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Chapter Goals
After completing this chapter, you should be able to:

▪ Recognize situations in which to use analysis of variance

▪ Understand different analysis of variance designs

▪ Perform a one-way and two-way analysis of variance and 
interpret the results



Comparison of Several Population Means (1 of 2)

▪ The null hypothesis is that the population 
means are all the same

▪ The critical factor is the variability involved in 
the data

▪ If the variability around the sample means is 
small compared with the variability among the 
sample means, we reject the null hypothesis



Comparison of Several Population Means (2 of 2)

▪ Small variation around the 
sample means compared 
to the variation among the 
sample means

▪ Large variation around the 
sample means compared 
to the variation among the 
sample means



One-Way Analysis of Variance
▪ Evaluate the difference among the means of three or 

more groups

Examples: Average production for 1st, 2nd, and 3rd shifts Expected 
mileage for five brands of tires

▪ Assumptions

▪ Populations are normally distributed
▪ Populations have equal variances
▪ Samples are randomly and independently drawn



Hypotheses of One-Way ANOVA

▪ 0 1 2 3: kH µ µ µ µ= = = ⋅⋅⋅ =

▪ All population means are equal
▪ i.e., no variation in means between groups

▪ 1 : i jH µ µ≠ for at least one i , j pair.

▪ At least one population mean is different
▪ i.e., there is variation between groups
▪ Does not mean that all population means are different 

(some pairs may be the same)



One-Way ANOVA (1 of 2)

0 1 2 3: kH µ µ µ µ= = = ⋅⋅⋅ =

1 :H Not all iµ are the same

All Means are the same:
The Null Hypothesis is True

(No variation between groups)



One-Way ANOVA (2 of 2)

0 1 2 3: KH µ µ µ µ= = = ⋅⋅⋅ =

1 :H Not all iµ are the same.

At least one mean is different:
The Null Hypothesis is Not true

(Variation is present between groups)

or



Variability

▪ The variability of the data is key factor to test the equality of 
means

▪ In each case below, the means may look different, but a large 
variation within groups in B makes the evidence that the means 
are different weak

Small variation within groups Large variation within groups



Sum of Squares Decomposition (1 of 2)

▪ Total variation can be split into two parts:

SST SSW SSG= +

SST = Total Sum of Squares
Total Variation = the aggregate dispersion of the individual data 
values across the various groups

SSW = Sum of Squares Within Groups
Within-Group Variation = dispersion that exists among the data values 
within a particular group

SSG = Sum of Squares Between Groups
Between-Group Variation = dispersion between the group sample 
means



Sum of Squares Decomposition (2 of 2)



Total Sum of Squares (1 of 2)

SST = SSW + SSG
( )2
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SST

inK

ij
i j

x x
= =

= −∑∑
Where:

SST = Total sum of squares

K = number of groups (levels or treatments)

in = number of observations in group i
th

ijx j= observation from group i

x= overall sample mean



Total Sum of Squares (2 of 2)

( ) ( ) ( )2 2 2

11 12SST=
KKnx x x x x x− + − + ⋅⋅⋅ + −



Within-Group Variation (1 of 3)

SST SSW SSG= +

( )2

1 1
SSW

inK

ij i
i j

x x
= =

= −∑∑

Where:

SSW = Sum of squares within groups

K = number of groups

in = sample size from group i

ix = sample mean from group i

th
ijx j= observation in group i



Within-Group Variation (2 of 3)

( )
2

1 1
SSW

inK

ij i
i j

x x
= =

= −∑∑

Summing the variation within 
each group and then adding over 
all groups SSWMSW

n K
=

−

SSWMean Square Within =
degrees of freedom



Within-Group Variation (3 of 3)

( ) ( ) ( )22 2
11 1 12 1SSW ...

KKn Kx x x x x x= − + − + + −



Between-Group Variation (1 of 3)

SST=SSW+SSG

( )
2
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K

i i
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n x x
=

= −∑
Where:

SSG = Sum of squares between groups

K = number of groups

in = sample size from group i

ix = sample mean from group i

x = grand mean (mean of all data values)



Between-Group Variation (2 of 3)

( )2

1
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K

i i
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n x x
=

= −∑
Variation Due to Differences 
Between Groups

Mean Square Between Groups 

SSG
=

degrees of freedom

SSGMSG
1K

=
−



Between-Group Variation (3 of 3)

