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Chapter Goals

After completing this chapter, you should be able to:

= Recognize situations in which to use analysis of variance
= Understand different analysis of variance designs

= Perform a one-way and two-way analysis of variance and
interpret the results



Comparison of Several Population Means @ of2)

= The null hypothesis is that the population
means are all the same

= The critical factor is the variability involved in
the data

= If the variability around the sample meansis
small compared with the variability among the
sample means, we reject the null hypothesis



Comparison of Several Population Means ¢of2)
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One-Way Analysis of Variance

= Evaluate the difference among the means of three or
more groups

Examples: Average production for 1%, 2"4, and 3™ shifts Expected
mileage for five brands of tires

= Assumptions

= Populations are normally distributed
= Populations have equal variances
= Samples are randomly and independently drawn



Hypotheses of One-Way ANOVA

A e e R

" All population means are equal
® i.e. novariation in means between groups

H 1y, # 1, foratleast one i, j pair.

" Atleast one population mean is different
" i.e. thereisvariation between groups

" Does not mean that all population means are different
(some pairs may be the same)



One'Way AN OVA (1 of 2)

Hy:py = py = ply =--=
H,: Notall 4 arethesame

All Means are the same:
The Null Hypothesis is True
(No variation between groups)
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One'Way ANOVA (2 of 2)

Hy:py=py, =y == iy
H, : Notall 4 arethesame.

At least one mean is different:
The Null Hypothesis is Not true
(Variation is present between groups)

Hy = Hy # 1y Hy # Hy # Hy



Variability

= The variability of the data is key factor to test the equality of
means

= In each case below, the means may look different, but a large
variation within groups in B makes the evidence that the means
are different weak
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Small variation within groups Large variation within groups



Sum of Squares Decomposition of2)

= Total variation can be split into two parts:
SST =SSW +SSG
SST = Total Sum of Squares

Total Variation = the aggregate dispersion of the individual data
values across the various groups

SSW = Sum of Squares Within Groups

Within-Group Variation = dispersion that exists among the data values
within a particular group

SSG = Sum of Squares Between Groups

Between-Group Variation = dispersion between the group sample
means



Sum of Squares Decomposition ¢ of2)

Total Sum of Squares
(SST)

.

Variation due to + Variation due to
random sampling differences
(SSW) between groups
(SSG)




Total Sum of Squares tof2)

SST = SSW + SSG
SST = iZ(xj —?)2

i=1 j=1
Where:

SST = Total sum of squares

K = number of groups (levels or treatments)
ni = number of observations in group i

__ sth _ _
xij = ] observation from group

X = overall sample mean



Total Sum of Squares (o)
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Within-Group Variation aof3

SST =SSW +SSG
SSW=33(x,-%)
i=1 j=1
Where:

SSW = Sum of squares within groups

K = number of groups
n.o = sample size from group i

X, =sample mean from group i

-th
Xl.j = J  observationin group i



Within-Group Variation ofs)

2

SSW = ii(xy _fi)

i=l j=1

Summing the variation within
each group and then adding over

all groups SSW
MSW =
n—K
SSW
Mean Square Within =
G——p> 1 degrees of freedom




Within-Group Variation gof3
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Between-Group Variation aofs)

SST= SSW+SSG

SSG = Zn (x —x)

Where:

SSG = Sum of squares between groups

K = number of groups
71, = sample size from group i

X; =sample mean from group i

X =grand mean (mean of all data values)



