

Describing Data: Numerical

Data Driven Healthcare Module B Prof. Paola Cerchiello – University of Pavia

- Compute and interpret the mean, median, and mode for a set of data
- Find the range, variance, standard deviation, and coefficient of variation and know what these values mean
- Apply the empirical rule to describe the variation of population values around the mean
- Explain the weighted mean and when to use it
- Explain how a least squares regression line estimates a linear relationship between two variables

Topics (1 of 2)

- Measures of central tendency, variation, and shape
 - Mean, median, mode, geometric mean
 - Quartiles
 - Range, interquartile range, variance and standard deviation, coefficient of variation
 - Symmetric and skewed distributions
- Population summary measures
 - Mean, variance, and standard deviation
 - The empirical rule and Chebyshev's Theorem

Chapter Topics (2 of 2)

- Five number summary and box-and-whisker plots
- Covariance and coefficient of correlation
- Pitfalls in numerical descriptive measures and ethical considerations

Describing Data Numerically

average

Measures of Central Tendency **Overview Central Tendency** Mean Median Mode X_i 00000 $\mathbf{0}$ $\overline{x} = \underline{i=1}$ € € n Midpoint of Most frequently Arithmetic ranked values observed value

(if one exists)

Arithmetic Mean (1 of 2)

- The arithmetic mean (mean) is the most common measure of central tendency
 - For a population of *N* values:

For a sample of size *n*:

Arithmetic Mean (2 of 2)

- The most common measure of central tendency
- Mean = sum of values divided by the number of values
- Affected by extreme values (outliers)

 In an ordered list, the median is the "middle" number (50% above, 50% below)

Not affected by extreme values

Finding the Median

• The location of the median:

Median position =
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 position in the ordered data

- If the number of values is odd, the median is the middle number
- If the number of values is even, the median is the average of the two middle numbers

n+1

• Note that 2 is not the value of the median, only the

position of the median in the ranked data

Mode

- A measure of central tendency
- Value that occurs most often
- Not affected by extreme values
- Used for either numerical or categorical data
- There may be no mode
- There may be several modes

Review Example

Review Example: Summary Statistics

House Prices : \$2,000,000 500,000 300,000 100,000 100,000 Sum 3,000,000 • Mean:

= \$600,000

• Median: middle value of ranked data

= \$300,000

• Mode: most frequent value

= \$100,000

Which Measure of Location Is the "Best"?

- Mean is generally used, unless extreme values (outliers) exist ...
- Then median is often used, since the median is not sensitive to extreme values.
 - Example: Median home prices may be reported for a region less sensitive to outliers

Shape of a Distribution

- Describes how data are distributed
- Measures of shape
 - Symmetric or skewed

Percentiles and Quartiles

- Percentiles and Quartiles indicate the position of a value relative to the entire set of data
- Generally used to describe large data sets
- Example: An I Q score at the 90th percentile means that 10% of the population has a higher I Q score and 90% have a lower I Q score.

 P^{th} percentile = value located in the ordered position $\left(\frac{1}{1}\right)$

$$\left(\frac{P}{100}\right)\left(n+1\right)^{\text{th}}$$

Quartiles (1 of 2)

 Quartiles split the ranked data into 4 segments with an equal number of values per segment (note that the widths of the segments may be different)

25%	25%	25%	25%
1) 1	1]
Q	$_1 \qquad Q$	$_2$ Q	\mathcal{P}_3

- The first quartile, Q_1 , is the value for which 25% of the observations are smaller and 75% are larger
- Q_2 is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile

Quartile Formulas

Find a quartile by determining the value in the appropriate position in the ranked data, where

First quartile position:

$$Q_1 = 0.25(n+1)$$

Second quartile position: (the median position)

 $Q_2 = 0.50(n+1)$

Third quartile position: $Q_3 = 0.75(n+1)$

where *n* is the number of observed values

Quartiles (2 of 2)

