surveillance is also considerable. Digital epidemiological 
surveillance refers to the integration of case- and event-based surveillance (e.g., news and online 
media, sensors, digital traces, mobile devices, social media, microbiological labs, and clinical 
reporting) to analyse approaches for threat verification. This has been implemented to build early 
warning systems for adverse drug events and air pollution (Mooney & Pejaver, 2018). 

AI has already made inroads into environmental and occupational health through data generated 
by sensors and robots. AI has the potential to intensify contact with patients, as well as to target 
services to patients. An essential component of these initiatives involves contacting large numbers 
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of patients via a variety of automated, readily scalable methods, such as text messaging and patient 
portals (Fihn et al., 2019).  

2.4.2. Global health 
AI may provide opportunities to address health challenges in low-and middle-income countries 
(LMICs). These challenges include acute health workforce shortages and weak public health 
surveillance systems. Although not unique to such countries, these challenges are particularly 
relevant in low- and middle-income settings, given their contribution to morbidity and mortality 
(Schwalbe & Wahl, 2020). For example, in some instances, AI-driven interventions have 
supplemented clinical decision making towards reducing the workload of health workers (Guo & Li, 
2018). New developments in AI have also helped identify disease outbreaks earlier than traditional 
approaches (Lake et al., 2019).  

AI studies in LMICs have also addressed public health from a broader perspective: more specifically 
in health policy and management. These studies include AI research aimed at improving the 
performance of health facilities, improving resource allocation from a systems perspective, and 
reducing traffic-related injuries in addition to other health system issues (Schwalbe & Wahl, 2020). 

Although AI can help in addressing several existing and emerging health challenges in LMICs, many 
issues warrant further exploration. These issues relate to the development of specific AI-driven 
health interventions and their real efficacy and effectiveness. Additionally, ethical regulatory 
standards should be implemented in order to help protect the interests and needs of the local 
communities and attempt to increase community-based research and engagement (Collins et al., 
2019). Finally, the successful deployment of many AI tools in LMICs will require investment to 
strengthen the underlying healthcare systems (Schwalbe & Wahl, 2020). 

2.5. AI in healthcare administration 
Healthcare systems are characterised by a heavy administrative workflow with a wide range of 
actors and institutions, comprising patients (e.g. management of billing), health professionals, 
healthcare facilities and organisations (e.g. patient flow), imaging facilities, laboratories (e.g. supply 
chain of consumables), pharmacies, payers, and regulators. A report carried out in a primary care 
setting identified several potential areas of concern within this heavy administrative setting. These 
include time spent on reclaiming financial reimbursement, entering data into various unintegrated 
practice-based information systems, processing information from hospitals and other external 
providers and helping patients navigate a fragmented health system. The study concluded that over 
50% of practice time was spent on bureaucracy, the majority of which was potentially avoidable 
(Clay & Stern, 2015). 

AI can perform these routine tasks in a more efficient, accurate and unbiased fashion. One argument 
in favour of using AI in administrative practices is that errors in these activities are less serious than 
errors in the clinical setting. However, the danger of hacking, lack of privacy and security remains 
(Roski et al., 2019; OECD, 2020). AI applications can be critical in the organisation of patient flow. For 
example, lack of bed availability is an important cause of surgical cancellations (Kaddoum et al., 
2016); however, it is a preventable administrative error in patient flow. This problem occurs 
frequently and is also associated with delays in discharge in clinical ward (Stylianou et al., 2017). 

2.5.1. Coding 
Coding is the process of extracting information from clinical records and codifying it using 
classifications such as the International Classification of Diseases (ICD) or diagnosis-related groups 
(DRGs). Coding is a complex, labour-intensive process, and coding accuracy is very important for 
reimbursement, administration and research. While computer-assisted coding has existed for more 
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than a decade, AI can enhance the accuracy and transparency of this administrative practice (OECD, 
2020). 

2.5.2. Scheduling 
Scheduling is another example in which AI can add value to the administrative process. Algorithms 
fed on historical data can predict which patients may not attend their appointments, allowing 
practitioners to take proactive action to manage the situation. Beyond blanket or even targeted 
reminders, AI can address a patient's needs and queries (OECD, 2020). 

2.5.3. Detection of fraudulent activity 
Algorithms can also learn to look for fraudulent activity in healthcare, i.e. using a code for a more 
expensive medical service than the one performed (OECD, 2020). 

2.5.4. Patient flow management 
The fluent management and transfer of patients through the different stages of care with minimal 
delays is what defines patient flow (NHS, 2017). Notably, the quality of the services provided by the 
healthcare systems as well as patient satisfaction should be maintained throughout. Poor patient 
flow has been shown to negatively affect patients, staff, and the overall quality of care (Tlapa et al., 
2020). Technological solutions such as AI are increasingly applied to purposes associated with 
patient flow (Dawoodbhoy et al., 2021). For example, the fluctuating volume of patient arrivals is a 
crucial but uncertain variable in hospital emergency departments.  

Knowing the patient arrival volume in advance enables the smooth operational planning of 
emergency departments and improves related decision making (Menke et al., 2014; Ram et al., 
2015). By implementing better resource planning and allocation based on predictive outcomes, the 
probability of overcrowding can be reduced to ultimately improve healthcare quality (Jiang et al., 
2018). 

2.5.5. Healthcare audits 
Healthcare auditing is the process of reviewing patients' records in order to identify 
recommendations for improvement (NHS England, 2021). This process provides both quantitative 
information on the current state of affairs as well as recommendations on how to improve clinical 
outcomes. Audits can be carried out routinely or in the instance of a significant shortcoming in the 
delivery of a service, such as an increase in infection rates (Nagar et al., 2015) or patient flow concerns 
(Kamat & Parker, 2015).  
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3. Risk of AI in healthcare 
In an article published more than 50 years ago, William B. Schwartz stated that 'computing science 
will probably exert its major effects by augmenting and, in some cases, largely replacing the 
intellectual functions of the physician' (Schwartz, 1970). Despite promising examples of healthcare 
AI solutions, Schwartz's prediction has not yet been fully realised. Initial results of AI health 
applications are not as robust as predicted and it is difficult to assess their real impact (Roski et al., 
2019; Fihn et al., 2019).  

Some players claim that the potential of AI medicine as a whole has been largely overestimated, 
with virtually no data demonstrating an actual improvement in patient outcomes (Angus, 2020; 
Parikh, 2019; Emanuel, 2019). Other experts have raised concerns over the last years regarding 
potential adverse consequences of medical AI, including clinical, technical and socio-ethical risks 
(Challen et al., 2019; Gerke & Cohen, 2020; Ellahham et al., 2020; Morley & Floridi, 2020; Manne & 
Kantheti, 2021). 

In this chapter, we will describe the main risks that have been identified in the literature as likely to 
arise from the introduction of AI in future healthcare. We will focus on seven categories of risks and 
challenges: 

1. Patient harm due to AI errors 

2. Misuse of medical AI tools 

3. Risk of bias in medical AI and perpetuation of inequities 

4. Lack of transparency 

5. Privacy and security issues 

6. Gaps in AI accountability 

7. Obstacles to implementation in real-world healthcare 

Not only could these risks result in harms for the patients and citizens, but they could also reduce 
the level of trust in AI algorithms on the part of clinicians and society at large. Hence, risk assessment, 
classification and management must be an integral part of the AI development, evaluation and 
deployment processes. 

3.1. Patient harm due to AI errors 
Despite continuous advances in data availability and machine learning, AI-guided clinical solutions 
in healthcare may be associated with failures that could potentially result in safety concerns for the 
end-users of healthcare services (Challen et al., 2019; Ellahham et al., 2020). These AI algorithm errors 
can lead, for example, to (1) false negatives in the form of missed diagnoses of life-threatening 
diseases, (2) unnecessary treatments due to false positives (healthy persons incorrectly classified as 
diseased by the AI algorithm), (3) unsuitable interventions due to imprecise diagnosis, or incorrect 
prioritisation of interventions in emergency departments (Figure 3). 
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Figure 3 – Summary of causes and consequences of errors and failures of medical AI 
algorithms, together with some recommendations for potential mitigation 
 

 

Assuming that AI developers have access to large-scale datasets with sufficient quality for training 
their AI technologies, there are still at least three major sources of error for AI in clinical practice. 
Firstly, AI predictions can be significantly impacted by noise in the input data during the usage of 
the AI tool. For example, ultrasound scanning – the most commonly used imaging modality in 
clinical practice due to its low-cost and portability – is known to be prone to scanning errors (Farina 
et al, 2012). This depends particularly on the experience of the operator, the cooperation of the 
patient, and the clinical context (e.g. emergency ultrasound) (Pinto et al., 2013). Even in high-income 
countries where there is a high level of medical training, such errors are expected to occur in some 
scans, thus affecting subsequent AI predictions.  

Secondly, AI misclassifications may appear due to dataset shift (Subbaswamy et al., 2020), a common 
problem in machine learning that occurs when the statistical distribution of the data used in clinical 
practice is shifted, even slightly, from the original distribution of the dataset used to train the AI 
algorithm. This shift could be due to differences in the population groups, acquisition protocols 
between hospitals, or the usage of machines from different manufacturers. A recent study 
(Campello et al., 2020) has shown that AI models trained on cardiac magnetic resonance image (MRI) 
scans from two scanners (e.g. Siemens and Philips) lose accuracy when applied to MRI data acquired 
from different machines (e.g. General Electric and Canon).  

Another example of dataset shift can be seen in a multi-centre study in the United States that built 
a highly accurate pneumonia diagnosis AI system based on data from two hospitals (Zech et al., 
2018). When tested with data from a third hospital, a significant decrease in accuracy was noticed, 
suggesting potential hospital-specific biases. In another example, the company DeepMind 
developed a deep learning model trained on a large dataset for automated diagnosis of retinal 
diseases from optical coherence tomography (OCT) (De Fauw, et al., 2018). They found that the AI 
system was confused when applied to images obtained from a machine that is different from the 
one used for data acquisition at the AI training stage, with the diagnosis error increasing from 5.5% 
to a staggering 46%. These examples illustrate the current challenges posed in building AI tools that 
maintain a high level of accuracy even if the data is heterogeneous across populations, hospitals or 
machines. 
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Lastly, the predictions can be erroneous due to the difficulty of AI algorithms to adapt to unexpected 
changes in the environment and context in which they are applied. To illustrate the problem, 
researchers at Harvard Medical School described a nice example in the domain of AI for medical 
imaging (Yu & Kohane, 2019). They imagined an AI system that was trained to detect shadows or 
dense features on a chest X-ray images that are associated with lesions in major diseases such as 
lung cancer. Then, they listed a number of simple scenarios in which the AI may lead to incorrect 
predictions, such as if the X-ray technician leaves the adhesive ECG connectors on their patient's 
chest or if the patient wears a wedding ring and places their hand on their chest during the scan. In 
these scenarios, it is possible that the AI model could mistake these circular artefacts as one of the 
known chest lesions, resulting in a false positive. 

There are at least three avenues to minimise the risk of AI errors and safety issues for patients 
(Figure 3). First of all, standardised methods and procedures need to be defined for extensive 
evaluation and regulatory approval of AI solutions, in particular regarding their generalisability to 
new populations and sensitivity to noise. Second, the AI algorithms should be designed and 
implemented as assistive tools (as opposed to fully autonomous tools), such that clinicians remain 
part of the data processing workflow to detect and report potential errors and contextual changes, 
and hence to minimise harm to patients.  

Furthermore, future AI solutions in healthcare must be dynamic, i.e., they should be embedded with 
mechanisms to continue to learn from new scenarios and mistakes as they are detected in practice. 
However, this last aspect will still require a certain degree of human control and vigilance to identify 
problems as they appear; this in turn may increase costs and reduce the initial benefits of AI. 
Infrastructural and technical developments will also be needed to enable regular AI updates (based 
on past and new training), and it will be necessary to implement policies that ensure such 
mechanisms are integrated into healthcare settings. 