Between-Group Variation of3

K =\ 2
SSG = (% x|
i=l
Variation Due to Differences SSG

Between Groups MSG _
K -1

Mean Square Between Groups

SSG

degrees of freedom



Between-Group Variation gofs)
=\2 =\2 =\2
SSGznl()?l—x) +n2(f2—x) +...+nK(fK—x)
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Obtaining the Mean Squares
SST

n—1

SSW

n—K
SSG

MSG =——
K -1

MST =

MSW =

Where n = sum of the sample sizes from all groups

K = number of populations



One-Way ANOVA Table

Source of SS df MS F ratio
Variation (Variance)
SSG

Between SSG K-1 IMsG = F= MSG
Groups K-1 MSW

ithi SSwW
bl SSW | n-K |Msw=
Groups n-K

SST-=

Total S SE n-1

K = number of groups
n = sum of the sample sizes from all groups

df = degrees of freedom



One-Factor ANOVA F Test Statistic

Hy:py=p,=...= 11,
H,: Atleasttwo population means are different

= Test statistic
o MSG

-~ MSW

MSG is mean squares between variances

MSW is mean squares within variances

= Degrees of freedom

afl =K -1 (K = number of groups)

afz =n—-K (n = sum of sample sizes from all groups)



Interpreting the F Statistic

= The F statistic is the ratio of the between estimate
of variance and the within estimate of variance

®  The ratio must always be positive
m df1 =K -1 will typically be small
" df,=n-K will typically be large

Decision Rule:

* Reject H,
o =.05
/&
F > FK_L I’l—K, a OT Reject H,
reject Hy

F

K-1,n-K, o



One-Factor ANOVA F Test Example

You want to see if three | Patient 1 | Patient 2 | Patient 3 |
different patients yield 254 234 200
different blood measurement. 263 218 292
You randomly select five

measurements from a 241 235 197
laboratory. 237 297 206
At the .05 significance level, is 251 216 204

there a difference in mean
value?



One-Factor ANOVA Example: Scatter Diagram

Patient 1 Patient 2 Patient 3

254 234 200
263 218 222
241 235 197
237 227 206
251 216 204

X =2492 X, =2260 ¥, =2058

}

x=227.0

Blood Meas

270
260
250
240
230
220
210
200
190

= |l

Patients



One-Factor ANOVA Example Computations

Patient 1 Patient 2 Patient 3

254 | 234 | 200 % =249.2 m=5
263 | 218 | 222 x,=2260  n,=5
241 | 235 | 197 % =2058 =5
237 | 227 | 206 ~ 0 =I5
251 | 216 | 204 L3

SSG =5(249.2-227)" +5(226-227) +5(205.8-227)" =4716.4
SSW =¢(254—249.2)2 +(263-249.2) +...+(204-205.8) =1119.6
MSG = 47164 =2358.2
(3-1) 523582
MS 1119.6 933
W= =933

15-3)

=25.275

VS



One-Factor ANOVA Example Solution

Hy:u, =, = L Test Statistic:
H, :p notallequal
g MSA _ 2358.2 95975
a=.05 MSW 93.3
df, =2 df, =12
Decision:

Critical Value:

Fy 15 05= 3-89 Reject H, at @ =0.05

Conclusion:

a=.05
There is evidence that at
v least one
0
Do not Reject H,
reject H, ¢ F=25275 U differs from the rest

Fz,lz,.os =3.89



Multiple Comparisons Between Subgroup Means

= To test which population means are significantly different

* T
" Done after rejection of equal means in single factor
ANOVA design

Allows pair-wise comparisons

®  Compare absolute mean differences with critical range

Hy = H, H; .



Two Subgroups

" E/I\\//Ihseg)there are only two subgroups, compute the minimum significant difference

1 1

MSD=t¢_s,, |[—+—
2 N\

Where Sp is a pooled estimate of the variance



Multiple Subgroups o2 (procedure due to Tukey)

= The minimum significant difference between k subgroups is

0L wee 5 =AM
MSD(K) 0 S, JMSW

= Qs a factor available in the relative tables

for the chosen level of @
= K =number of subgroups, and

MSW = Mean square within from ANOVA table



Multiple Subgroups e of)

MSD(K) = 02

/ Jn

X1~ X
o ¥, —X,|> MSD(K)?
J
Compare: X — X3
L If the absolute mean difference is
Xy — X5 greater than MSD then thereisa
significant difference between that pair
etfc... of means at the chosen level of

significance.