Example: Find the first quartile

Sample Ranked Data: 11 12 13 16 16 17 18 21 22 (n=9) $Q_1 = \text{ is in the } 0.25(9+1) = 2.5 \text{ position of the ranked data}$ so use the value half way between the 2nd and 3rd values,

so
$$Q_1 = 12.5$$

Five-Number Summary

The **five-number summary** refers to five descriptive measures:

minimum first quartile median third quartile maximum

minimum $< Q_1 <$ median $< Q_3 <$ maximum

Measures of Variability

Range

- Simplest measure of variation
- Difference between the largest and the smallest observations:

Range =
$$X_{\text{largest}} - X_{\text{smallest}}$$

Example:

Disadvantages of the Range

Ignores the way in which data are distributed

Sensitive to outliers

1

Interquartile Range (1 of 2)

- Can eliminate some outlier problems by using the interquartile range
- Eliminate high-and low-valued observations and calculate the range of the middle 50% of the data
- Interquartile range = 3rd quartile 1st quartile

$$IQR = Q_3 - Q_1$$

Interquartile Range (2 of 2)

- The interquartile range (IQR) measures the spread in the middle 50% of the data
- Defined as the difference between the observation at the third quartile and the observation at the first quartile

$$IQR = Q_3 - Q_1$$

Box-and-Whisker Plot (1 of 2)

- A box-and-whisker plot is a graph that describes the shape of a distribution
- Created from the five-number summary: the minimum value, Q_1 , the median, Q_3 , and the maximum
- The inner box shows the range from Q₁ to Q₃, with a line drawn at the median
- Two "whiskers" extend from the box. One whisker is

the line from Q_1 to the minimum, the other is the line from Q_3 to the maximum value

Box-and-Whisker Plot (2 of 2)

The plot can be oriented horizontally or vertically

Example:

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Population Variance

Average of squared deviations of values from the mean

• Population variance:

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

Where
$$\mu$$
 = population mean
 N = population size
 $x_i = i^{\text{th}}$ value of the variable x

Sample Variance

- Average (approximately) of squared deviations of values from the mean
- Sample variance:

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Where \overline{X} = arithmetic mean

n = sample size

 $x_i = i^{\text{th}}$ value of the variable x

Population Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
- Population standard deviation:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$

Sample Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data
- Sample standard deviation:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Calculation Example: Sample Standard Deviation

Sample Data

$$(x_i): 10 12 14 15 17 18 18 24$$

$$n = 8 \qquad \text{Mean} = \overline{x} = 16$$

$$s = \sqrt{\frac{(10 - \overline{x})^2 + (12 - \overline{x})^2 + (14 - \overline{x})^2 + \dots + (24 - \overline{x})^2}{n - 1}}$$

$$= \sqrt{\frac{(10 - 16)^2 + (12 - 16)^2 + (14 - 16)^2 + \dots + (24 - 16)^2}{8 - 1}}$$

$$= \sqrt{\frac{130}{7}} = 4.3095 \implies \text{A measure of the average" scatter around the mean}$$

Measuring Variation

Comparing Standard Deviations

Mean = 15.5 for each data set

Advantages of Variance and Standard Deviation

- Each value in the data set is used in the calculation
- Values far from the mean are given extra weight (because deviations from the mean are squared)

Using Microsoft Excel

 Descriptive Statistics can be obtained from Microsoft[®] Excel

Select:

data/data analysis/descriptive statistics

Enter details in dialog box

Using Excel (1 of 2)

Select

data/data analysis/descriptive statistics

0.		4) - (4 - 🖨) -	\sim	~			Book1 - M
	Home I	insert Page	Layout Fo	rmulas Data	eview	v View	Add-Ins	
From	n From From SS Web Text	n From Other Sources*	Existing Connections	Refresh All *	perties t Links	$\begin{array}{c} A \downarrow \\ Z \downarrow \\ Z \downarrow \\ A \downarrow \\ A \downarrow \\ Sort \end{array}$	Filter SA	lear eapply dvanced
	Get I	External Data	8	Connecti	ons		Sort & Filter][
	Α/	• (*	Jx					
	А	В	С	D	E	F	(3
1	House Price	ces	Data Analysis				2	×I
2	2000000		Analysis Tool	ls				
3	500000		Anova: Sing	le Factor	P	4	ОК	4
4	300000		Anova: Two Anova: Two	Anova: Two-Factor With Replication Anova: Two-Factor Without Replication			Cancel	
5	100000		Correlation				Help	
6	100000		Descriptive Exponential	Statistics Smoothing				
7			F-Test Two- Fourier Anal	Sample for Variand	es		1	
8			Histogram					
9								

eXplainable Artificial Intelligence in healthcare Management 2020-EU-IA-0098

Book1 -

Using Excel (2 of 2)

