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Tests of the Mean of a Normal Population
Sigma Unknown @of2)

= Convert sample result

(X) toattest statistic

Hypothesis
Tests for u

o Known

o Unknown

Consider the test

Hi:p=p,
Hp >,

(Assume the population is normal)

The decision rule is:

Reject H, if 1=~ 205

n

n—1,a




Tests of the Mean of a Normal Population sigma
unknown ¢ of2)

= For a two-tailed test:

Consider the test

HO U= U, (Assume the population is normal, and the population

variance is unknown)
H:p#

The decision rule is:

Reject H, if t=>—"0<—¢ orif t=2—05y

T




Example 7: Two-Tail Test Sigma Unknown

The average cost of a vaccine
dose is said to be $168. A
random sample of 25
hospitals resulted in

$172.50 and H;:u=168
$15.40. Test at the H, :pu+#168
=0.05 level.

X
S
o



Example Solution: Two-Tail Test

Hy,:p=168  “_ps

H, :u+168
) Reject H, T Do not reject H, T T Reject H, i
-t 0 o
. a = 0.05 ]’1*1,5 f?*l,a
- 1.46
n=15 2.064 2.064

.o isunknown, so _
x—pu 172.50-168

S 15.40

_ Critical Value: \/; \/g

t24,-025 = +2.064 Do not reject H;: not sufficient evidence that

use a t statistic — =

=1.46

true mean cost is different than $168



Tests of the Population Proportion uof»

" Involves categorical variables
= Two possible outcomes

" “Success” (a certain characteristic is present)
" “Failure” (the characteristic is not present)

= Fraction or proportion of the population in the
"success” category is denoted by P

= Assume sample size is large



Tests of the Population Proportion ¢of2

* The sample proportion in the success category is denoted by ﬁ

. x number of successes in sample
p = ; =

sample size

- When nP(1-P)>5, p can be approximated

by a normal distribution with mean and
standard deviation

_ P(1-P
", =P a,a=/(n )




Hypothesis Tests for Proportions

» The sampling
distribution of P is Hypothesis
approximately Tests for P
normal, so the test |

statistic is a z value nP(1—P)>5 nP(1-P)<S5

p—Hh

zZ= D Not discussed
F,(1-F) Hy:P=F in this chapter
n H :P>F,




Example 8: Z Test for Proportion

A medical devices company
claims that it receives 8%
responses from its mailing.
To test this claim, a random
sample of soo were
surveyed with 25 responses.
Test at the Check:

Our approximation for P is

25
~ 2 _ 05
=300

nP(1— P) = (500)(.05)(.95)
=23.75>5 v

a =.05 significance level.



Z Test for Proportion: Solution

H,:P=.08

H :P~+.08

a=.05

n =500, p=.05
Critical Values:

+1.96

Reject Reject

s/ 1\ .02

196 <

1‘ —;.96 0
-2.47

Test Statistic:
.05-.08
/P(l P \/08(1—08)
Decision:

Reject H, at a =.05

Conclusion:

There is sufficient
evidence to reject the
company’s claim of
8% response rate.

=-2.47



p-Value Solution

Calculate the p-value and compare to o

(For a two sided test the p-value is always two sided)

Do not reject H,

Reject H,

« g = 025 /
2
.0068

* Reject H,

Z_ms
2
\ .0068

]‘ -1.96 0 1.96 ]‘
Z=-2.47 Z=247

p-value =.0136:
P(Z <-2.47)+ P(Z >2.47)
=2(.0068) = 0.0136

Reject H() since pvalue = ,0136 <a = .05



Assessing the Power of a Test

* Recall the possible hypothesis test outcomes:

Actual Situation
Decision H, True H, False
Key:
Outcome Do Not Correct Decision Type Il Error
(Probability) Reject H, (1-a) (B)
: Type | Error Correct Decision
Reject H,
’ () (1-8)

- B denotes the probability of Type Il Error

1 — [ s defined as the power of the test

Power =1—f =the probability that a false null hypothesis is rejected



Type ll Error

Assume the population is normal and the population variance is known.
Consider the test

H:p=
- _ Hytp>
The decision rule is:
) X — . — o
Reject HO if z= o >z, Reject HO |f X>XC:lLl0 +Za—
o : Jn

Jn

If the null hypothesis is false and the true mean is ,U*,
then the probability of type Il erroris
X —H

o

,B:P()T<fc‘,u:,u*):P z<



Type Il Error Example wof3

= Type Il error is the probability of failing

to reject a false H,
Suppose we fail to reject H,:u>52
when in fact the true mean is u*=50

Do not reject
Hy-pp=52 ¢ H,: =52



Type Il Error Example of3)

= Suppose we do not reject

the true mean is

w* =150

This is the true

distribution of x if 4 =50

H,:p>52 wheninfact

This is the range of X where
H, is not rejected

52

Reject ’E‘ Do not reject
H p=52 + H, :p>52




Type Il Error Example gof3)

= Suppose we do not reject H,:p>52 when

w*=350

in fact the true mean is

. Here, f= P(x>X,) if 1*=50

50 : 52

=| B al . I A .