Multiple Subgroups: Example

X, =2492 =5
X,=2260 n,=5
X,=2058 n,=5

\

X, —X,|=23.2
X, —X;|=43.4
X, —X;|=20.2

MSD(K )= 0-2 =3.77322 _g 387
Jn J15

(where Q = 3.771is from Table 13 for & =.05 and 12 df)

Since each difference is greater
than 9.387, we conclude that all
three means are different from
one another at the .o5 level of
significance.



Alternatives to MSD Approach

. Another MSD for pairwise differences of means is based on the Bonferroni
Inequality, where the MSD for groups k and / is

11
MSD,; = n—K. 7 Sp ™ +n_,: with s, = VMSW.




Kruskal-Wallis Test

= Use when the normality assumption for
one-way ANOVA is violated

= Assumptions:

" The samples are random and independent
" variables have a continuous distribution

" the data can be ranked

" populations have the same variability

" populations have the same shape



Kruskal-Wallis Test Procedure «of3)

= Obtain relative rankings for each value

" Inevent of tie, each of the tied values gets the average
rank

* Sum the rankings for data from each of
the K groups

"  Compute the Kruskal-Wallis test statistic

" Evaluate using the chi-square distribution with K - 1
degrees of freedom



Kruskal-Wallis Test Procedure ¢ of3)

= The Kruskal-Wallis test statistic:

(chi-square with K - 1 degrees of freedom)

12 &R
W: 1
n(n+1),§‘ n,

where:
n = sum of sample sizes in all groups
K = Number of samples
R, =Sum of ranks in the /" group

n. = Size of the /" group

—3(n+1)



Kruskal-Wallis Test Procedure zofs)

= Complete the test by comparing the calculated
H value to a critical 4> yalye from the chi-square

distribution with K - 1 degrees of freedom

Decision rule

®  Reject 2
) H,  W>y K-la
/0:
- : :
N Otherwise do notreject  H
0 . | - 2
Do not Reject H, Z

reject H, 5

7 K-1, a




Kruskal-Wallis Example aof4)

= Do different departments have different class sizes?

Size Rank
18 1
23 2
30 3
Class size Class size Class size 34 4
(Math, M) (English, E) (Biology, B) 40 5
23 55 30 :l j
41 60 40 3 I
54 72 18 54 9
78 45 34 55 10
66 70 44 60 1
66 12
70 13
72 14
78 15




Kruskal-Wallis Example ¢ofs)

= Do different departments have different class sizes?

((:I\I/?:tsh S;Clt)e Ranking (Elnagsiissﬁl,zEe ) Ranking (g:gls;gf/l,ZS) Ranking
23 2 55 10 30 3
41 6 60 1" 40 5
54 9 72 14 18 1
78 15 45 8 34 4
66 12 70 13 44 7
Y=44 X =56 x=20




Kruskal-Wallis Example of.)
H,:Mean,, = Mean, = Mean,

H,: Not all population means are equal

= The W statisticis

w | 12 Zk:R’?}—%nH)

5 5 5

2 2 2
= 12 [44 +56 +20 ]}—3(15“):6.72

Ha



Kruskal-Wallis Example (of )

= Compare W=6.72 to the critical value from
the chi-square distributionfor3z-1=2

degrees of freedomand «a =.05:
2
Zz,o.os =>.991

Since H=672> zi  =5.991,

reject H,

There is sufficient evidence to red'ect
that the population means are a
equal



Common pitfalls of ANOVA and alternative
approaches

Despite its perceived simplicity, scientists frequently
misuse ANOVA. A study by Wu et al. (20121) showed
that from a survey of 10 leading Chinese medical
journals in 2008, 446 articles used ANOVA, and of
those articles, 59% of them used ANOVA
Incorrectly
(https://www.hindawi.com/journals/tswj/2011/13949
4[tabi/).



https://www.hindawi.com/journals/tswj/2011/139494/

A simple toy example: hospital waiting times

Suppose that we have three hospitals, let's call them A, B and
C (creative names, | know). We are interested in whether all

three hospitals have the same the average waiting time for the
emergency room.




