

Theory of Hypothesis Test II

Data Driven Healthcare Mod B Prof. Paola Cerchiello – University of Pavia

Tests of the Mean of a Normal Population Sigma Unknown (1 of 2)

• Convert sample result (\overline{x}) to a *t* test statistic

Tests of the Mean of a Normal Population sigma unknown (2 of 2)

- For a two-tailed test:
 - Consider the test

$$\begin{array}{ll} H_0: \mu = \mu_0 & \quad \mbox{(Assume the population is normal, and the population variance is unknown)} \\ H_1: \mu \neq \mu_0 & \quad \end{array}$$

The decision rule is:

Reject
$$H_0$$
 if $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} < -t_{n-1,\frac{\alpha}{2}}$ or if $t = \frac{\overline{x} - \mu_0}{\frac{S}{\sqrt{n}}} > t_{n-1,\frac{\alpha}{2}}$

Example 7: Two-Tail Test Sigma Unknown

The average cost of a vaccine dose is said to be \$168. A random sample of 25 hospitals resulted in

$$\overline{x} = \$172.50$$
 and
 $s = \$15.40$. Test at the
 $\alpha = 0.05$ level.

Example Solution: Two-Tail Test

Tests of the Population Proportion (1 of 2)

- Involves categorical variables
- Two possible outcomes
 - "Success" (a certain characteristic is present)
 - "Failure" (the characteristic is not present)
- Fraction or proportion of the population in the "success" category is denoted by P
- Assume sample size is large

Tests of the Population Proportion (2 of 2)

- The sample proportion in the success category is denoted by \hat{p}

$$\hat{p} = \frac{x}{n} = \frac{\text{number of successes in sample}}{\text{sample size}}$$

• When nP(1-P) > 5, \hat{p} can be approximated by a normal distribution with mean and standard deviation

$$\mu_{\hat{p}} = P$$
 $\sigma_{\hat{p}} = \sqrt{\frac{P(1-P)}{n}}$

Hypothesis Tests for Proportions

Example 8: Z Test for Proportion

A medical devices company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the

 $\alpha = .05$ significance level.

Check:

Our approximation for *P* is

$$\hat{p} = \frac{25}{500} = .05$$

$$nP(1-P) = (500)(.05)(.95)$$

$$= 23.75 > 5$$

Z Test for Proportion: Solution

 $H_0: P = .08$ $H_1: P \neq .08$ $\alpha = .05$ $n = 500, \hat{p} = .05$ Critical Values:

Test Statistic:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1 - .08)}{500}}} = -2.47$$

Decision:

Reject
$$H_0$$
 at $\alpha = .05$

Conclusion:

There is sufficient evidence to reject the company's claim of 8% response rate.

p-Value Solution

Calculate the p-value and compare to α

(For a two sided test the *p*-value is always two sided)

Reject H_0 since *p*-value = $.0136 < \alpha = .05$

Assessing the Power of a Test

Recall the possible hypothesis test outcomes:

		Actual Situation	
Key: Outcome (Probability)	Decision	H_0 True	H_0 False
	Do Not Reject H_0	Correct Decision $(1 - \alpha)$	Type II Error (β)
	Reject H_0	Type I Error (α)	Correct Decision $(1 - \beta)$

- $\cdot eta$ denotes the probability of Type II Error
- 1β is defined as the power of the test

Power $= 1 - \beta$ = the probability that a false null hypothesis is rejected

Type II Error

Assume the population is normal and the population variance is known. Consider the test

$$H_0: \mu = \mu_0$$

 $H_1: \mu > \mu_0$

The decision rule is:

Reject
$$H_0$$
 if $z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} > z_{\alpha}$ Reject H_0 if $\overline{x} > \overline{x}_c = \mu_0 + z_{\alpha} \frac{\sigma}{\sqrt{n}}$

If the null hypothesis is false and the true mean is μ^* ,

then the probability of type II error is

$$\beta = P(\overline{x} < \overline{x}_c \mid \mu = \mu^*) = P\left(z < \frac{\overline{x}_c - \mu^*}{\frac{\sigma}{\sqrt{n}}}\right)$$

Type II Error Example (1 of 3)

- Type II error is the probability of failing to reject a false H_0 $H_0: \mu \geq 52$ Suppose we fail to reject $\mu^* = 50$ when in fact the true mean is α 50 52
 - S0S2Reject $\overline{x_c}$ Do not reject $H_0: \mu \ge 52$ $\overline{x_c}$

Type II Error Example (2 of 3)

• Suppose we do not reject $H_0: \mu \ge 52$ when in fact

Type II Error Example (3 of 3)

Calculating Beta (1 of 2)

• Suppose $n = 64, \sigma = 6, \text{ and } \alpha = .05$

Calculating Beta (2 of 2)

• Suppose n = 64, $\sigma = 6$, and $\alpha = .05$

Power of the Test Example

If the true mean is $\mu^* = 50$,

- The probability of Type II Error $= \beta = 0.1539$
- The power of the test $= 1 \beta = 1 0.1539 = 0.8461$

		Actual Situation	
Key: Outcome (Probability)	Decision	H_0 True	H_0 False
	Do Not Reject H_0	$\frac{\text{Correct Decision}}{1-\alpha=0.95}$	Type II Error $\beta = 0.1539$
	Reject H ₀	Type I Error $\alpha = 0.05$	$\frac{\text{Correct Decision}}{1 - \beta} = 0.8461$

(The value of β and the power will be different for each μ^*)

Tests of the Variance of a Normal Distribution (1 of 2)

Goal: Test hypotheses about the population variance,

$$\sigma^2$$
 (e.g., $H_0: \sigma^2 = \sigma_0^2$)

- If the population is normally distributed,

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma^2}$$

has a chi-square distribution with (n-1) degrees of freedom

Tests of the Variance of a Normal Distribution (2 of 2)

The test statistic for hypothesis tests about one population variance is

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

Decision Rules: Variance

Summary

- Addressed hypothesis testing methodology
- Performed *z* Test for the mean (σ known)
- Discussed critical value and *p*-value approaches to hypothesis testing
- Performed one-tail and two-tail tests
- Performed *t* test for the mean (σ unknown)
- Performed *z* test for the proportion
- Discussed type II error and power of the test
- Performed a hypothesis test for the variance (χ^2)

Appendix: Guidelines for Decision Rule (1 of 2)

Guidelines for Choosing the Appropriate Decision Rule for a Population Mean

Appendix: Guidelines for Decision Rule (2 of 2)

Guidelines for Choosing the Appropriate Decision Rule for a Population Proportion