3.2. Misuse of medical AI tools 
As with most health technologies, there is a risk for human error and human misuse with medical 
AI. Even when the developed AI algorithms are accurate and robust, they are dependent on the way 
they are used in practice by the end-users, including clinicians, healthcare professionals, and 
patients. Incorrect usage of AI tools can result in incorrect medical assessment and decision making 
and subsequently in potential harm for the patient. Hence, it is not enough for clinicians and the 
general public to have access to medical AI tools, but it is also necessary for them to understand 
how and when to use these technologies.  
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Figure 4 – Main factors that can lead to incorrect use of medical AI algorithms by clinicians 
and citizens and potential mitigation measures to improve usability of future algorithms 

 

 

There are multiple factors that make existing medical AI technologies prone to human error or 
incorrect use (Figure 4). First, they have often been designed and developed by computer/data 
scientists with limited involvement from end-users and clinical experts. As a result, it is the user (i.e., 
the clinician, the nurse, the data manager or the patient) that is required to learn to use and to adapt 
to the new AI technology, which can lead to unnatural and complex interactions and experiences. 
In turn, the clinical user may encounter difficulties in understanding and applying the AI algorithm 
in day-to-day practice, which will limit the perception of informed decision making, while increasing 
the chances of human error.  

This problem is exacerbated by the fact that existing training programmes in medicine are not yet 
tailored for medical AI and generally do not equip new clinicians with knowledge and skills in the 
area of AI. A survey performed in Australia and New Zealand in 2021 with 632 medical trainees (in 
the areas of ophthalmology, dermatology, and oncology) showed that 71% of the respondents 
believed AI would improve their field of medicine, especially for improved disease screening and 
streamlining of monotonous tasks (Scheetz et al., 2021).  

However, most respondents indicated that they had never used AI applications in their work as a 
clinician (>80%) and only 5% viewed themselves as having excellent knowledge of the field. Another 
study performed in the United Kingdom surveyed 484 students from 19 medical schools and found 
that none of the students received any AI teaching as part of their compulsory curriculum (Sit et al., 
2020). Similar conclusions were reached on knowledge and utilisation of technology-based 
interventions among health professionals in the European Union in other healthcare domains 
(Quaglio et al., 2019). 

These reflections on AI education and literacy also apply to citizens and patients, who will become 
active users of future medical AI solutions. A 2021 study performed in five countries (Australia, the 
United States, Canada, Germany, and the United Kingdom) with over 6,000 citizens showed that the 
public generally has low awareness and understanding of AI and its use in everyday life (Gillespie et 
al., 2021). While younger people, men, and the university-educated tend to be more aware and 
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understand AI better, even these groups report low to moderate AI understanding (Gillespie et al., 
2021). 

Another cause for potential misuse of medical AI, which could lead to harm for citizens and patients, 
is the proliferation of easily accessible medical AI applications. For example, commercial mobile 
apps have been developed by several companies for skin cancer detection with the purpose of 
enabling individuals to take and upload a picture of their skin through the app, which is then directly 
analysed and assessed by the app's AI algorithm. Some examples of such apps include Skinvision, 
MelApp, skinScan and SpotMole.  

While these tools are easily accessible to the general public, there is often limited information on 
how the AI algorithms in question have been developed and validated, while their reliability and 
clinical efficacy is not always demonstrated. For example, a recent study which evaluated six mobile 
apps for skin cancer detection demonstrated their lack of efficiency and high risk for bias (Freeman 
et al., 2020). The authors concluded: 'Current algorithm-based smartphone apps cannot be relied on 
to detect all cases of melanoma or other skin cancers. The current regulatory process for awarding 
the CE marking for algorithm-based apps does not provide adequate protection to the public' 
(Freeman et al., 2020).  

A quick search shows that many AI-powered online/mobile tools have also emerged in a wide range 
of medical domains and are commercially offered for medical diagnostics and health monitoring, 
such as Diagnostics.ai, DDXRX Doctor Ai, Symptomate, and Achu Health. While such services can 
constitute a promising solution for remote diagnosis and disease follow-up, their wide proliferation 
online can become a public health concern, in the same way that easily accessible online pharmacies 
have contributed to an abuse of medication by citizens (Bandivadekar , 2020). 

Since there is a lot of financial gain to be made from the development and commercialisation of AI-
powered web/mobile health applications, this sector will continue to attract a lot of new players and 
companies with varying standards of ethics, excellence and quality. The companies offering these 
web or mobile based AI medical tools acknowledge on their websites that their AI products are not 
certified medical devices and the terms of service often contain disclaimers. One can easily find 
disclaimers such as 'this site is designed to offer you general health information for educational 
purposes only' or 'the health information furnished on this site and the interactive responses are not 
intended to be professional advice and are not intended to replace personal consultation with a 
qualified physician, pharmacist or other healthcare professional'. However, most users may not 
necessarily come across, read and comprehend these disclaimers, and hence may rely on potentially 
incorrect information and diagnoses provided by the AI tools, which may negatively impact their 
decision making regarding their health.  

There are several avenues to reduce human error or incorrect use of future medical AI solutions 
(Figure 4). First of all, end-users such as healthcare professionals, specialists, technicians or patients 
should be closely involved in the design and development of AI solutions to ensure their points of 
view, preferences and contexts are well integrated into the final tools that will be deployed and 
used. Furthermore, education and literacy programmes on AI and medical AI should be developed 
and generalised across education circles and society to increase the knowledge and skills of future 
AI end-users and hence reduce human error. Finally, it is important that public agencies help 
regulate the sector of web/mobile medical AI, such that the citizens are well informed and protected 
against the misuse and abuse of these emerging, easily accessible AI technologies. 
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3.3. Risk of bias in medical AI and perpetuation of inequities 
Figure 5 – Most common biases and their causes in medical AI, and potential mitigation 
measures to develop AI algorithms with increased fairness and equity 

 

Despite continuous advances in medical research and healthcare delivery, there remain important 
inequalities and inequities in medical care within most countries around the world. The main factors 
that contribute to these inequalities and inequities include sex/gender, age, ethnicity, income, 
education and geography. While some of these inequities are systemic, such as due to 
socioeconomic differences and discrimination, human biases also play an important role. For 
example, in the United States, existing research has demonstrated that doctors do not take Black 
patients' complaints of pain as seriously nor do they respond to them as quickly as they do for their 
White counterparts (Hoffman et al., 2016). Persistent in most countries around the world, to varying 
degrees, is yet another example of common bias embedded in healthcare systems: gender-based 
discrimination. Once again, in the domain of pain management, studies have pointed to the 
increased psychologisation or invisibilisation of female patients when reporting pain (Samulowitz 

et al., 2018).  

Hence, in the recent years, there have been concerns that, if not properly implemented, evaluated 
and regulated, future AI solutions could embed and even amplify the systemic disparities and 
human biases that contribute to healthcare inequities. A few examples of algorithmic biases have 
already made the headlines in recent years, some of which are detailed below. 

A study published in Science in 2019 showed that an algorithm used in the United States to help in 
the referral process of patients who need extra or specialist care was shown to discriminate against 
Black patients (Obermeyer et al., 2019). The authors of the study explained that with the algorithm, 
'at a given risk score, Black patients are considerably sicker than White patients, as evidenced by 
signs of uncontrolled illnesses. Remedying this disparity would increase the percentage of Black 
patients receiving additional help from 17.7 to 46.5%'. A Canadian study in 2020 evaluated the 
degree of fairness of state-of-the-art deep learning algorithms used to detect abnormalities such as 
fractures, lung lesions, nodules, pneumonia, etc. in chest X-ray images (Seyyed-Kalantari et al., 2020). 
The study showed that the highest rate of underdiagnosis was in young females (age: 0-20), in Black 
patients, and in patients on public health insurance for low-income people and households. 
Furthermore, patients with intersectional identities (for example, a Hispanic female patient on low-
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income health insurance) suffered the highest rates of underdiagnosis. The authors concluded that 
'models trained on large datasets do not provide equality of opportunity naturally, leading instead 
to potential disparities in care if deployed without modification' (Seyyed-Kalantari et al., 2020).  

It is widely argued that the most common cause for unfairness in medical AI is the bias in the data 
used to train the machine learning models. As Marzyeh Ghassemi from the University of Toronto 
stated in a recent presentation on AI in healthcare (Ghassemi, 2021): 'Bias is already part of the 
clinical landscape. So, it is not as if machine learning is out to get us. It is that when we are training 
on data that humans make, that humans label, that humans annotate, we might pick up on some of 
the biases that humans have injected into that data'.  

As an example, in 2002 the National Lung Screening Trial, which compiled datasets from 
53,000 smokers to investigate methods for early diagnosis of lung cancer, was found to include only 
4% of Black participants in the data (Ferryman & Pitcan, 2018). Machine learning algorithms for skin 
cancer detection have been all-too-often trained on highly biased datasets – such as the 
International Skin Imaging Collaboration, one of the most widely used open-access database of skin 
lesions – which contain images from mostly fair-skinned patients in the United States, Europe, and 
Australia (Adamson & Smith, 2018). Diagnostic models only trained on fair-skin groups could prove 
to be detrimental to the diagnostic process of melanoma lesions present on dark-skinned 
individuals. Similarly, the way COVID-19 appears to affect patients differently according to their sex 
group means an AI algorithm trained on existing clinical data is likely to suffer from reduced fairness 
when predicting severity and mortality in men and women (Jin et al., 2020).  

Another type of bias that appears in datasets is of a geographic nature. In 2020, researchers from 
the fields of radiology and biomedical research at Stanford University conducted a review of articles 
published over a five-year period that had been used in training deep learning algorithms related 
to patient care (Kaushal et al., 2020). They found that 71% of the United States studies in which 
geographic location was identified used data only from California, Massachusetts, and New York. In 
addition, they found the studies did not include any data from 34 of the 50 states in the U.S. 
Geographic bias can be an important issue in Europe too, as data availability and access to digital 
equipment are unevenly distributed, particularly in the Eastern European regions (EGA Consortium, 
2021).  

Another potential source of lack of fairness in medical AI is bias in the data labelling during clinical 
assessment. For example, existing research has shown that due to gender stereotypes, women are 
over-diagnosed for some diseases such as depression and under-diagnosed for other diseases such 
as cancer (Dusenberry, 2018). Furthermore, a large-scale Danish study, which analysed data on 
hospital admissions for approximately 7 million citizens and 19 disease groups, found that for the 
vast majority of the diseases, women are diagnosed later than men (Westergaard et al., 2019). 
Importantly, for many of these medical conditions such as injury, poisoning, congenital 
malformations and infectious diseases, these discrepancies cannot be explained by anatomical or 
genetic differences. If the data labels in the health registries are affected by such healthcare 
disparities, such as in environments where given groups have been systematically misdiagnosed 
due to stigma or stereotypes, then the AI models will likely learn to perpetuate this disparity 
(Rajkomar et al., 2018). 

In recent years, awareness of algorithmic bias has increased and researchers, particularly in North 
America, have started to investigate mitigation measures to address the risk of unfairness in medical 
AI. First, it is evident that AI developers, in collaboration with clinical experts and healthcare 
professionals, must pay close and continuous attention to the selection and labelling of the data 
and variables to be used during model training. These should be representative and balanced with 
respect to key attributes such as sex/gender, age, socioeconomics, ethnicity, as well as geographic 
location. Furthermore, it is recommended to involve not only data scientists and biomedical 
researchers in the development teams, but also social scientists, biomedical ethicists, public health 
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experts, as well as patients and citizens. The latter group must be as diverse as possible to ensure 
that adequate diversity of backgrounds, experiences and needs are taken into consideration during 
the AI production lifecycle and that the tools created are truly representative and founded on 
community-based research. 

3.4. Lack of transparency 
Despite continuous advances in medical AI, existing algorithms continue to be viewed by 
individuals and experts alike as complex and obscure technologies, which are difficult to fully 
comprehend, trust and adopt.  

A recent AI algorithm developed by Google for breast cancer screening received considerable 
attention for its promising performance (McKinney , 2020): It was shown to improve the speed and 
robustness of breast cancer screening, to generalise well to populations in multiple countries 
beyond those used for training, and it even outperformed radiologists in specific situations. 
However, this work also received some criticism in the media and in the AI community as it was 
presented with almost no details on how the algorithm was built and on key technical descriptions. 
Some critics questioned the usefulness and safety of such an AI tool (Wiggers, 2020; iNews, 2020), 
while a group of scientists used this algorithm as their central example when they published a call 
in Nature for more transparency in medical AI (Haibe-Kains et al., 2020). 

Lack of transparency is widely regarded as an important issue in the development and use of current 
AI tools in healthcare (Figure 6). It is expected to result in a great lack of trustworthiness in AI 
especially in sensitive areas such as medicine and healthcare that are focused on the wellbeing and 
health of citizens. At the same time, a lack of trustworthiness will evidently impact the level of 
adoption of emerging AI algorithms by patients, clinicians, and healthcare systems.  