We measured the waiting time for 20 unique individuals at each of these
three hospitals (so there are 60 individuals in total). These waiting times (in
hours) are recorded below.

Hospital A Hospital B Hospital C
1.8 0.9 14
14 0.7 2.1
0.7 2.6 1.4
0.8 1.7 1.2
0.5 25 2.1
2.1 24 2.3
0.9 24 1.7
22 23 1.2
1.2 2.0 1.1
1.3 1.7 1.3
1.1 21 0.3
1.1 0.9 1.7
0.4 27 1.5
14 1.5 1.7
0.8 2.0 2.0
1.1 1.9 0.8
0.6 26 2.0
1.1 24 24
1.6 1.5 22

0.9 1.7 20



Let's inspect graphically. Most people seem to wait over an hour, with some
unlucky individuals waiting for almost 3 hours. The mean waiting time for
each hospital is highlighted by a red bar.
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The question here is actually asking about equality between
the average waiting times from the population of all patients
who have ever, and will ever, wait in these waiting rooms,
regardless of whether they fall in our sample.

Although the sample means clearly aren’t identical (the red
bars are all at different heights), do we have enough evidence
to show that the underlying population waiting time means are
different, or are the differences that we observe are simply
reflection of the inherent noise in the data?



The red bars in the left panel highlight the within-group variance, while the
red bars in the right panel highlight the between-group variance.

Hours spent in waiting room

"

—_—

Within group variability

Hours spent in waiting room

Hospital
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Between group variability

- I _ =

A B C
Hospital



ANOVA analysis works like this

- L <
1

BSS/(K-1) ___

WSS /(N - K)

A



Remember that there are assumptions.....

Assumption 1: The samples are independent.
Independence is an extremely common assumption that is hard to test in general.

Assumption 2: The data are normally distributed.

Not being a fan of such distributional assumptions myself, | am inclined to point the
reader in the direction of non-parametric versions of ANOVA, including the Kruskal-
Wallis test.

Those wishing to test the normality of their data can do so using a variety of methods
such as plotting a QQ-plot, or using a normality test.

Assumption 3: Each group has the same variance.

The common variance assumption can be tested using common tests, such as
the Bartlett test and the Fligner-Killeen test, which are easily implemented in
R/Python.



Assumption 2:

The figure below plots the density estimation for the waiting times from each
hospital. We know that if our data is normally distributed, it should look vaguely like
a bell-curve (I").

You can use this as a lesson on the difficult of drawing conclusions on normality
from small samples (in this case, we have 20 observations in each group).

Hospital A || Hospital B || Hospital C |
0.8;
0.6
0.4
0.2;
0.0;
1 2 1 2 1 2

Hours spent in waiting room



Assumption 2

A Shapiro-Wilk test for normality provides p-values of 0.39, 0.087, 0.52 for
hospitals A, B and C, respectively.

Although none of these values are “significant” (even unadjusted for
multiple testing), we have stumbled upon another lesson: small p-values
(p=0.087 for hospital B) can certainly occur when

the null hypothesis is true (in this case, the null hypothesis is that the data
are normally distributed)!


http://stat.ethz.ch/R-manual/R-devel/library/stats/html/shapiro.test.html

Assumption 3

Based on a visual assessment, the common variance assumption is
probably fairly reasonable (and, again, since | simulated this data, | can
confirm that the variance is the same for each hospital).

To test this formally, Bartlett’s test for homogeneity of variances yields a p-
value of 0.68, indicating that we do not have evidence that the variances
are different.

We have now concluded that the assumptions for ANOVA are satisfied,
and can proceed to do our calculations.