( ) ( ) ( )2 2 2

1 1 2 2SSG ... K Kn x x n x x n x x= − + − + + −



Obtaining the Mean Squares
SSTMST

1n
=

−
SSWMSW
n K

=
−

SSGMSG
1K

=
−

Where n = sum of the sample sizes from all groups

K = number of populations



One-Way ANOVA Table

K = number of groups
n = sum of the sample sizes from all groups

df = degrees of freedom



One-Factor ANOVA F Test Statistic

0 1 2: ... KH µ µ µ= = =

1 :H At least two population means are different

▪ Test statistic
MSG
MSW

F =

MSG is mean squares between variances

MSW is mean squares within variances

▪ Degrees of freedom

▪
1df –1 K= (K = number of groups)

▪
2df –n K= (n = sum of sample sizes from all groups)



Interpreting the F Statistic
▪ The F statistic is the ratio of the between estimate 

of variance and the within estimate of variance

▪ The ratio must always be positive

▪ 1 df 1K= − will typically be small

▪ 2 df n K= − will typically be large

Decision Rule:

▪ Reject 0H

1, , K n KF F α− −>



One-Factor ANOVA F Test Example

You want to see if three 
different patients  yield 
different blood measurement. 
You randomly select five 
measurements from a 
laboratory. 

At the .05 significance level, is 
there a difference in mean 
value?

Patient 1 Patient 2 Patient 3



One-Factor ANOVA Example: Scatter Diagram

1 2 3249.2    226.0    205.8

                      227.0

x x x

x

= = =

=

Patient 1 Patient 2 Patient 3

Patients

Blood Meas



One-Factor ANOVA Example Computations

1 1249.2         5x n= =

2 2226.0         5x n= =

3 3205.8         5x n= =

227.0x = 15
3

n
k
=
=

( ) ( ) ( )2 2 2SSG 5 249.2 227 5 226 227 5 205.8 227 4716.4= − + − + − =
( ) ( ) ( )2 2 2SSW 254 249.2 263 249.2 ... 204 205.8 1119.6= − + − + + − =

( )
4716.4MSG 2358.2

3 1
= =

−

( )
1119.6MSW 93.3
15 3

= =
−

2358.2 25.275
93.3

F = =

Patient 1 Patient 2 Patient 3



One-Factor ANOVA Example Solution

0 1 2 3:H µ µ µ= =

1 : iH µ not all equal

.05=α
1 2df 2           df 12= =

Test Statistic:

2358.2 25.275
93.3

F = = =
MSA
MSW

Decision:

Reject 0    H = 0.05at α

Conclusion:

There is evidence that at 
least one

iµ differs from the rest



Multiple Comparisons Between Subgroup Means

▪ To test which population means are significantly different

▪ e
.
g
.:

1 2 3µ µ µ= ≠

▪ Done after rejection of equal means in single factor
ANOVA design

▪ Allows pair-wise comparisons

▪ Compare absolute mean differences with critical range



Two Subgroups

▪ When there are only two subgroups, compute the minimum significant difference 
(MSD)

1 22

1 1MSD pt s
n nα= +

Where ps is a pooled estimate of the variance



Multiple Subgroups (1 of 2) (procedure due to Tukey)

▪ The minimum significant difference between k subgroups is

( )MSD ps
K Q

n
= where MSWps =

▪ Q is a factor available in the relative tables
for the chosen level of α

▪ K = number of subgroups, and

▪ MSW = Mean square within from ANOVA table



Multiple Subgroups (2 of 2)

MSD( ) ps
K Q

n
=

1 2x x−

1 3x x−

2 3x x−

etc...

Compare:
( )MSD ?i jx x K− >

If the absolute mean difference is 
greater than MSD then there is a 
significant difference between that pair 
of means at the chosen level of 
significance.



Multiple Subgroups: Example

1 1249.2       5x n= =

2 2226.0       5x n= =

3 3205.8       5x n= =

( ) 93.3MSD 3.77 9.387
15

ps
K Q

n
= = =

(where Q = 3.77 is from Table 13 for .05  12 d )f= andα

1 2 23.2x x− =

1 3 43.4x x− =

2 3 20.2x x− =

Since each difference is greater 
than 9.387, we conclude that all 
three means are different from 
one another at the .05 level of 
significance.



Alternatives to MSD Approach



Kruskal-Wallis Test

▪ Use when the normality assumption for 
one-way ANOVA is violated

▪ Assumptions:
▪ The samples are random and independent
▪ variables have a continuous distribution
▪ the data can be ranked
▪ populations have the same variability
▪ populations have the same shape



Kruskal-Wallis Test Procedure (1 of 3)

▪ Obtain relative rankings for each value
▪ In event of tie, each of the tied values gets the average 

rank

▪ Sum the rankings for data from each of 
the K groups

▪ Compute the Kruskal-Wallis test statistic
▪ Evaluate using the chi-square distribution with K − 1 

degrees of freedom



Kruskal-Wallis Test Procedure (2 of 3)

▪ The Kruskal-Wallis test statistic:

(chi-square with K − 1 degrees of freedom)

( ) ( )
2

1

12 3 1
1

K
i

i i

RW n
n n n=

 
= − + + 

∑
where:

n = sum of sample sizes in all groups
K = Number of samples

iR = Sum of ranks in the ith group

in = Size of the ith group



Kruskal-Wallis Test Procedure (3 of 3)

▪ Complete the test by comparing the calculated
H value to a critical 2χ value from the chi-square

distribution with K − 1 degrees of freedom

Decision rule

▪ Reject
0H i

f

2
1,KW αχ −>

▪ Otherwise do not reject 0H



Kruskal-Wallis Example (1 of 4)

▪ Do different departments have different class sizes?



Kruskal-Wallis Example (2 of 4)

▪ Do different departments have different class sizes? 



Kruskal-Wallis Example (3 of 4)

0 : Mean Mean MeanM E BH = =

1 :H Not all population means are equal

▪ The W statistic is

( ) ( )
2

1

12 3 1
1

k
i

i i

RW n
n n n=

 
= − + + 

∑

( ) ( )
2 2 212 44 56 20 3 15 1 6.72

15 15 1 5 5 5
  

= + + − + =  +   



Kruskal-Wallis Example (4 of 4)

▪ Compare W = 6.72 to the critical value from
the chi-square distribution for 3 − 1 = 2

degrees of freedom and .05 :α =
2

2,0.05
5.991χ =

Since
2

2,0.05
6.72  5.991,          H χ= > =

reject 0H

There is sufficient evidence to reject 
that the population means are all 
equal



Common pitfalls of ANOVA and alternative 
approaches

Despite its perceived simplicity, scientists frequently 
misuse ANOVA. A study by Wu et al. (2011) showed 
that from a survey of 10 leading Chinese medical 
journals in 2008, 446 articles used ANOVA, and of 
those articles, 59% of them used ANOVA 
incorrectly 
(https://www.hindawi.com/journals/tswj/2011/13949
4/tab1/).

https://www.hindawi.com/journals/tswj/2011/139494/


A simple toy example: hospital waiting times

Suppose that we have three hospitals, let’s call them A, B and 
C (creative names, I know). We are interested in whether all 
three hospitals have the same the average waiting time for the 
emergency room.



We measured the waiting time for 20 unique individuals at each of these 
three hospitals (so there are 60 individuals in total). These waiting times (in 
hours) are recorded below.

Hospital A Hospital B Hospital C

1.8 0.9 1.4

1.4 0.7 2.1

0.7 2.6 1.4

0.8 1.7 1.2

0.5 2.5 2.1

2.1 2.4 2.3

0.9 2.4 1.7

2.2 2.3 1.2

1.2 2.0 1.1

1.3 1.7 1.3

1.1 2.1 0.3

1.1 0.9 1.7

0.4 2.7 1.5

1.4 1.5 1.7

0.8 2.0 2.0

1.1 1.9 0.8

0.6 2.6 2.0

1.1 2.4 2.4

1.6 1.5 2.2

0.9 1.7 2.0



Let’s inspect graphically. Most people seem to wait over an hour, with some 
unlucky individuals waiting for almost 3 hours. The mean waiting time for 
each hospital is highlighted by a red bar.



The question here is actually asking about equality between 
the average waiting times from the population of all patients 
who have ever, and will ever, wait in these waiting rooms, 
regardless of whether they fall in our sample.

Although the sample means clearly aren’t identical (the red 
bars are all at different heights), do we have enough evidence 
to show that the underlying population waiting time means are 
different, or are the differences that we observe are simply 
reflection of the inherent noise in the data?



The red bars in the left panel highlight the within-group variance, while the 
red bars in the right panel highlight the between-group variance.



ANOVA analysis works like this



Remember that there are assumptions…..

Assumption 1: The samples are independent.
Independence is an extremely common assumption that is hard to test in general.

Assumption 2: The data are normally distributed.
Not being a fan of such distributional assumptions myself, I am inclined to point the 
reader in the direction of non-parametric versions of ANOVA, including the Kruskal-
Wallis test.
Those wishing to test the normality of their data can do so using a variety of methods 
such as plotting a QQ-plot, or using a normality test.

Assumption 3: Each group has the same variance.
The common variance assumption can be tested using common tests, such as 
the Bartlett test and the Fligner-Killeen test, which are easily implemented in 
R/Python.



Assumption 2:

The figure below plots the density estimation for the waiting times from each 
hospital. We know that if our data is normally distributed, it should look vaguely like 
a bell-curve (!!). 
You can use this as a lesson on the difficult of drawing conclusions on normality 
from small samples (in this case, we have 20 observations in each group).