AI transparency is closely linked to the concepts of traceability and explainability, which correspond 
to two distinct levels at which transparency is required, i.e. (1) transparency of the AI development 
and usage processes (traceability), and (2) transparency of the AI decisions (explainability). 

Figure 6 – Main risks resulting from the current lack of transparency associated with AI 
algorithms followed by possible mitigation measures 
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Traceability is considered a key requirement for trustworthy AI, and refers to transparently 
documenting the whole AI development process, including tracking how the AI model functions in 
real-world practice after deployment (Mora-Cantallops et al., 2021). More specifically, traceability 
requires maintaining a complete account of (i) model details (intended use, type of algorithm or 
neural network, hyper-parameters, as well as pre- and post-processing steps), (ii) training and 
validation data (gathering process, data composition, acquisition protocols and data labelling) and 
(iii) AI tool monitoring (performance metrics, failures, periodic evaluations) (EU Regulation, 2017; 
FDA, 2019).  

In practice, existing AI tools in healthcare are rarely delivered with full traceability. In fact, companies 
often prefer not to disclose too much information about their algorithms, which are thus delivered 
as opaque tools that are difficult to understand and examine by independent parties. This, in turn, 
reduces the level of trust and adoption into real-world practice. 

While traceability addresses the transparency of the AI algorithm's lifecycle, AI explainability is 
important for providing transparency for each AI prediction and decision. Article 22 of the European 
Union's General Data Protection Regulation (GDPR) details the 'right to explanation' which requires 
an explanation to be offered regarding the automated decision-making process (Selbst & Powles, 
2017). 

However, AI solutions, and specifically deep neural networks lack transparency, and are often 
described as 'black box AI', referring to the fact that these models learn complex functions that 
humans struggle to understand (Yang et al., 2021) and whose functions and decision-making 
processes are not visible or understandable. A lack of transparency makes it difficult for clinicians 
and other stakeholders to incorporate AI solutions into their real-world practice because in order to 
work with specific AI solutions, clinicians need to be able to understand the fundamental principles 
behind each decision and/or prediction, even when the algorithm itself has the potential to enhance 
the clinician's productivity (Lipton, 2017). Furthermore, the lack of explainability means that it is 
difficult to identify the source of AI errors and define responsibilities when it goes wrong. 

There are numerous avenues available to improve the transparency of AI technologies in healthcare. 
First of all, there is a need for an 'AI passport' that could be a requirement for each AI algorithm for 
documenting all the model's key information. There is also a need to develop traceability tools for 
monitoring the usage of AI algorithms once they are deployed, such as to record potential errors 
and performance degradation, as well as to perform periodic audits. To improve the explainability 
of AI algorithms, it is important that AI developers involve clinical end-users from the start of the 
development process in order to select the best explainability approach for each application and to 
ensure that the chosen explanations are useful and well accepted in clinical practice. Finally, 
regulatory entities can play an important role by considering the traceability and explainability of 
the AI tools as pre-requisites for certification.  

3.5. Privacy and security issues 
The increasingly widespread development of AI solutions and technology in healthcare, recently 
highlighted by the COVID-19 pandemic, has shown potential risks for a lack of data privacy, 
confidentiality and protection for patients and citizens. This could lead to serious consequences 
(Figure 7), such as the exposure and use of sensitive data which goes against the rights of the citizens 
or the repurposing of patient data for non-medical gains. 
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Figure 7 – Main privacy and security risks associated with big data and AI, and some 
mitigation measures 

 

These issues are firstly linked to informed consent, i.e., the provision of adequate information for the 
patients for an informed decision such as for sharing personal health data. Informed consent is a 
crucial and integral part to the patient's experience in healthcare, which was formalised in the 
Helsinki Declaration and has since grown as the introduction of digital technology has permeated 
our daily lives (Pickering, 2021). Informed consent is linked to various ethical issues, including 
protection from harm, respect for autonomy, privacy protection and property rights concerning 
data and/or tissue (Ploug & Holm, 2016).  

However, the introduction of opaque AI algorithms and complicated informed consent forms limits 
the level of autonomy and the power of shared patient-physician decision making (Vyas et al., 2020). 
It has become increasingly difficult for patients to understand the decision-making process and the 
different ways in which their data can be reused, and to know exactly how they can choose to opt 
out of sharing their data. Issues of informed consent are also especially prominent in big data 
research, especially digital platform-based health data research, in which a patient may not be fully 
aware of or fully understand the extent to which their data is shared and reused (McKeown et al., 
2021).  

An important example of this occurred in 2016, when records of 1.6 million patients in the United 
Kingdom were transferred – without patients' informed consent – from the Royal Free NHS 
Foundation Trust to the Google-owned AI company DeepMind, which at the time was working on 
developing an app to implement new ways of detecting kidney disease (BBC, 2017). In July 2017, 
the UK Information Commissioner's Office (ICO) ruled that the Royal Free NHS Trust had breached 
data protection laws; the Information Commissioner office was famously quoted as saying, 'the price 
of innovation does not need to be the erosion of fundamental privacy rights' (Gerke et al., 2020).  

The use of AI in healthcare also entails a risk of data security breaches, in which personal information 
may be made widely available, infringing on citizens' rights to privacy and putting them at risk for 
identity theft and other types of cyberattacks. In July 2020, the New York based AI company Cense 
AI suffered a data breach that exposed highly sensitive data of upwards of 2.5 million patients who 
had suffered from car accidents, including such detailed information as names, addresses, 
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diagnostic notes, dates and types of accident, insurance policy numbers and more (HIPPA Journal, 
2020). Although eventually secured, this data was briefly accessible to anyone in the world with an 
internet connection, underlining the very real danger of personal privacy breaches that patients are 
exposed to.  

Another persistent concern is that of data repurposing, which in certain contexts is also referred to 
as 'function creep' (Koops, 2021). The World Health Organization has warned against the danger of 
function creep during the COVID-19 pandemic, highlighting a case in Singapore in which the data 
from the government's COVID-19 tracing applications was also made available for criminal 
investigations (WHO, 2021). This is a stark example of health-related data being repurposed for non-
healthcare related ends, but repurposing can also occur within the healthcare sphere itself. A 2019 
report explored in detail the different ways that patient data is repurposed in the European 
pharmaceutical industry: Data from electronic health records, registry data and data from health 
systems are used for pharmaceutical drug development, clinical trial design, marketing and cost-
effectiveness analyses, and more (Hocking et al., 2019).  

In addition to the issues related to data privacy and security, AI tools are especially vulnerable to 
cyberattacks, the results of which could be anything from burdensome to fatal, depending on the 
context. In September 2020, a patient died after having to be redirected to another hospital when 
the Düsseldorf University Hospital suffered a cyberattack that interfered with the hospital's data and 
rendered the centre's computer system inoperable (Kiener, 2020). Although it was later argued that 
it could not be proven that the death was directly caused by the cyberattack, because the patient 
was already suffering a life-threatening condition, this case brought to the forefront the real physical 
harms that cyberattacks can cause in the healthcare sphere.  

In another example of how technological breaches may affect the physical health of patients, in April 
2021 the Swedish oncology software company Elekta suffered a healthcare ransomware attack that 
affected 170 health systems in the United States, delaying cancer treatment care to patients across 
the country as well as exposing sensitive patient data (Mulcahy, 2021).  

Furthermore, research has shown that personal medical devices controlled by AI are also vulnerable 
to attacks. For example, researchers discovered that AI-powered insulin pumps for diabetes patients 
could be hacked and remotely controlled from varying distances, and could even be manipulated 
to flood the patient's body with excessive insulin (Wired, 2019). While this hack has never been 
carried out in the real world, researchers' development of the AI attack exposed serious 
vulnerabilities in the AI system's functionality.  

These events garnered enough attention to bring to light the question of how algorithmic security 
– or lack thereof – can affect human survival in a high-stakes context such as healthcare. Focusing 
on AI tools as part of the larger technological sphere, it is clear that risks of attacks and hacking must 
be continually monitored. 

To address these important issues, there is a need to increase awareness and literacy on privacy and 
security risks, as well as on informed consent and cybersecurity. Furthermore, regulations and legal 
frameworks must be extended to address not only privacy but also accountability, and to protect 
citizens from data breaches and data repurposing. Decentralised, federated approaches to AI should 
be promoted to leverage the power of big data from clinical centres without the need for unsafe 
data transfers. Research must be continued and accelerated to improve security in cloud-based 
systems and to protect AI algorithms against cyberattacks. 

3.6. Gaps in AI accountability 
The term 'algorithmic accountability' has garnered increasing importance among researchers and 
organisations dedicated to addressing the legal impact of the introduction and use of AI algorithms 
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in different areas of human life. Although the term 'algorithmic accountability' might appear to refer 
to the task of seeking to hold the algorithm itself accountable, it is actually quite the opposite: It 
emphasises the fact that algorithms are created through a mixture of machine learning and human 
design, and that the mistakes or wrongdoings in algorithms come from the humans developing, 
introducing or using the machines (Kaplan et al., 2018), especially since AI systems themselves 
cannot be held morally or legally responsible (Raji, 2020).  

Accountability is particularly important for medical AI as it will contribute to its acceptability, 
trustworthiness and future adoption in society and healthcare. For example, clinicians that feel that 
they are systematically held responsible for all AI-related medical errors – even when the algorithms 
are designed by other individuals or companies – are unlikely to adopt these emerging AI solutions 
in their day-to-day practice. Similarly, citizens and patients will lose trust if it appears to them that 
none of the developers or users of the AI tools can be held accountable for the harm that may be 
caused. There is a need for new mechanisms and frameworks to ensure adequate accountability in 
medical AI and to manage reclamations, compensations and sanctions where necessary, as well as 
to guarantee non-repetition of the acts (WHO, 2021). 

Figure 8 – Current limitations in accountability and recommendations to fill in these gaps 

 

Due to the novelty of medical AI and the lack of legal precedence, there is currently a major lack of 
clarity regarding the definition of responsibilities for AI-related medical errors that could lead to 
patient harm (Figure 8). The quickly changing and growing field of medical AI poses new challenges 
for regulators, policymakers and legislators. It pushes current regulations, policies, and laws to adapt 
their traditional ways of considering responsibility and liability to the new reality of AI-assisted 
healthcare.  

Challenges in applying current law and liability principles to emerging AI applications in medicine 
include (1) the multi-actor problem in medical AI, which makes it difficult to identify responsibilities 
among the multiple players involved in the development, implementation and use of medical AI 
and algorithms (e.g. AI developers, data managers, clinicians, patients, healthcare organisers, etc.); 
(2) the difficulty in identifying the precise cause of any AI-related medical error, which can be due to 
the AI algorithm, the data used for training it, or its incorrect use and understanding in clinical 
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practice; and (3) the multiplicity of governance frameworks and the lack of unified ethical and legal 
standards in AI industries. 

While historically the relationship between the patient and the clinician has stood at the centre of 
issues concerning medical malpractice and negligence, the introduction of AI tools into healthcare 
adds a new layer with multiple actors into the patient–physician dynamic (Smith, 2020). These actors 
may include not only the patient, clinician, healthcare centre, and healthcare system, but also AI 
developers, researchers, and manufacturers, all of whom are now in some way or another entering 
into the medical decision-making process. The presence of all these new actors and the lack of clarity 
– not only on who is responsible for which part of the decision-making process, but also on how the 
AI tools themselves work – contributes to the complexity of the situation.  

While medical professionals are usually under a regulatory responsibility to be able to account for 
their actions, a requirement that forms an integral part of their professional undertaking, AI 
developers and technologists generally work under ethical codes (Whitby, 2015). Therefore, for 
medical professionals the repercussions for not being able to account for their actions and decision-
making processes could mean losing their licence to practice medicine; while under the current 
practice, a lack of accountability for a technologist could mean something much less devastating. 
Even if an AI manufacturer is found to be responsible for an error, it is often difficult to place blame 
on one specific person, since so many different developers and researchers work on any given AI 
system. In addition, the ethical codes and standards of accountability that many private entities use 
have often been criticised for being vague and difficult to translate into enforceable practice (Raji, 
2020).  

It is important to note that that the issues of AI accountability and liability in the realm of medicine 
and healthcare are closely linked to the questions of explainability and transparency. The opaquer 
an AI algorithm is, the harder it is to find who is accountable for an error involving a patient or a 
medical decision, and so the burden of responsibility will likely fall more heavily on the clinician who 
used a non-transparent medical AI tool and is unable to explain their medical decision or the error 
that occurred (Maliha et al., 2021). This is especially true for assistive AI tools, which are meant to 
assist the clinician in their decision-making process and may be considered the equivalent of 
consulting an expert clinical colleague (Harned et al., 2019). 