Reject Do not reject
H, :u=52 H,:u=z52



Calculating Beta wof»

= Suppose n=64,0=6,and a =.05

% = —z -L =50-1.645—2 {50766

c Jn Vo4

(for H,: p>52)

L S0 p=P(F>50.766) if 41 =50

50 50.766 52

e
Reject I Do not reject
Hy:p>52 3 Hy:pu=52
C



Calculating Beta : of»)

= Suppose n=64, c =6, and a =.05

W =50)P=|z> 50.766 -50

P(x 250.766

=P(z=1.02)=.5-.3461=[.1539

> =

Probability of
type Il error:

B=.1539

50 52

Je
Reject I Do not reject
X H,u=52
(4



Power of the Test Example

If the true meanis u*=50,

= The probability of Type Il Error = #=0.1539
= The powerofthetest =1-4=1-0.1539=0.8461

Actual Situation
Decision H, True H, False
Key:
Outcome Do Not Correct Decision Type Il Error
(Probability) Reject H, 1-a=0.95 f=0.1539
Reject H, Type | Error Correct Decision
0 a=0.05 1-5=0.8461

(The value of g and the power will be different for each u*)



Tests of the Variance of a Normal Distribution @of2)

= Goal: Test hypotheses about the population variance,
o’ (e.g., H,:0° =0)

— If the population is normally distributed,
2
, (m—=1)s

Z—l 2
" o

has a chi-square distribution with (2 —1) degrees of freedom



Tests of the Variance of a Normal Distribution (of2)

The test statistic for hypothesis tests about one
population variance is

(n—1)s’
sz—l = 2)
Oy




Decision Rules: Variance

Population variance

Lower-tail test: ~ Upper-tail test: Two-tail test:
H,:0’ >0, H,:0’ <o, H,:0’ =0,
H :0’ <o, H :0’ >0, H .o’ #0,

] 2
2 2 y4

Z”—L - ZF?—L a n-1, 1,% n—l.%
_ _ Reject H; if
Reject H, if Reject H, if or 11 .

2 2 2 2 2 2
Kot < Xn-t1-a Xn1 = Znl.a i <X &

1-=
2



Summary

= Addressed hypothesis testing methodology

- Performed z Test for the mean (o known)

= Discussed critical value and p-value approaches to hypothesis
testing

= Performed one-tail and two-tail tests
= Performed t test for the mean (o unknown)

= Performed z test for the proportion

= Discussed type Il error and power of the test
- Performed a hypothesis test for the variance (x°)



Appendix: Guidelines for Decision Rule @of2)

Guidelines for
Choosing the
Appropriate Decision
Rule for a Population
Mean

Standard
normal Z
distribution

State the hypotheses:

Hyw=pg Hopp=pg Hpyp=p
Hyp##py Hizp>po Hizp<pg

®

Student ¢
distribution

Compute critical
values

Xy = Motzenoz
X = Ro~Zan%%

Compute critical
value

Xerit = Mot Zu0%

Compute critical
value

Xerit = H0™ Za0%

Compute critical
values

Ty = motitanss
X = po—tunSt

Compute critical
value

Xerit = Mot taS7

Compute critical
value

Xerit = Mo~ taSe

Decision rule Decision rule Decision rule Decision rule Decision rule Decision rule
It X >xy or If X >Xerips If X<Xgpipr If X >Xyor If X >X 56 If ¥ <Xgpies
x<1Xp,reject Hy | | reject Hyand reject Hyand X <Xxp, reject Hy | | reject Hyand reject Hyand
and accept Hj. accept H. accept H;. and accept Hj. accept H;. accept H;.




Appendix: Guidelines for Decision Rule of)

Guidelines for Choosing
the Appropriate Decision
Rule for a Population
Proportion

State the hypotheses:

Hy:P=P, HyP<P, HyP=P,
H:P#P, H:P>P, H;:P<P,

(

| Statea

4

A :11130(1— Py)

n

(

® Hypothesis @

type
Y @ \
Decision rule Decision rule Decision rule
|ff7_p0 If?_po |ff,_P0

=2
[PdL=Po)

|| PP/ JPot=Poi/n =

reject H, reject H,

[Po(1=Py)/n <" Zan, and accept H; and accept H;

reject H,
and accept H;
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