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Tests of the Mean of a Normal Population 
Sigma Unknown (1 of 2)

▪ Convert sample result ( )x to a t test statistic



Tests of the Mean of a Normal Population sigma 
unknown (2 of 2)

▪ For a two-tailed test:

Consider the test
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(Assume the population is normal, and the population 
variance is unknown)

The decision rule is:
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Example 7: Two-Tail Test Sigma Unknown

The average cost of a vaccine 
dose is said to be $168. A 
random sample of 25 
hospitals resulted in

 $172.50 
 $15.40.
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Example Solution: Two-Tail Test
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▪ = 0.05α
▪ = 25n
▪σ is unknown, so

use a t statistic
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▪ Critical Value:

24, .025 = ±2.064t Do not reject 0 :H not sufficient evidence that

true mean cost is different than $168



Tests of the Population Proportion (1 of 2)

▪ Involves categorical variables
▪ Two possible outcomes

▪ “Success” (a certain characteristic is present)
▪ “Failure” (the characteristic is not present)

▪ Fraction or proportion of the population in the 
“success” category is denoted by P
▪Assume sample size is large



Tests of the Population Proportion (2 of 2)

▪ The sample proportion in the success category is denoted by

number of successes in sampleˆ
sample size
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▪ When ( ) ˆ1– 5, nP P p> can be approximated
by a normal distribution with mean and 
standard deviation

–

p̂ Pµ =
ˆ

(1 )
p

P P
n

σ −
=

p̂



Hypothesis Tests for Proportions



Example 8: Z Test for Proportion

A medical devices company 
claims that it receives 8% 
responses from its mailing. 
To test this claim, a random 
sample of 500 were 
surveyed with 25 responses. 
Test at the

.05α = significance level.

Check:
Our approximation for P is
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Z Test for Proportion: Solution
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Critical Values: ±1.96

Test Statistic:
0
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Decision:

Reject 0 .05H α =at
Conclusion:

There is sufficient 
evidence to reject the 
company’s claim of 
8% response rate.



p-Value Solution

Calculate the p-value and compare to α
(For a two sided test the p-value is always two sided)

p-value = .0136:

( 2.47) ( 2.47)
2(.0068) 0.0136

P Z P Z≤ − + ≥
= =

Reject 0H since p-value = .0136 < = .05α



Assessing the Power of a Test

▪ Recall the possible hypothesis test outcomes:

▪ β denotes the probability of Type II Error

▪1– β is defined as the power of the test

Power 1– β= = the probability that a false null hypothesis is rejected



Type II Error

Assume the population is normal and the population variance is known. 
Consider the test
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Type II Error Example (1 of 3)

▪ Type II error is the probability of failing
to reject a false 0H
Suppose we fail to reject 0 : 52≥H μ

when in fact the true mean is * = 50μ



Type II Error Example (2 of 3)

▪ Suppose we do not reject
0 : 52H µ ≥ when in fact

the true mean is * = 50μ



Type II Error Example (3 of 3)

▪ Suppose we do not reject 0 : 52H µ ≥ when

in fact the true mean is * = 50μ



Calculating Beta (1 of 2)

▪ Suppose 64, 6, .05n σ= = =and α



Calculating Beta (2 of 2)

▪ Suppose 64, 6, .05n σ α= = =and



Power of the Test Example

If the true mean is * 50,µ =

▪ The probability of Type II Error 0.1539β= =
▪ The power of the test 1– 1– 0.1539 0.8461β= = =

*β µThe value of and the power will be different for each( )



Tests of the Variance of a Normal Distribution (1 of 2)

▪ Goal: Test hypotheses about the population variance,
2 2 2

0 0:Hσ σ σ=e.g.,( )

– If the population is normally distributed,
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has a chi-square distribution with ( 1)n − degrees of freedom



Tests of the Variance of a Normal Distribution (2 of 2)

The test statistic for hypothesis tests about one 
population variance is
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Decision Rules: Variance

Population variance
Lower-tail test:
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Summary

▪ Addressed hypothesis testing methodology

▪ Performed z Test for the mean σ( known)
▪ Discussed critical value and p-value approaches to hypothesis 

testing
▪ Performed one-tail and two-tail tests

▪ Performed t test for the mean σ unkn( own)
▪ Performed z test for the proportion

▪ Discussed type II error and power of the test
▪ Performed a hypothesis test for the variance 2( )χ



Appendix: Guidelines for Decision Rule (1 of 2)

Guidelines for 
Choosing the 
Appropriate Decision 
Rule for a Population 
Mean



Appendix: Guidelines for Decision Rule (2 of 2)

Guidelines for Choosing 
the Appropriate Decision 
Rule for a Population 
Proportion
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