There are avenues to address the current lack of accountability in medical AI. First, processes should 
be established to identify the roles of AI developers and clinical users when AI-assisted medical 
decisions harm individuals. There is also a need to establish regulatory agencies dedicated to 
medical AI. These will develop and enforce regulatory frameworks to ensure specific actors of 
medical AI can be held accountable, including AI manufacturers. 

3.7. Obstacles to implementation in real-world healthcare 
A large number of medical AI algorithms have been developed and proposed over the last five years, 
in a wide range of medical applications, as summarised in section 2. However, even when medical 
AI technologies are well validated and found to be clinically robust and safe, as well as ethically 
sound and compliant, the road to healthcare implementation, integration and adoption is still laden 
with specific obstacles in the real world (Shortliffe & Sepúlveda, 2018; Fihn et al., 2019; Nagendran 
et al., 2020). 

Healthcare professionals have traditionally lagged behind other professionals with regards to the 
adoption of new technologies in their daily activity (Quaglio, 2018). Past experiences in healthcare 
show that the implementation period is a key stage in the innovation process. In practice, it is not 
enough to invent and test a new AI technology; other factors which can hinder its implementation 
in real-world healthcare should also be considered (Arora, 2020), such as (1) the limited data 
structure and quality in existing electronic health systems, (2) the alteration of the clinician-patient 
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relationship, as well as (3) the difficulties related to clinical integration and interoperability (Figure 
9). 

Figure 9 – Obstacles for clinical implementation and integration of new AI tools in real-
world healthcare practice, together with potential mitigation measures 

 

First of all, the quality of electronic health data in real-world practice is key to facilitating the 
implementation of medical AI. However, medical data is notoriously unstructured and noisy, and 
most existing datasets are not exploitable in AI algorithms. Furthermore, the formats and quality of 
clinical data vary significantly between clinical centres as well between EU member states (Lehne et 
al., 2019). Before emerging medical AI tools could be fully implemented and used at large scale, 
existing data would require significant and costly human revision, quality control, cleaning and re-
labelling. To improve data interoperability, the creation of a European Health Data Space was 
defined as one of the priorities of the European Commission 2019-2025 plan (European Health Data 
Space). This will promote better re-use of heterogeneous types of health data (electronic health 
records, genomics data, data from patient registries, etc) across EU countries, including by emerging 
AI algorithms. 

Furthermore, AI technologies are expected to modify the relationship between patients and 
healthcare professionals in ways that are not yet completely predictable. Certain specialties, 
particularly those related to image analysis, have already undergone significant transformations due 
to AI (Gómez-González, 2020 The emergence of patient-centred AI technologies has the potential 
to transform the historically paternalistic clinician-patient relationship into a join partnership in the 
decision-making process due to increased transparency and deepened doctor-patient 
conversations (Aminololama & Lopez, 2019). However, personal and ethical implications of 
communicating information about AI-derived risks of developing an illness (such as predisposition 
to cancer or dementia) will need to be elucidated (Fihn et al., 2019; Cohen, 2020). The clinical 
guidelines and care models will need to be updated to consider the AI-mediated relationships 
between healthcare workers and patients. 
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Finally, clinicians and care providers work under established clinical guidelines and technical 
standards. The introduction of an AI technology into everyday practice will have practical, technical 
and clinical implications on both clinicians and patients. Secondly, it is not clear that medical AI tools 
will be systematically interoperable across clinical sites and health systems, and that they will be 
easily integrated within existing clinical and technical workflows (Meskó & Görög, 2020), without 
significant modifications to existing clinical practices, care models and even training programmes.  

AI manufacturers, in collaboration with healthcare professionals and organisations, will need to 
establish standard operation procedures for all new AI tools to ensure their clinical interoperability 
across distinct clinical sites and their integration across heterogeneous electronic healthcare 
systems. In particular, new AI tools should be developed while ensuring their future integration and 
communication with already existing technologies, such as genetic sequencing, electronic patient 
records and e-health consultations (Arora, 2020). 
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4. Risk assessment methodology 
Previous sections of this report have described the main risks that have emerged in recent years 
concerning the use of AI in healthcare. This calls for a structured approach of risk assessment and 
management that specifically addresses the technical, clinical and ethical challenges of AI in 
healthcare and medicine. 

4.1. Regulatory frameworks for AI 
AI risks can be characterised and classified according to the severity of the harm they may induce, 
as well as to the probability and frequency of the harm induced. In healthcare, AI risks vary greatly, 
from infrequent and/or low risks that induce limited and manageable harm to the patients and 
citizens, to frequent and/or high risks that may cause irreversible damage or harm. For example, an 
AI algorithm can affect the productivity of the clinicians (e.g. the AI tool fails to accurately delineate 
the boundaries of the heart in a cardiac image volume, which must be improved manually by the 
cardiologist), but they can also cause harm to the patient's health and seriously impact the clinical 
outcomes (e.g. the AI tool fails to diagnose a life-threating condition).  

Hence, to minimise the risks of AI and to maximise its benefits in future healthcare, it is important to 
identify, analyse, understand and monitor the potential risks on a case-by-case basis for each new 
AI algorithm and application. An important step of the risk assessment procedure should be to 
devise a methodology for classifying the identified risks into a number of categories representing 
different levels and types of risk. For each level, a set of tests or regulations must be specified to 
mitigate and address the AI risks, such that the higher risk classes will require more testing and 
regulation, while lower risks will result in limited risk mitigation measures. Suitable risk classification 
of AI according to severity and likelihood will enable manufacturers, care providers and regulators 
to intervene as much as necessary to ensure the protection of the patients, as well as their rights and 
values; however, it is also important that these classifications do not –in as much as possible– serve 
to hamper innovation in healthcare AI. 

Currently, the applicable regulations for medical AI tools in the EU are the 2017/745 Medical Devices 
Regulations (MDR) and the 2017/746 In Vitro Diagnostic Medical Devices Regulation (IVDR), which 
were established in 2017. The MDR applies to software as medical devices, including AI-based 
software, while the IVDR applies to in vitro based diagnostics, including AI-based. These regulations 
included new approaches for stricter pre-market control, increased clinical investigation 
requirements, reinforced surveillance across the device's lifecycle, and improved transparency by 
creating a European database of medical devices. However, many aspects specific to AI are not 
considered, such as continuous learning of the AI models or the identification of algorithmic biases. 
In particular, the fact that AI is a highly adaptive technology that continues to learn and adjust over 
time – as more data becomes available – calls for new approaches to monitor the risks of the AI 
software. 

One of the first proposed for risk assessment in the field of AI came in 2018, when the German Data 
Ethics Commission proposed to classify risks of general decision-making algorithms according to 
their criticality, i.e., the system's potential to cause harm (German Data Ethics Commission, 2019). A 
'criticality pyramid' comprising five levels of risk/criticality was proposed (1: Zero or negligible 
potential for harm; 2: Some potential for harm; 3: Regular or significant potential for harm; 4: Serious 
potential for harm; 5: Untenable potential for harm). 

Under this proposal, an adapted testing or regulatory system is recommended depending on the 
risk level, which could include corrective and oversight mechanisms, specifications regarding the 
transparency of algorithmic systems and the explainability and comprehensibility of the results, or 
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rules on the assignment of responsibility and liability within the context of the development and 
use of algorithmic systems.  

In 2021, the European Commission (EC) published a long-awaited proposal for AI regulation and for 
harmonising the rules that govern AI technologies across Europe, in a manner that addresses safety 
as well as human rights concerns (European Commission, 2021). In a similar fashion to the 2018 
proposal of the German Data Ethics Commission, the draft EU framework provided a definition of AI 
that is risk-based, together with mandatory requirements for high-risk AI systems. Concretely, the 
document recommended to classify AI tools according to three main levels of risk: (i) unacceptable 
risk, (ii) high risk, and (iii) low or minimal risk.  

The highest category corresponds to AI tools that contradict EU values and hence should be 
prohibited. The document (Title II, Article 5) provides some examples of such AI tools, e.g. subliminal 
manipulation resulting in physical/psychological harm; exploitation of vulnerabilities resulting in 
physical/psychological harm; social scoring; real-time biometric identification in public spaces (with 
few exceptions). 

The intermediate category, and one of particular interest, corresponds to high-risk AI, which can be 
permitted only when the tools comply with specific requirements. Such high-risk AI tools (Title III, 
Chapter 1) comprise safety components of regulated products (including medical devices, but also 
other products such as toys and machinery), and certain stand-alone AI systems in areas such as 
operation of critical infrastructure, access to private services as well as employment and workers 
management. It appears that many medical AI tools, especially those that are autonomous, will be 
categorised as high-risk. The proposal provides concrete requirements and obligations for adequate 
risk management in high-risk AI, as listed in Box 1: 

Box 1 – Requirements and obligations for high-risk AI tools according to the 2021 EC proposal 

Requirements for high-risk AI: 

• Use high-quality training, validation and testing data (relevant, representative). 

• Draw up technical documentation & set up logging capabilities (traceability & auditability). 

• Ensure appropriate degree of transparency and provide users with information on 
capabilities and limitations of the system & how to use it. 

• Ensure human oversight (measures built into the system and/or to be implemented by 
users). 

• Ensure robustness, accuracy and cybersecurity. 

Obligations: 

• Establish and implement quality management system in its organisation. 

• Draw-up and keep up to date technical documentation. 

• Undergo conformity assessment and potentially reassessment of the system (in case of 
substantial modification). 

• Register AI system in EU database. 

• Affix CE marking and sign declaration of conformity. 

• Conduct post-market monitoring. 

• Collaborate with market surveillance authorities. 

• Inform the provider or distributor about any serious incident or any malfunctioning. 

• Continue to apply existing legal obligations (e.g. under GDPR). 
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The lowest category refers to AI tools with minimal risk, which have no mandatory obligations but 
the EC encourages drawing up codes of conduct, as well as voluntary application of requirements 
for high-risk AI systems or other requirements (Article 69). 

In addition to these three categories of risks (unacceptable, high and low), the document (Article 52) 
discusses an additional category of AI systems, such as those that interact with individuals or expose 
them to emotional or biometric recognition, for which there is an explicit obligation of transparency. 
In this case, the individuals must be notified that they are interacting with an AI system (Figure 10). 

Figure 10 – AI risk classification according to the 2021 EU proposal on AI legislation  

 

The draft AI regulation does not specifically address AI in healthcare, but it suggests in its current 
form that AI-driven medical devices will be classified as high-risk, because of the associated safety 
and privacy concerns. This means future medical AI tools should fulfil all the requirements already 
established by the Medical Device Regulation, but also those listed in Chapter II of the AI regulation 
(use of high quality and representative data, technical documentation and traceability, transparency 
requirement, human oversight, quality management system, conformity assessment, etc).  

However, one can argue that not all medical AI tools are systematically high risk. For example, many 
AI tools have been developed in radiology to accelerate the contouring of organs and lesions on 
medical images, before quantification and diagnosis (e.g. contouring of the boundaries of the 
cardiac ventricles or contouring the boundaries of lung tumours). Such AI-powered processing tools 
are very important and in fact already in use in clinical practice, but they do not necessarily require 
to be transparent as the clinicians can visually assess the results of the automatic contouring and 
correct any errors, so the risks are minimal. To continue to promote innovations and investments in 
medical AI, mechanisms may be needed to discriminate between low- and high-risk AI in healthcare.  

With this new regulatory framework, CE marking and regulatory approval in medical AI can take the 
following form: 

• Determine whether the AI tool is classified as high risk under the new AI regulation. 

• Ensure AI design, development and quality management systems are in compliance 
with the AI regulation. 

• Undergo conformity assessment procedure to assess and demonstrate compliance. 

• Affix the CE marking to the system and sign a declaration of conformity. 

• Implement the AI tool in practice or deploy to the market. 

It is important to note that the EC proposal for AI regulation is general for all domains of society: it 
does not take into account the specificities and risks of AI in the healthcare domain. Furthermore, 
the EC proposal retains of some of the limitations of the MDR and IVDR, such as the lack of 
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mechanisms to address the dynamic nature of AI technologies. Currently, continuous learning, 
which is key to medical AI technologies, may be considered as a substantial modification and would 
require reassessment of the AI technology. 