Assumption 2

A Shapiro-Wilk test for normality provides p-values of 0.39, 0.087, 0.52 for 
hospitals A, B and C, respectively. 

Although none of these values are “significant” (even unadjusted for 
multiple testing), we have stumbled upon another lesson: small p-values
(p=0.087 for hospital B) can certainly occur when
the null hypothesis is true (in this case, the null hypothesis is that the data 
are normally distributed)! 

http://stat.ethz.ch/R-manual/R-devel/library/stats/html/shapiro.test.html


Assumption 3

Based on a visual assessment, the common variance assumption is 
probably fairly reasonable (and, again, since I simulated this data, I can 
confirm that the variance is the same for each hospital).

To test this formally, Bartlett’s test for homogeneity of variances yields a p-
value of 0.68, indicating that we do not have evidence that the variances 
are different.

We have now concluded that the assumptions for ANOVA are satisfied, 
and can proceed to do our calculations.



Calculating the between-sum-of-squares (BSS) and scaling by the degrees
of freedom (the number of groups minus 1), and the within-sum-of-squares
(WSS) and scaling by the degrees of freedom (the number of observations
minus the number of groups), we get that

BSS/(K−1) = 5.94 / (3−1) = 2.97

WSS/(N−K) = 16.96 / (60−3) = 0.30.

Our test statistic turns out to be quite large indeed:

F = BSS / (K−1) / WSS / (N−k) = 2.97/ 0.3 = 9.98.



Since we are confident that the ANOVA assumptions are satisfied, this
F-statistic must follow an F distribution with suitable degrees of freedom.

Our p-value can thus be calculated as follows:

P(F2,53 ≥ 9.98) = 0.000192

And we can claim to have evidence that the three group means are not 
all identical. Note that we can interpret this as the distances between the 
group means and the global mean is quite large relative to the distances 
between the individual observations and the group means.



ANOVA as a linear model



It is more common to talk about ANOVA as a linear model.
The anova linear model can be written as follows:

μ represents the overall average wait time across all hospitals, and τi represents the amount of 
time that is either added or subtracted from the overall average as a result of being at hospital i. 
To get the average wait time for hospital i we can calculate μi := μ + τi
ϵij represents the “noise” term; the quantity that defines how the waiting time for individual j differs from the 
mean (within their group).



If the hospital-specific effects τA,τB and τC are all equal to zero, then the average
effect across all groups is the same: μA=μB=μC=μ



COMMON PITFALLS OF ANOVA

Using one-way ANOVA when there is more than one grouping variable

This is called two-way ANOVA               yijk=μ+τi+γj+βij+ϵijk



Using one-way ANOVA when there is more than one grouping 
variable and no groups in common (nested ANOVA)



Conducting ANOVA multiple times for multiple outcomes

Suppose that instead of simply being interested in whether there is a 
difference between waiting time for each hospital, we were also 
interested in differences in average length of hospital stay and cost of 
visit. Then the incorrect way to proceed would be to generate three 
separate ANOVA models and draw our conclusions separately for 
each model. This reeks of multiple testing issues and does not take 
into account any dependence between the different outcome 
variables.

One should use Multivariate Analysis of Variance (MANOVA).



Incorrectly conducting multiple pair-wise comparisons following 
ANOVA

Upon obtaining a “significant” ANOVA p-value, a common mistake is to 
then go and test all of the pairwise differences to identify which of the 
populations had different means. This is another example of multiple 
hypothesis testing, and corrections on these p-values must be made.



Using ANOVA to analyse repeated-measures data

What if, instead of having measured the waiting room times on a different 
set of 20 people at each hospital (left-panel in fig below), we instead 
measured the waiting room times on the same set of 20 people at each 
hospital (right-panel in fig below)?

We have certainly violated the assumption that our observations are 
independent. Fortunately, repeated measures ANOVA (rANOVA) is a method 
for exactly this situation. https://statistics.laerd.com/statistical-guides/repeated-
measures-anova-statistical-guide.php



Can I use ANOVA if my data violates the assumption of common 
variances?

if the sample size in each group is similar, and the difference between 
variance isn’t too bad, you should be ok.

If my data are not normal, can I simply transform it and draw the 
conclusions as normal?

Yes, you can



How does the ANOVA for model comparison work?

It compares nested models wherein one model consists of a subset of
the set of variables of the other model.

Note that the use of the word “nested” here has nothing to do with the
nested anova discussed above in which the grouping variables themselves
(rather than the models) were nested.

The comparison being made by ANOVA in this situation is whether the
residual sum of squares (which is essentially the within sum of squares
from one-way ANOVA) for model 1 (the larger model) is larger than
the residual sum of squares for model 2 (the smaller model).
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