Calculating the between-sum-of-squares (BSS) and scaling by the degrees
of freedom (the number of groups minus 1), and the within-sum-of-squares
(WSS) and scaling by the degrees of freedom (the number of observations
minus the number of groups), we get that

BSS/(K-1) =5.94/ (3-1) = 2.97
WSS/(N-K) = 16.96 / (60-3) = 0.30.
Our test statistic turns out to be quite large indeed:

F=BSS/(K-1) /WSS /(N-k)=2.97/ 0.3 = 9.98.



Since we are confident that the ANOVA assumptions are satisfied, this
F-statistic must follow an F distribution with suitable degrees of freedom.

Our p-value can thus be calculated as follows:

P(F25329.98) = 0.000192

And we can claim to have evidence that the three group means are not
all identical. Note that we can interpret this as the distances between the

group means and the global mean is quite large relative to the distances
between the individual observations and the group means.



ANOVA as a linear model



It is more common to talk about ANOVA as a linear model.
The anova linear model can be written as follows:

ﬂ+T+8

/ The random
The noise that

individual's The average  The average rr.1a.kes |
outcome  outcome over gutcome over Ndividual j
all individuals  g|| individuals unique

in group i

M represents the overall average wait time across all hospitals, and Ti represents the amount of
time that is either added or subtracted from the overall average as a result of being at hospital 1.
To get the average wait time for hospital | we can calculate Mi:= M +Ti

€ij represents the “noise” term; the quantity that defines how the waiting time for individual j differs from the
mean (within their group).



Hypothesis test: Linear model.:
HO: H=P,=...=H

are equivalent to

HO: T = 0 for all 1

If the hospital-specific effects 1A,78 and 1c are all equal to zero, then the average
effect across all groups is the same: yaA=us=uc=y



Using one-way ANOVA when there is more than one grouping variable

Pediatrics Pediatrics

Dentistry Dentistry

Surgery

Surgery

This is called two-way ANOVA Yik=U+Ti+Yj+Pij+E€ijk



Pediatrics Gynecology

| Physical
Psychiatry Therapy

Dentistry

surgery




Suppose that instead of simply being interested in whether there is a
difference between waiting time for each hospital, we were also
interested in differences in average length of hospital stay and cost of
visit. Then the incorrect way to proceed would be to generate three
separate ANOVA models and draw our conclusions separately for
each model. This reeks of multiple testing issues and does not take
into account any dependence between the different outcome
variables.

One should use Multivariate Analysis of Variance (MANOVA).



Upon obtaining a “significant” ANOVA p-value, a common mistake is to
then go and test all of the pairwise differences to identify which of the
populations had different means. This is another example of multiple
hypothesis testing, and corrections on these p-values must be made.



What if, instead of having measured the waiting room times on a different
set of 20 people at each hospital (left-panel in fig below), we instead

measured the waiting room times on the same set of 20 people at each
hospital (right-panel in fig below)?

55 55 55 55

P
We have certainly violated the assumption that our observations are

independent. Fortunately, repeated measures ANOVA (rANOVA) is a method

for exactly this situation. https://statistics.laerd.com/statistical-guides/repeated-
measures-anova-statistical-quide.php

'II'



Can | use ANOVA if my data violates the assumption of common
variances?

if the sample size in each group is similar, and the difference between
variance isn’t too bad, you should be ok.

If my data are not normal, can | simply transform it and draw the
conclusions as normal?

Yes, you can



How does the ANOVA for model comparison work?

It compares nested models wherein one model consists of a subset of
the set of variables of the other model.

Note that the use of the word “nested” here has nothing to do with the
nested anova discussed above in which the grouping variables themselves
(rather than the models) were nested.

The comparison being made by ANOVA in this situation is whether the
residual sum of squares (which is essentially the within sum of squares
from one-way ANOVA) for model 1 (the larger model) is larger than

the residual sum of squares for model 2 (the smaller model).
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