4.2. Risk minimisation through risk self-assessment 
For risk identification in AI, several stakeholders have suggested a self-assessment structured 
approach composed of specified checklists and questions. For example, the independent High-
Level Expert Group on Artificial Intelligence (AI HLEG), established by the European Commission, 
published an assessment checklist for trustworthy AI called ALTAI. The checklist is structured along 
seven categories: (1) human agency and oversight; (2) technical robustness and safety; (3) privacy 
and data governance; (4) transparency; (5) diversity, non-discrimination and fairness; 
(6) environmental and societal well-being; and (7) accountability (ALTAI, 2020). In Box 2, some 
examples of self-assessment questions that were proposed as means to identify potential limitations 
are provided for reliability, privacy, explainability and fairness: 

Box 2 – Examples of self-assessment questions from the ALTAI checklist (ALTAI, 2020) 

For reliability: 

• Could the AI system cause critical, adversarial, or damaging consequences (e.g. pertaining to 
human safety) in case of low reliability and/or reproducibility? 

• Did you put in place a well-defined process to monitor if the AI system is meeting the intended 
goals? 

• Did you test whether specific contexts or conditions need to be taken into account to ensure 
reproducibility? 

• Did you put in place verification and validation methods and documentation (e.g. logging) to 
evaluate and ensure different aspects of the AI system's reliability and reproducibility? 

• Did you clearly document and operationalise processes for the testing and verification of the 
reliability and reproducibility of the AI system? 

• Did you put in place a proper procedure for handling the cases where the AI system yields results 
with a low confidence score? 

• Is your AI system using (online) continual learning? 

For data privacy: 

• Did you put in place any of the following measures, some of which are mandatory under the 
General Data Protection Regulation (GDPR), or a non-European equivalent? 

− Data Protection Impact Assessment (DPIA); 

− Designate a Data Protection Officer (DPO) and include them at an early state in the 
development, procurement or use phase of the AI system; 

− Measures to achieve privacy-by-design and default (e.g. encryption, 
pseudonymisation, aggregation, anonymisation); 

− Did you implement the right to withdraw consent, the right to object and the right to 
be forgotten into the development of the AI system? 

For explainability: 

• Did you explain the decision(s) of the AI system to the users? 

• Do you continuously survey the users if they understand the decision(s) of the AI system? 

For fairness assessment: 
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• Did you consider diversity and representativeness of end-users and/or subjects in the data?  

• Did you test for specific target groups or problematic use cases?  

• Did you research and use publicly available technical tools, that are state-of the-art, to improve 
your understanding of the data, model and performance?  

• Did you assess and put in place processes to test and monitor for potential biases during the entire 
lifecycle of the AI system (e.g. biases due to possible limitations stemming from the composition 
of the used data sets (lack of diversity, non-representativeness)? 

 
The full assessment checklist and questions for all categories can be found online at the Publications 
Office of the European Union (ALTAI, 2020). It is also available as an online tool for registered users. 
It is important to note that the list was devised for AI in general and must be tailored to each specific 
application domain, including healthcare.  

To our knowledge, the first self-assessment checklist for AI in healthcare was published by a multi-
disciplinary team of researchers from Australia in 2021. Its objective was to help clinicians assess 
how ready algorithms are for use in routine care and to pinpoint the areas in which further 
development and finetuning may be necessary before deployment (Scott et al., 2021). This list was 
put together based on a few narrative reviews on AI in healthcare, which were summarised into a 
set of assessment questions organised into 10 general questions as listed in Box 3.  

Box 3 – Questions from the assessment checklist for medical AI tools, as shown in Scott et al., 2021 

• What is the purpose and context of the algorithm?  

• How good were the data used to train the algorithm?  

• Were there sufficient data to train the algorithm?  

• How well does the algorithm perform?  

• Is the algorithm transferable to new clinical settings?  

• Are the outputs of the algorithm clinically intelligible? 

• How will this algorithm fit into and complement current workflows?  

• Has use of the algorithm been shown to improve patient care and outcomes?  

• Could the algorithm cause patient harm? 

• Does use of the algorithm raise ethical, legal or social concerns? 

 
However, this self-assessment list does not contain the same level of detail as the assessment 
checklist for general AI devised by the AI HLEG. For example, point 10 in Box 3 is rather vague and 
does enable to pinpoint the exact ethical, legal or social concern (e.g. algorithmic bias). It seems that 
a combination of both approaches would lead to a detailed and standardised risk assessment 
checklist for AI in healthcare, generated through consensus and with each category of risk enriched 
with a detailed set of assessment questions.  

This has motivated the recent development of consensus guidelines for trustworthy AI in medicine 
by a network of EC-funded research projects together with international inter-disciplinary experts. 
Entitled FUTURE-AI (www.future-ai.eu), these guidelines are organised according to six principles 
(Fairness, Universality, Traceability, Usability, Robustness, Explainability) and comprise concrete 
recommendations and a self-assessment checklist to enable AI designers, developers, evaluators 
and regulators to develop trustworthy and ethical AI solutions in medicine and healthcare (Lekadir 
et al., 2022). Box 4 lists examples of risk assessment questions included in the FUTURE-AI self-
assessment checklist. 
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Box 4 – Excerpts of risk assessment items from the FUTURE-AI guidelines for trustworthy AI in medicine 
(version from 27 February 2022) 

Fairness: 

• Did you design your AI algorithm with a diverse team of stakeholders? Did you collect 
requirements from a diverse set of end-users?  

• Did you define fairness for your specific AI application? Did you ask clinicians about hidden 
sources of data imbalance? 

• Did you thoroughly evaluate the fairness of your AI algorithm? Did you use a suitable 
dataset and dedicated metrics? 

Universality: 

• Did you annotate your dataset in an objective, reproducible and standardised way? 

• Did you use universal, transparent, comparable, and reproducible criteria and metrics for 
your model's performance assessment?   

• Did you evaluate your model on at least one open-access benchmark dataset that is 
representative of your model's task and expected real-world data exposure after 
deployment?  

Traceability: 

• Did you prepare a complete documentation of the datasets you used? Did you include the 
relevant metadata?  

• Did you keep track, in a structured manner, of the whole pre-processing pipeline of input 
data? Did you specify input/output, nature, prerequisites and requirements of your pre-
processing and data preparation methods?  

• Did you record the details of the training process? Did you include a careful description of 
input predictors? 

Usability: 

• Did you engage users in the design and development of the AI tool? 

• Did you evaluate the usability of your tool after integration in the clinical workflows of the 
clinical sites? 

Robustness: 

• Did you train and evaluate your tools with heterogeneous datasets from multiple clinical 
centres and data protocols? 

• Did you evaluate the AI tool under diverse real-world scenarios? 

• Did you use any quality control mechanisms to identify potential deviations or artifacts in 
the input data? 

Explainability: 

• Did you consult with the clinicians to determine which explainability methods suit them? 

• Did you use some quantitative evaluation tests to determine if the explanations are robust 
and trustworthy? Did you perform some qualitative evaluation tests with clinicians? 

 
The need to further tailor AI risk assessment to specific medical domains have also been stated. For 
example, in the field radiology, various prominent European and North American radiological 
associations (American College of Radiology, European Society of Radiology, Radiological Society of 
North America, Society for Imaging Informatics in Medicine, European Society of Medical Imaging 
Informatics, Canadian Association of Radiologists, and the American Association of Physicists in 
Medicine) came together to release a statement on the ethical challenges of using AI in radiology. 
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They stated that 'the radiology community should start now to develop codes of ethics and practice 
for AI which promote any use that helps patients and the common good' (Geis et al, 2019).  

The assessment checklists presented in this section have used different categories of risks, as well as 
different assessment questions. Standardising, adjusting and validating these approaches through 
consensus by professional societies and independent groups on a domain-by-domain basis (e.g. 
radiology vs. surgery) would result in more robust processes for risk identification and management. 
Furthermore, as more and more healthcare AI algorithms will undergo self-assessment for ethical, 
legal and technical risks, these checklists should be regularly refined and updated versions will be 
released for the community taking into account continuous developments in AI methods, processes 
and regulations. 

4.3. Risk identification through comprehensive, multi-faceted 
clinical evaluation of AI solutions 

To identify, anticipate and manage risks in medical AI, adequate procedures for evaluating the AI 
models are of central importance. Thus far, AI evaluation has been achieved mostly by examining 
model accuracy and robustness in laboratory settings. Other aspects of AI, such as clinical safety and 
effectiveness, fairness and non-discrimination, transparency and traceability, as well as privacy and 
security, are more challenging to evaluate in controlled environments and have received less 
attention in the scientific literature.  

Given the existing gaps, the US Food and Drug Administration (FDA) proposed action plan in 2021 
to better regulate and advance the agency's oversight of medical AI software, which promoted 
'regulatory science efforts to develop methodology for the evaluation and improvement of machine 
learning algorithms' (FDA, 2021). In parallel, several research teams have also investigated and 
proposed new approaches for improved and comprehensive evaluation of medical AI algorithms, 
especially in North America (Larson et al., 2021; Park et al., 2020), Europe, and Asia (Park & Han, 2018), 
as well as by international societies such as the International Association of Medical Informatics 
(Magrabi et al., 2019). In this section, we will summarise their findings into a set of five main 
recommendations to enable a multi-faceted and comprehensive evaluation of future AI software in 
healthcare, as outlined in Figure 11. 

Figure 11 – Recommendations for improved evaluation of algorithm performance and risks 
in medical AI 
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4.3.1. Standardised definition of clinical tasks 
To enable objective and comparative evaluation of medical AI solutions, researchers at Stanford 
University have recently proposed to standardise the definition of the clinical tasks that the AI 
algorithms are addressing (Larson et al., 2021). In practice, there are many ways to define a clinical 
task, such as medical diagnostics. As an illustration, the diagnosis and reporting of COVID-19 severity 
based on chest imaging scans has been proposed using different schemes (Larson et al., 2021), 
including: 

• Two categories: Radiologist's labelling of presence or absence of the disease. 

• Four categories proposed by the Radiological Society of North America (RSNA) (Simpson et 
al., 2020): (1) typical, (2) indeterminate, (3) atypical appearance, and (4) negative for 
pneumonia. 

• Six categories based on the CO-RADS scale (Prokop et al., 2020): (1) negative, (2) low, 
(3) indeterminate, (4) high, (5) very high, (6) PCR +. 

• Various scoring systems of lesion severity in the lungs, such as (i) a 0 to 4 severity rating for 
each of six lung zones, for a total score of 0 to 24, (ii) a 0 to 5 severity rating for each of five 
lung lobes, for a total score of 0 to 25, (iii) a 0 to 7 severity rating for each of five lung lobes, 
for a total score of 35.  

Any of these diagnostic systems could be incorporated into an AI-based algorithm, which makes 
objective assessment of the algorithm's performance and associated risks more difficult. This also 
limits the ability to directly compare AI-based algorithms that are originally developed for the same 
clinical task, given the existence of multiple definitions. To date, clinical task definitions have 
typically been developed with relatively little oversight and coordination. As these clinical tasks will 
be increasingly performed based on AI algorithms developed by non-clinical developers, it is 
important that the definitions, which form part of the AI software specifications, should be 
developed according to accepted consensus-based standard-setting principles and maintained by 
nonconflicted entities committed to updating the definitions based on new evidence and input 
from relevant stakeholders. Medical societies, such as the European Society of Cardiology, the 
European Society of Radiology, or the European Society for Medical Oncology, could play an 
important role in standardising the definition of the clinical tasks for medical AI in their respective 
fields. With this approach, the responsibility of the developers will be limited to optimising the 
performance of the AI algorithms based on widely accepted and utilised reference diagnostic task 
definitions, which would help ensure widespread acceptance of AI solutions by relevant 
stakeholders.  

4.3.2. Multi-faceted evaluation of performance beyond accuracy 
Given the multiple risks and ethical considerations of medical AI, it is now widely accepted that the 
evaluation of the algorithms must be extended well beyond existing approaches that have mostly 
focused on model accuracy. While the empirical evaluation of machine learning algorithms remains 
a matter of on-going debate among researchers, there is a need for the development of specific 
performance domains for AI in healthcare. Table 2 shows some examples of performance elements 
recently proposed for AI-based diagnostic algorithms in radiology (Larson et al., 2021). These include 
classification accuracy, but also reliability, applicability, transparency, monitorability, usability and 
more (see Table 2).  
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Table 2 – Examples of performance elements for imaging AI algorithms (from Larson, et. 
al., 2021) 

Accurate The algorithm should accurately perform all diagnostic tasks for which it is designed. 

Reliable 
The algorithm should remain accurate in the setting of reasonably expected variation 
encountered in the clinical environment, including reasonable variations in image 
quality. 