〒 🗒 🖉 • (P - 魚) = 83 Home Insert Page Layout Formulas Data Review View Add-Ins Connections K Clear 20 A Z Z A Properties Reapply Z Sort Filter From From Other Advanced Se Edit Links Sources Ally Get External Data ? X **Descriptive Statistics** A1 - () Input OK 1 • Enter input A B Input Range: \$A\$1:\$A\$6 Cancel House Prices Columns Grouped By: range details C Rows Help 2 2000000 ✓ Labels in First Row 3 500000 Output options 300000 4 • C Output Range: 5 100000 Check box for New Worksheet Ply: 6 100000 C New Workbook summary Summary statistics Confidence Level for Mean: 8 statistics Kth Largest: 9 Kth Smallest: 10 Click OK 11 10

Excel output

Microsoft Excel descriptive statistics output, using the house price data:

House Prices:

\$2,000,000 500,000 300,000 100,000 100,000

	А	В		
1	House Pr	ices		
2				
3	Mean	600000		
4	Standard Error	357770.8764		
5	Median	300000		
6	Mode	100000		
7	Standard Deviation	800000		
8	Sample Variance	6.4E+11		
9	Kurtosis	4.130126953		
10	Skewness	2.006835938		
11	Range	1900000		
12	Minimum	100000		
13	Maximum	2000000		
14	Sum	3000000		
15	Count	5		
16				

Coefficient of Variation

- Measures relative variation
- Always in percentage (%)
- Shows variation relative to mean
- Can be used to compare two or more sets of data measured in different units

Population coefficient of variation:

$$CV = \left(\frac{\sigma}{\mu}\right) \cdot 100\%$$

Sample coefficient of variation:

$$CV = \left(\frac{s}{\overline{x}}\right) \cdot 100\%$$

Comparing Coefficient of Variation

- Stock A:
 - Average price last year = \$50
 - Standard deviation = \$5

$$CV_A = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$50} \cdot 100\% = 10\%$$

• Stock B:

- Average price last year = \$100
- Standard deviation = \$5

$$CV_B = \left(\frac{s}{\overline{x}}\right) \cdot 100\% = \frac{\$5}{\$100} \cdot 100\% \neq 5\%$$

Both stocks have the same standard deviation, but stock B is less variable relative to its price

The Empirical Rule (1 of 2)

- If the data distribution is bell-shaped, then the interval:
- $\mu \pm 1\sigma$ contains about 68% of the values in

the population or the sample

The Empirical Rule (2 of 2)

 $\mu \pm 2\sigma$. contains about 95% of the values in the population or the sample

 $\mu \pm 3\sigma$ contains almost all (about 99.7%) of the values in the population or the sample

Z-Score (1 of 3)

A z-score shows the position of a value relative to the mean of the distribution.

- indicates the number of standard deviations a value is from the mean.
 - A z-score greater than zero indicates that the value is greater than the mean
 - a z-score less than zero indicates that the value is less than the mean
 - a z-score of zero indicates that the value is equal to the mean.

Z-Score (2 of 3)

- If the data set is the entire population of data and the population mean, μ , and the population standard deviation, σ , are known, then for each
 - value, X_i , the z-score associated with X_i is

$$z = \frac{x_i - \mu}{\sigma}$$

 If intelligence is measured for a population using an IQ score, where the mean IQ score is 100 and the standard deviation is 15, what is the z-score for an IQ of 121?

$$z = \frac{x_i - \mu}{\sigma} = \frac{121 - 100}{15} = 1.4$$

A score of 121 is 1.4 standard deviations above the mean.