Applicable 
The accuracy of the algorithm should be maintained across all makes and models of 
image modalities and for all patient populations for which it is designed to function. 

Deterministic 
The algorithm should give the same answer for the same image when used at different 
times and in different settings. 

Non-
distractible 

The algorithm should be able to recognise the salient information from the image and 
not change its assessment based on extraneous, non-contributory image data. 

Self-aware of 
limitations 

The algorithm should have the means to detect when it is at or beyond the boundaries 
of its capabilities, whether due to inherent limitations of the model, limitations of its 
clinical applicability, or limitations imposed by clinical variation such as unexpected 
patient anatomy or image quality. 

Fail-safe 
The algorithm should recognise when it has reached an erroneous conclusion and have 
the means for ensuring that all errors are caught and stopped before they are 
propagated into the clinical environment 

Transparent 
logic 

The user interface should enable the operator to clearly see the linkage between the 
input and output, including what data were analysed, what alternatives were 
considered, and why certain possibilities were excluded, to be able to correctly accept 
or reject the algorithm's conclusion on any given case. 

Transparent 
degree of 
confidence 

The algorithm should share with the user a level of confidence in its assessment for each 
case. The accuracy of the model's expression of confidence should be validated as well 
as the accuracy of the model itself. 

Able to be 
monitored 

The algorithm should share performance data with users to enable ongoing monitoring 
of both individual and aggregated cases, quickly highlighting any significant deviations 
in performance. 

Auditable 
An independent means should be provided to monitor the algorithm's ongoing 
performance in a way that guides appropriate intervention. This may include periodic 
quality control checks similar to those performed by operators on imaging equipment. 

Intuitive user 
interface 

The user interface should enable the operator to intuitively how to use the algorithm 
with as little training as possible and impose the minimum possible cognitive load on 
the user. 

 
However, it appears that such a list is incomplete, as some important risks of AI in healthcare, such 
as algorithmic bias and inequality, have not been considered. Among the few works that have 
directly investigated AI fairness in medicine, it is worth mentioning a recent study that evaluated 
the state-of-the-art deep neural networks on large public chest X-ray datasets with respect to 
patient sex, age, race, and insurance type, the latter as a proxy for socioeconomic status (Seyyed-
Kalantari et al, 2020). The study concluded that 'models trained on large datasets do not provide 
equality of opportunity naturally, leading instead to potential disparities in care if deployed without 
modification'. In this work, the authors used the so-called true positive rates (TPR) as a measure of 
fairness, but other criteria have also been proposed in the literature, such as statistical parity, group 
fairness, equalised odds and predictive equality (Barocas et al., 2017).  
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Given the current lack of literacy and trust in AI, clinical usability is another aspect of medical AI that 
has been recommended for validation with end-users. To enhance clinical acceptance, perceived 
utility and future adoption, the AI algorithm and its visual interfaces should enable the operator to 
intuitively know how to use the tool with as little training as possible, to impose the minimum 
possible cognitive workload on the user, and to enhance clinical efficiency by decreasing decision-
making time. During usability tests, questionnaires can be used to gather quantitative and 
qualitative information on the user's satisfaction with the AI tool (Lewis, 2018). For example, when 
assessing the usability of an AI-powered algorithm for depression care, the researchers in (Tanguay-
Sela et al., 2020) used specific usability questions, as illustrated in Box 5. 

Box 5 – Excerpts of a usability questionnaire for assessing an AI technology for depression care (Tanguay-
Sela et al., 2020) 

• The probabilities produced by the model, overall, were: too optimistic; reasonable; too 
pessimistic. 

• The application interfered with my patient interview: strongly agree; somewhat agree; 
unsure; somewhat disagree; strongly disagree. 

• Based on your overall experience today, how much do you trust the predictive model to 
help you choose treatments for depression (1 being 'very little' and 5 being 'very much)? 

• The model provided us with more rich information to discuss: strongly agree; somewhat 
agree; unsure; somewhat disagree; strongly disagree. 

• Based on your experience today, do you think using the application would cost you 
significant time (1 being 'cost you significant time' and 5 being 'save you significant time'): 

• You would use the application: For all patients with depression; Only for the most severe 
patients; only for patients where one treatment has failed; only for patients where more 
than one treatment has failed; not at all; to review patient info. 

 
Other usability elements that could evaluated in a usability questionnaire include: level of 
understanding of diagnosis by patients and clinicians; level of understanding of treatment options 
by patients and clinicians; perceived quality of communication between patient and doctor; degree 
of interpretability of the AI-driven predictions for the clinicians; level of satisfaction with the 
technology, user interfaces; understanding of technical terminology by clinicians and patients; 
usefulness of error messages/alerts; overall ease-of-use; impact on clinician's productivity; level of 
intention-to-use of the system (e.g. only when needed vs. full use), and so on. 

Even if the AI is validated as being accurate, reliable, fair and user-friendly, this may not necessarily 
lead to patient benefit. Researchers from South Korea suggested assessing impact on patient 
outcomes to confirm clinical utility and to enable AI technology to be accepted and recommended 
by clinical experts, academic societies, or independent third-party organisations (Park & Han, 2018). 
In addition to demonstrating its clinical effectiveness, evaluation of the cost-effectiveness should 
also be systematically performed, given the huge investments into medical AI with promised 
efficiencies and cost reductions only being assumed. For example, economic evaluations using 
decision analytic modelling (Hill et al., 2020) can be used to assess whether additional AI solution 
costs are justified given the modelled effect, such as on health-related quality of life (e.g. QALY, or 
quality-adjusted life years). Importantly, the initial investment and operational costs for a given AI 
infrastructure and service need to be included in the cost-effectiveness analysis (Wolff et al., 2020). 
Finally, given that AI algorithms continue to learn over time as more data become available, it is 
important to adapt existing validation frameworks to enable the continuous monitoring of 
performance throughout the life cycle of the AI tool in the clinical environment.  
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4.3.3. Subdivision of the evaluation process into discrete phases. 
Instead of evaluating medical AI solutions in one single procedure, a few publications have recently 
recommended implementing a multi-stage approach in which developed algorithms undergo 
several steps of evaluation of varying goals and increasing complexity. For example, four steps 
(phase I to phase IV) were proposed for AI validation in the diagnostic imaging field, namely 
(1) feasibility testing, (2) capability, (3) effectiveness, and (4) durability (Larson et al., 2021) (Figure 
12): 

• Phase I – Feasibility: The goal is to perform a first/pilot evaluation of the algorithm in 
the laboratory under ideal conditions, typically on a single small test dataset. This 
stage will include comparison to existing algorithms that address the same clinical 
task, or with results obtained directly by expert clinicians. At this stage, the AI 
algorithms do not need to be fully robust, as the goal is simply to assess feasibility. 
The resulting findings may be disseminated in a scientific publication, even if the 
algorithm is not demonstrated for clinical application at this stage.  

• Phase II – Capability: In this phase, the goal is to simulate real-world conditions in a 
laboratory setting and evaluate as well as refine the AI algorithm accordingly to 
enhance its capabilities. The phase can be also referred to as in-silico validation 
(Viceconti et al., 2021) (i.e. using computer simulation) or virtual clinical trials (Abadi 
et al., 2020). In this phase, reliability can be tested by simulating the input data and 
the clinical conditions under which it may be used. Safety tests will evaluate the 
algorithm's ability to minimise the risk of harm when deployed and subjected to 
unanticipated situations, that will be also simulated for testing. Furthermore, this 
phase should be implemented with end-users, especially clinicians and operators, to 
evaluate their behaviours and decision making given the simulated conditions and 
outputs of the AI algorithm.  

• Phase III – Effectiveness: At this stage, the validation is moved to the clinical 
environment to assess real-world performance and to specific clinical sites to perform 
local validations. The primary objective is to confirm that the real-world performance 
of the algorithm matches its performance in the test environment. All results and 
feedback from this stage should be leveraged to update and optimise the AI 
algorithm, which will be retested in the controlled environment as in previous stages, 
before another round of local clinical evaluation. This evaluation stage in the clinic 
may reveal local quality control problems and AI manufacturers should work with 
local clinical sites to resolve the identified quality issues. 

• Phase IV – Durability: At this stage, the manufacturer should put in place a 
mechanism to enable ongoing performance evaluation and monitoring, with the 
intent of continuous improvement. They may integrate monitoring or auditing 
systems within their AI solution to automatically detect, correct, and report errors, 
and to compile clinical feedback and user feedback. Furthermore, depending on the 
errors and problems identified over time, the AI algorithms should be updated and 
improved, such as by using additional training data, and then retested in the 
controlled environment before they are re-used in the clinic.  
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Figure 12 – Example of a multi-stage approach for medical AI evaluation 

 

Researchers from IBM Research have proposed an alternative subdivision of the evaluation process 
by drawing analogies from the drug discovery and testing sectors (Park et al., 2020), as described in 
Table 3. 

Table 3 – Excerpts of subdivided evaluation process for medical AI, based on processes 
implemented in the drug development sector (Park et al., 2020) 

Testing phase 
of AI 

algorithm 
Procedures Examples Equivalence in drug 

discovery 

Phase 1: 
Technical 

performance 
& safety 

In silico algorithm 
performance optimisation  

Usability tests 

Determination of thresholds to 
balance sensitivity and specificity 
for a particular clinical use case, 
scenario-based testing to assess 

cognitive overload 

Determine optimal 
dose Identify 

potential toxicities 

Phase 2: 
Efficacy & side 

effects 

Controlled algorithm 
performance/efficacy 

evaluation by intended 
users in medical setting  

Interface design  

Quality improvement 

Retraining and reassessing model 
performance with larger real-world 

data sets, measurement of the 
efficiency of information delivery 

and workflow integration with 
representative users, pilot study of 

predictive algorithm in a clinical 
setting 

Early efficacy tests 
Adverse event 
identification 

Phase 3: 
Therapeutic 

efficacy 

Clinical trial 

Adverse events 
identification 

Randomised trial to test whether 
delivery AI-based decision support 

affects clinical outcomes and/or 
results in user over-trust 

Clinical trial Adverse 
event identification 

Phase 4: 
Safety & 

effectiveness 

Post-deployment 
surveillance 

Measurement of algorithmic 
performance drift 

Post-marketing 
surveillance 

 
While there are overlaps between the two subdivisions of the medical evaluation process presented 
in this section (Figure 12 & Table 2 – Examples of performance elements for imaging AI algorithms 
(from Larson, et. al., 2021)). The first subdivision (Figure 12) is focused on separating the environments 
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and populations in which the algorithm is tested (small datasets to demonstrate feasibility, 
simulated environments to test robustness to contextual changes, clinical setting to demonstrate 
real-world applicability). The second approach (Table 2) does not necessarily separate the testing 
environments (e.g. medical settings are used in both phases 2 and 3) but each step is more focused 
on a particular risk and clinical aspect such as on safety, effectiveness, usability and efficacy.  

In both multi-stage evaluation approaches, each of these phases is dependent upon the successful 
completion of the previous step, which reduces costs. For example, algorithms that do not perform 
well in a controlled environment are almost certain to not perform well in the real world. While they 
require to be further developed and adopted by the relevant stakeholders, these multi-stage and 
multi-faceted evaluation studies are promising as they take into consideration the complexity of AI-
guided healthcare delivery, which is compounded by user- and context-dependent applications. 

4.3.1. Promotion of external evaluations by third-party evaluators 
Evaluating the performance of an AI model with similar datasets than those used to develop and 
train the model is called internal validation. In the early days of medical AI, this was the most 
reported approach for algorithm validation as it is easy to implement. However, internal validation 
– even by developers and manufacturers with a culture of quality and good practices of excellence 
in medical AI – is likely to be inherently biased and to overestimated performance, while it is limited 
in its ability to identify all risks associated with changes in the data or clinical environment. A 2019 
study reviewed more than 500 research papers in the field of radiology AI and found that only 6% 
of the AI algorithms reported underwent an external evaluation (Kim et al., 2019). Hence, in recent 
years many researchers and opinion leaders have recommended promoting the external evaluation 
of AI algorithms in healthcare (Park & Han, 2018; Larson et al., 2021).  

External validation refers to the use of completely separate, external datasets for evaluating AI tools. 
The external datasets should strongly represent the variability in the population and the usage of 
the AI solution. Such data will ideally come from different clinical sites and geographical locations 
to evaluate the generalisability of the given AI algorithm outside of the controlled environment in 
which it was built. With this approach, it will be possible, for example, to evaluate the AI algorithm 
when the technical parameters of the data acquisition vary (e.g. differences in imaging scanners and 
protocols between hospitals). Furthermore, many researchers have recommended the use of 
common reference datasets, acquired from representative real-world populations, for external 
evaluation and benchmarking of AI models. These reference datasets can be directly compared to 
similar algorithms that have been previously evaluated with the same reference dataset. For 
example, in 2010 the National Cancer Institute in the United States set up the Cancer Imaging 
Archive (www.cancerimagingarchive.net), which now comprises a wide range of cancer imaging 
collections from all cancer types, that are extensively and routinely used for external validation and 
comparison of AI algorithms.  

Several research projects have recently been funded by the European Commission to build 
European repositories of reference cancer imaging datasets, such as the EuCanImage project 
(https://eucanimage.eu). Furthermore, external validation should ideally be carried out by using 
third-party evaluators to ensure an objective and exhaustive evaluation of the AI algorithm is 
performed according to the performance criteria outlined in the previous section, such as accuracy, 
reliability, fairness and usability. Such third-party evaluators could include clinical research 
organisations, research laboratories, or independent institutions that develop and maintain 
reference standard data sets. Such testing organisations would be specialised to enable the highest 
standards, quality and objectivity in the evaluation and monitoring of AI solutions in healthcare, 
resulting in reduced undetected risks and increased trust in medical AI for real-world practice. It is 
worth noting that DIGITAL EUROPE is currently preparing new research initiatives to develop Testing 
and Experimentation Facilities (TEF) in Europe, which -once established- will greatly facilitate 
external validation of medical AI tools, especially for companies. 
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4.3.2. Standardised and comprehensive reporting of the AI evaluation 
procedure and results 

To further enhance trust and usability of the AI tools, transparent documentation and reporting of 
the validation process is essential. This type of reporting will facilitate the critical appraisal process 
for developers, researchers, and other stakeholders; in addition, it should help replicate the AI 
algorithm and results, if necessary. Before the widespread use of AI, researchers had already 
identified the need for standardised and comprehensive reporting guidelines for predictive models 
used in healthcare, among which is TRIPOD (Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis) (Collins et al., 2015). The TRIPOD statement was first 
published in 2015 and shortly afterwards adopted at large in the biomedical community. TRIPOD 
provides guidance on how to clearly report the development of a predictive model in order to assess 
its potential bias and usefulness. (Collins et al, 2015) Concretely, and as illustrated in Box 5, the 
TRIPOD statement includes a checklist of 22 items deemed essential for transparent reporting of a 
prediction model study. 

Box 5 – Essential items to be included when reporting a prediction model, according to TRIPOD 

• Title, abstract, background, and objectives. 

• Methods: Source of data, participants, predictors, sample size, missing data, type of 
prediction model and other model-building procedures, etc. 

• Results: Participants (number and characteristics), performance measures, confidence 
intervals, model updating., etc. 

• Discussion: Limitations (e.g. non-representative sample, missing data), interpretation (incl. 
comparison to similar studies), implications (e.g. potential clinical use). 

• Other information: Supplementary information, funding. 

 
Although TRIPOD primarily aims to improve reporting, it also facilitates more comprehensive 
understanding and analysis of prediction models, ensuring that they can be further studied and 
used to guide the provision of healthcare, thus enhancing reproducible research, trust and clinical 
translation. While many aspects of the TRIPOD statement are inherently applicable to prediction 
model studies using machine learning methods, its uptake by AI communities has not been high. 
Possible reasons for the low level of uptake include subtle differences in terminology or a perceived 
lack of relevance because TRIPOD – at least in its original definition – focused on regression-based 
prediction model approaches (and not machine-learning based ones). In response to more AI-
specific reporting guidelines, an extension of TRIPOD devoted to health prediction models that use 
machine learning techniques is currently being developed under the name of TRIPOD-AI (Collins et 
al, 2021)1.  

Another example of reporting and validation guidelines is the work carried out by the CONSORT 
consortium (Consolidated Standards of Reporting Trials), which has extended their 2010 reporting 
guidelines to include AI-specific aspects with their CONSORT-AI statement. While the original 
guidelines recommended including elements such as title, trial design, participants, interventions, 
outcomes and sample size, the extended CONSORT-AI statement proposes that researchers 'provide 
clear descriptions of the AI intervention, including instructions and skills required for use, the setting 
in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, 
the human–AI interaction and provision of an analysis of error cases' (Liu et al, 2020). As shown in 
Box 6 (Liu et al, 2020), the CONSORT-AI extension enumerates new AI-specific items to be used in 

 

1 TRIPOD. www.tripod-statement.org 
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the reporting process, in addition to those included in the original CONSORT guidelines published 
in 2010.  

Box 6 – Reporting elements for medical AI in clinical trials, according to the CONSORT-AI guidelines  

• Indication that the intervention involves AI in the title and abstract and specify the type of 
model. 

• Intended use of the AI intervention in the context of the clinical pathway, including its 
purpose and its intended users (for example, healthcare professionals, patients, public). 

• Description of how the AI intervention was integrated into the trial setting, including any 
onsite or offsite requirements. 

• Version of the AI algorithm that was used. 

• Description of the input data that were acquired and selected for the AI intervention. 

• Description of any human–AI interaction in the handling of the input data, and the level of 
expertise required from users. 

• The output of the AI intervention. 

• Explanation on how the AI intervention's outputs contributed to decision-making or other 
elements of clinical practice. 

• Results of any analysis of performance errors and how errors were identified, where 
applicable.  

• Information on how the AI intervention and/or its code can be accessed, including any 
restrictions to access or re-use. 

 
Researchers at Stanford University proposed a new set of standards for reporting AI solutions in 
healthcare, entitled MINMAR (MINimum Information for Medical AI Reporting) (Hernandez-
Boussard et al., 2020). The MINMAR standards describe the minimum information necessary to 
understand intended predictions, target populations, model architecture, evaluation processes, and 
hidden biases. The MINMAR guidelines are specifically designed for medical AI and comprise 
reporting elements in four main categories, as shown in Table 4. 

Table 4 – Reporting elements from the MINMAR reporting guidelines 

Element Description 

1. Population & setting 

Population Population from which study sample was drawn 

Study setting The setting in which the study was conducted. 

Data source The source from which data were collected 

Cohort selection Exclusion/inclusion criteria 

2. Patient demographic characteristics 

Age Age of patients included in the study 

Sex Sex breakdown of study cohort 

Race/ethnicity Race/ethnicity breakdown of patients included in the 
study 

Socioeconomic status A measure or proxy measure of the socioeconomic 
status of patients included in the study 
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3. Model properties 

Model task Classification or prediction  

Model architecture Algorithm type: Machine learning, deep learning, etc. 

Data splitting How data were split for training, testing, and 
validation 

Gold standard Labelled data used to train and test the model 

Features List of variables used/selected in the AI model 

Missingness How missingness was addressed: reported, imputed, 
or corrected 

Optimisation Model or parameter tuning applied 

Internal model validation Study internal validation 

External model validation External validation using data from another setting 

Transparency How code and data are shared with the community 

 
Such a reporting model for medical AI evaluation will promote transparency, thoroughness, and 
trust, by including all the key information from the AI evaluation studies in a single detailed 
document, as well as by assisting publishing editors, AI developers, clinicians and researchers in 
understanding, interpreting and critically appraising the quality of the AI study design, validation 
and results. 
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5. Policy options 
This section describes seven policy options suggested to better develop, evaluate, deploy and 
exploit technically, clinically and ethically sound AI solutions in future healthcare (Figure 13).  

Figure 13 – Summary of policy options suggested in this report 

 

5.1. Extend AI regulatory frameworks and codes of practice to 
address healthcare-specific risks and requirements  

As described in Section 4.1, current medical AI devices are regulated by the MDR and IVDR 
regulations, which were introduced in 2017. Furthermore, in 2021 the European Commission (EC) 
proposed a new regulation for AI which provides new requirements and obligations for high-risk 
applications, including medical AI technologies, such as to establish and implement quality 
management systems in organisations, undergo conformity assessment and potentially 
reassessment of AI systems (in the event of substantial modification), as well as conduct post-market 
monitoring.  

While the new proposal has been elaborated for AI technologies in general, the new framework 
considers medical AI tools as high risk, requiring them to undergo increased scrutinisation. However, 
the requirements are presented in a generic fashion, while – as seen in this report – AI in healthcare 
is faced with specific and high-stake technical, clinical and socio-ethical challenges and risks.  

It is thus important that regulatory frameworks and codes of practice are extended and put into 
practice for medical AI (as described in sections 4.2 and 4.3). The need for updating the regulatory 
approvals of AI-driven medical devices has been voiced worldwide, such as in the United States 
(Harvey & Gowda, 2020; Allen, 2019), Japan (Chinzei et al., 2018; Ota et al., 2020) and China (Roberts 
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et al., 2020). Particularly, in 2021 the U.S. Food & Drug Administration (FDA) published the Artificial 
Intelligence and Machine Learning (AI/ML) Software as a Medical Device Action Plan (FDA, 2021), 
which calls for tailored regulations for medical AI, good machine learning practices, and patient-
centred approaches. 

For tailoring existing frameworks and AI practices to the medical field, multi-faceted risk assessment 
(section 4.2) should be an integral part of the medical AI development and certification process. 
Furthermore, risk assessment must be domain-specific, as the clinical, social and ethical risks and 
constraints differ between, for example, radiology, surgery, genomics, mental health, child health, 
and home care.  

The validation of medical AI technologies should be harmonised and strengthened to assess and 
identify multi-faceted risks and limitations by evaluating not only model accuracy and robustness 
but also algorithmic fairness, clinical safety, clinical acceptance, transparency and traceability.  

An important proposal (highlighted in section 4.3) for improved medical AI validation and 
certification is the introduction and generalisation of third-party external validation by independent 
entities that will be specialised in this process. This will allow for a more objective and expert 
validation of medical AI tools in a manner that systematically takes into account variability in real-
world clinical practices and socio-ethical contexts. 

5.2. Promote multi-stakeholder engagement and co-creation 
throughout the whole lifecycle of medical AI algorithms 

For the future acceptability and implementation of medical AI tools in the real world, many 
stakeholders beyond AI developers – such as clinicians, patients, social scientists, healthcare 
managers and AI regulators – will play an important role. Hence, new approaches are needed to 
promote inclusive, multi-stakeholder engagement in medical AI and ensure the AI tools are 
designed, validated and implemented in full alignment with the diversity of real-world needs and 
contexts.  

Hence, future AI algorithms should be developed by AI manufacturers based on co-creation (Leone 
et al., 2021), i.e. through strong and continuous collaborations between the AI developers and the 
clinical end-users, as well as with other relevance experts such as biomedical ethicists. These 
collaborations should be present at all stages, from the design and development of the AI solution 
to its validation and deployment (Filice & Ratwani, 2020).  

Integrating human- and user-centred approaches throughout the whole AI development process 
will enable to design AI algorithms that better reflect the needs and cultures of healthcare workers, 
but also to identify and address potential risks at an early stage. This will shift the focus towards 
optimising the clinical performance of the end-users and the health benefits for the citizens, while 
considering existing social, ethical and legal requirements. 

Through strong user engagement, future implementations of medical AI algorithms will take into 
close consideration the expected interactions between the end-users and the algorithms (otherwise 
referred to as human-computer interaction) (Xu, 2019). Visual interfaces should be carefully 
designed based on requirements from the clinical end-users to enable human-centred and clinically 
meaningful displays of explanations for the machine learning model predictions in healthcare 
(Barda et al., 2020). This will allow human errors to be reduced and will improve explainability and 
acceptance of the AI-driven predictions and decisions. 

Finally, multi-stakeholder engagement and co-creation will address specific social issues related to 
equity, equality and fairness, which are application-specific issues that require an understanding of 
the clinical tasks, possible confounding factors, and relevant group differences; hence continuous 
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collaboration between the domain experts, healthcare professionals, social scientists, and real-
world community members, especially from underrepresented groups, is key. 

5.3. Create an AI passport and traceability mechanisms for 
enhanced transparency and trust in medical AI 

New approaches and mechanisms are needed to enhance the transparency of AI algorithms 
throughout their lifecycle. In order to be able to understand the details of what has occurred when 
something goes wrong in the clinical implementation of medical AI, transparency is essential, 
including but not limited to documenting the whole AI development process; this type of 
documentation and transparency helps eliminate potential ambiguities and lack of accountability 
(Felzmann et al, 2020).  

One option is for regulatory bodies for medical AI to introduce an 'AI passport' for standardised 
description and traceability of medical AI tools (see illustration in Figure 14). Such a passport should 
describe and monitor key information about the AI technology, covering at least five categories of 
information:  

1. Model related information (e.g. model owners, developers and reviewers, intended 
clinical uses, applicable licences(s), algorithmic details, hyper-parameters, key 
assumptions and requirements). 

2. Data related information (training vs. testing data, data types e.g. imaging, real vs. 
simulated datasets, data origins).  

3. Evaluation related information (model accuracy, robustness, biases, limitations and 
extreme cases). 

4. Usage related information (e.g. statistical distributions, (dis)agreements with 
clinicians, identified failures, memory usage, etc.).  

5. Maintenance related information (last updates, software versioning, last periodic 
evaluation, dates, etc.).  

The AI passport should be standardised to enable consistent traceability across countries and 
healthcare organisations. 
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Figure 14 – Example of a possible AI passport that can be used to improve traceability and 
transparency in medical AI, by documenting all key details about the AI tools, their 
intended use, model and data details, evaluation results, and information from continuous 
monitoring and auditing 

 

Furthermore, medical AI is a highly dynamic technology with new data, equipment and users 
regularly introduced into its workflows. It is therefore clear that the concept of traceability must go 
beyond the mere documentation of the development process or the phase of testing the AI model; 
instead, it should also comprise the process of monitoring and maintaining the AI model or system 
in the real world by continually tracking how it functions after deployment in clinical practice and 
identifying potential errors or changes in performance (Lekadir et al, 2022). 

Hence, it is important that the algorithms are developed together with accompanying live interfaces 
that will be intended for continuous surveillance and auditing of the AI tools after their deployment 
in their respective clinical environment. Such monitoring tool should include user-friendly 
capabilities for quality control and detection of errors and extreme cases, a human-in-the-loop 
mechanism to enable for human oversight and feedback, a system of alerts to inform the clinicians 
of suspected deviations from previous states or performance degradation (e.g. when new 
equipment or protocol is introduced), as well as a periodic evaluation system that can be configured 
to indicate reference test datasets, as well as periodicity of the evaluations (e.g. monthly vs. 
quarterly). 

5.4. Develop frameworks to better define accountability and 
monitor responsibilities in medical AI  

Accountability continues to be a pressing issue in the field of AI, especially in the high-stake areas of 
medical AI. It is an especially important issue when considering situations in which an AI-based 
healthcare tool deployed in real clinical settings fails, produces errors, or results in unexpected side 
effects (Geis et al, 2019). Frameworks and mechanisms are needed to adequately assign 
responsibility to all actors in the AI workflow in medical practice, including the manufacturers, thus 
providing incentives for applying all measures and best practices to minimise errors and harm to 
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the patient. Such expectations are already an integral part in the development, evaluation and 
commercialisation of medicines, vaccines and medical equipment, and need to be extended to 
future medical AI products. 

Above all, unified legal frameworks are needed to define responsibility and liability and enforce 
relevant consequences in medical AI across Europe and beyond. Of the existing regulations, the 
GDPR offers a two-pronged approach to algorithmic accountability – approaching the issue from 
the perspective of individual rights on the one hand and systemic regulatory frameworks on the 
other (Kaminski & Malgieri, 2019). In particular, the GDPR establishes transparency as a key principle 
for data processing and links it with lawfulness (Art. 5 para 1(a) GDPR) which both are important 
parts of the principle of accountability (Art. 5 para 2 GDPR).  

However, while the GDPR is highly variable in terms of outlining the rights to data privacy as well as 
to explanation, some researchers in the field have stressed that it is not in and of itself sufficient in 
terms of outlining algorithmic accountability in medical AI (Barocas, 2019). There is a legal gap for 
medical AI accountability that remains to be addressed; in the face of this challenge, expert leaders 
in the field have recommended the establishment of a singular new regulatory body for AI (Tuut, 
2017; Koene et al., 2019).  

It is expected that in 2022 the EC will propose EU-wide measures adapting existing liability 
frameworks to the challenges of AI in order to ensure that victims who suffer damages to their life, 
health or property from an AI technology have access to the same compensation as victims of other 
technologies (Communication to EU Parliament, 2021). This may include a revision of the Product 
Liability Directive (Council Directive, 1985) and may require sectorial adjustments such as for AI in 
healthcare. 

One important way of increasing accountability of AI tools in healthcare is through periodic audits 
and risk assessments, which can be used to evaluate how much regulatory oversight a certain AI 
tool might need (Kaminski & Malgieri, 2019; Reisman et al., 2018). To this end, the assessments must 
be conducted through the whole AI pipeline, from data collection, to development, to pre-clinical 
stages, to deployment, but also when the tools are in use. Future AI solutions should maintain an 
archive of AI-based decisions and have a mechanism for continuous monitorability and traceability 
over time as described in the previous section. Audits to assess fairness, transparency, accuracy, and 
safety could be used to hold AI decision-making processes to the same standard as human 
processes (Caplan et al., 2018). While some companies and agencies lean heavily on internal 
auditing processes, numerous researchers as well as civil rights organisations call for these audits to 
be carried out externally by independent auditing organisations. 

5.5. Introduce education programmes to enhance the skills of 
healthcare professionals and the literacy of the general public 

To increase adoption and minimise error, future medical professionals need to be adequately 
trained in this new technology, including its advantages to improve care, quality, and access to 
healthcare, as well as its limitations and risks (Paranjape et al., 2019). Hence, it is time to update 
educational programmes in medicine and increase their interdisciplinarity, with dedicated lectures 
and practical sessions that seamlessly integrate the implications of medical AI in future clinical 
practice (McCoy et al., 2020; Rampton et al., 2020).  

Furthermore, there is an urgent need to increase the AI literacy of the general public to empower 
citizens and patients, who will better seize the benefits of emerging medical AI tools, while 
minimising the potential risk of misuse of the AI tools, especially during remote monitoring and care 
management. Some countries have already invested in providing free AI public literacy courses, 
such as Finland's 'Elements of AI' course run by the University of Helsinki (www.elementsofai.com). 
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5.6. Promote further research on clinical, ethical and technical 
robustness in medical AI  

Despite major advances in recent years in AI and machine learning, as well as in their applications 
to medicine and healthcare, the multitude of risks discussed in this report call for further research 
and development to realise the full promise of medical AI, while addressing the existing clinical, 
socio-ethical and technical limitations. Examples of areas for future research include explainability 
and interpretability, bias estimation and mitigation, as well as secure and privacy-preserving AI. 

Explainable AI is a research area that is investigating a new generation of AI algorithms that can be 
understood by humans, such as by clinicians and patients in medical AI. It has attracted a lot of 
interest in recent years and various approaches are being developed and tested. However, 
explainable AI in healthcare remains very challenging due to the complexity and variability of the 
biomedical and clinical data, and existing methods are yet to find their way to clinical practice. To 
improve their potential, it is important to assess and ensure that explainability methods produce 
explanations that are clinically meaningful and accepted by the end-users. There is a need for 
interdisciplinary approaches during AI developments that start by examining the needs of the 
clinicians and understanding the types of explanations (visual vs. quantitative methods) that better 
suit their needs and specific clinical task. 

To explicitly mitigate the presence of unwanted bias in the data, methods have already been 
investigated (Li & Vasconcelos, 2019; Zhang et al., 2018) and some open-source toolkits have already 
been published, such as those by IBM (AI Fairness 360) and Microsoft (Fairlearn (Bird et al., 2020)). 
However, the detection of biases, in particular implicit and hidden biases, remains to a great extent 
an open problem. Qualitative biases such as cognitive biases of clinicians generating, interpreting 
or annotating the data, require multidisciplinary research and increased diversity in AI development, 
healthcare, and policy teams to mitigate bias and strengthen the fairness of medical AI algorithms.  

There is also need for more research to develop adaptation methods that will ensure a high level of 
generalisability of future AI tools across population groups, clinical centres and geographical 
locations. In addition, it is important to develop new validation platforms that can robustly assess AI 
algorithms for accuracy but also for fairness with respect to sex/gender, age, ethnicity and race, 
socioeconomic status and other sociodemographic categories. 

Furthermore, future AI solutions for healthcare should be implemented by integrating uncertainty 
estimation, a relatively new field of research that aims to provide clinicians with clinically useful 
indications on the degree of confidence in AI predictions (Kompa et al., 2021). Ideally, the clinician 
should receive alerts/warnings when the uncertainty for certain predictions is high. In future 
settings, the AI system could provide information on the cause of the high uncertainty (e.g. low-
quality image scans, insufficient evidence in the data), and even advise the clinicians on the course 
of action needed to improve the AI predictions (e.g. inclusion of additional lab tests and predictors, 
re-scanning of the patient). 

Finally, current cyberattacks on medical AI technologies remain difficult to detect, as the actual tools 
themselves may continue to function properly, but the conclusions that the AI system will 
confidently provide will be erroneous. Further research is needed to develop, validate and deploy 
medical AI tools that are able to protect themselves against privacy as well as security risks. This will 
result in a new generation of AI algorithms which can be robustly deployed and used in their real-
world environment with maximal resilience and confidence. 
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5.7. Implement a strategy for reducing the European divide in 
medical AI  

While the EU has made significant investments in AI in recent years, inequalities persist between 
different European countries when it comes to advancements in the field of AI (Caradaica, 2020). 
The AI divide – especially between the Western and Eastern regions of the continent – can be 
explained by structural differences in research programmes and technological capacities, as well as 
by the varying levels of investments from the public and private sectors (Quaglio, et al., 2020B).  

The disparities in AI development and implementation between EU countries are particularly 
marked in medical AI, since developments and innovations in this field are highly dependent on 
access to large databases of well-curated biomedical data as well as to technological capacities. At 
the same time, these AI disparities may exacerbate the existing health inequities and disparities that 
exist across the EU; for example, studies have shown that there is a gap between Eastern and 
Western Europe in life expectancy, maternal mortality, and other population health indicators 
(Forster, 2018; The World Bank, 2019). 

In this context, the EU Member States, in particular those of Eastern Europe, could develop specific 
programmes to support AI in health. These should include concrete actions to boost the 
technological, research and industrial capacities of emerging EU countries in the field of AI for 
healthcare. In particular, infrastructure projects should be established by Member States that have 
limited research infrastructures and data availability. This would build and enhance much-needed 
capacities in biomedical and health data sharing, storage, curation and security across the entire EU 
(ECRIN, 2019). Other programmes should be established to increase the technological, clinical and 
industrial capacities of several European countries for the development, testing and deployment of 
novel AI tools in medicine and healthcare, including high-performance computing, open cloud 
services, clinical testing facilities and pre-commercial procurement.  

The European Commission could implement specific coordination and support programmes of 
activities implemented in this sector by different Member States, thereby supporting the 
implementation of common guidelines and approaches. Such coordination should ensure the 
development of an inclusive European Health Data Space (EHDS), which takes into close 
consideration national and regional challenges across Europe (Marschang, 2021). Similarly, existing 
education-focused programmes such as the Marie-Curie training networks could be strengthened 
to enhance the training capacities and human capital in medical AI specifically in emerging EU 
countries. 

Lastly, the disparities that exist in medical AI between different European countries – and especially 
between Eastern and Western Europe – also reflect the broader social, economic, and health 
inequities across the different regions of Europe. The issue of reducing the European divide in 
medical AI is one that requires an approach that goes beyond focusing solely on the fields of 
medicine and/or the fields of AI and instead involves policy actions that will tackle the larger issues 
of systemic inequality in European society.  
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In recent years, the use of artificial intelligence (AI) in 
medicine and healthcare has been praised for the great 
promise it offers, but has also been at the centre of 
heated controversy. This study offers an overview of 
how AI can benefit future healthcare, in particular 
increasing the efficiency of clinicians, improving 
medical diagnosis and treatment, and optimising the 
allocation of human and technical resources. 

The report identifies and clarifies the main clinical, social 
and ethical risks posed by AI in healthcare, more 
specifically: potential errors and patient harm; risk of 
bias and increased health inequalities; lack of 
transparency and trust; and vulnerability to hacking and 
data privacy breaches. 

The study proposes mitigation measures and policy 
options to minimise these risks and maximise the 
benefits of medical AI, including multi-stakeholder 
engagement through the AI production lifetime, 
increased transparency and traceability, in-depth 
clinical validation of AI tools, and AI training and 
education for both clinicians and citizens. 
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